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Abstract

During the design of an object using a CAD (computer aided design) platform, the user can visualize the ongoing model at every
moment. Visualization is based on a discrete representation of the model that coexists with the exact analytical representation
of the object. Most CAD systems have this discrete representation available, and each of them applies its own construction
methodology. This paper presents a new method to build a discrete (“triangulated” with quadrilaterals and triangles) model for
CAD surfaces. It presents two major particularities: most elements are aligned with iso-parametric curves and the accuracy of
the surface approximation is controlled. In addition, we present a new technique of surface mesh generation that is based on this
discrete model. Several examples are presented to confirm the efficacy of this approach.
c© 2016 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of organizing committee of the 25th International Meshing Roundtable (IMR25).
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1. Introduction

In most CAD (computer aided design) systems, any object is defined from its boundary that is constituted by a
collection of surface patches. Each patch is defined by a continuous parametric function (typically NURBS) over a
bidimensional domain that is called the parametric domain.

A first challenging problem is to visualize such a surface efficiently, in particular on a video display. Most 3D
graphics interfaces require a discrete representation of the surface as a set of simple polygons. In this context, the main
objective is processing speed, whatever the shape quality of the elements, while preserving the geometric accuracy of
the model.

A second problem is to generate meshes for numerical simulations of physical phenomena, applying methods like
FEM (finite element method). In this case, the size and shape of the elements must comply with strict specifications
tailored to the geometry and the physics of the simulated phenomenon. During the mesh generation, many queries to
the CAD system are performed (to evaluate locations of points and also derivatives of parametric functions), which
can be time-consuming and difficult to parallelize (due to cache defaults that are involved in most CAD systems).
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In addition, the parametric function representing the surface may vary in a highly irregular manner, and also have
degenerate derivatives, resulting in low quality elements.

In this paper, a new method for generating a discrete model (a surface “triangulation” containing quadrilaterals
and triangles) for visualization is presented. The model uses a quadtree that follows a network of iso-parametric
curves, which generally constitue an adequate representation of the surface (in particular for polynomial and rational
functions). The triangulated model is conformal on each patch. For these reasons, it can also be used as a geometric
support for mesh generation. Using the geometric support, the mesher is completely disconnected from the CAD
system and is therefore faster and parallelizable. In this case, the surface is redefined by piecewise simple polynomial
functions, thus avoiding any degeneracy of derivatives.

In the following, Sec. 2 presents the construction of the discrete model, while Sec. 3 presents a method of using
this support to generate meshes. Finally, our approach is illustrated by some examples.

2. Discrete model of a parametric surface

A parametric surface Σ is defined by a regular map σ (having a continuity of class C1 at least) from a domain Ω of
R2 to R3:

σ : Ω ⊂ R2 → Σ ⊂ R3 , (u, v) 7→ σ(u, v) . (1)

When the pair of parameters (u, v) sweeps the parametric domain Ω, the point σ(u, v) moves on the surface patch
Σ. It is not uncommon that a CAD parametric domain is a simple unit square [0, 1]2 but actually it can be can be any
shape, possibly having one or more connected components, with possibly inner holes.

The discrete geometric modeling here consists in building a “triangulation” (actually made up of quadrilaterals
and triangles) that accurately reflects the geometry of Σ. As in the case of curves, and in general for a variety that
is a subset of a global space (R3 here), the quality of the support is controlled via the two properties of proximity
and regularity. Proximity controls the distance between the elements of the geometric support and the corresponding
surface. As for regularity, it controls the angular gap between the elements (or tangent planes to the elements) and
tangent planes to the surface.

Iso-u curves (obtained by giving a constant value to u) and iso-v curves (constant v) generally give an accurate
description of the geometry of a parametric surface. This mode of representation is particularly suited to polynomial
and rational surfaces that are commonly used in CAD systems. To build the geometric support of a patch, we propose
a method using a network of iso-parametric curves as privileged directions for the edges. The method consists in
building this support indirectly via the parametric domain, as detailed below step by step.

2.1. Discrete model of curves in 2 and 3 dimensions

The first step consists in building a geometric support that is common to the boundary of Ω and its image that
constitutes the boundary of Σ. In general, the boundary of Ω is defined by one or more smooth curves (for instance,
in the simple case where Ω is a square, its boundary can be defined by four straight edges). Let Γ2 be such a smooth
curve, and let Γ3 = σ(Γ2) be its image on the border of Σ. The bidimensional curve Γ2 is defined by a regular function
ω (having a continuity of class C1 at least) from an interval [a, b] of R to R2:

ω : [a, b] ⊂ R → Γ2 ⊂ R2 , t 7→ ω(t) , (2)

and the tridimensional curve Γ3 is defined by the composition (σ ◦ ω) of functions ω : R→ R2 and σ : R2 → R3.
In this case, the support is a curve discretization controlled by both properties of proximity (here controlling the

distance between the edges of the discretization and the curve) and regularity (controlling the angular gap between
the edges and the tangents to the curve). Creating the support amounts to first defining the geometric support of
the bidimensional curve Γ2, and then to enrich this support (by recursive subdivisions) so that it is also a geometric
support of the tridimensional curve Γ3.

First, a coarse discretization of Γ2 is considered, having only one edge if curve Γ2 is open and two edges if it is
closed. Then the discretization is recursively refined while the C0-distance (proximity) or C1-distance (regularity)
between the curve and the edges of the discretization exceeds a given threshold. The C0-distance between an edge
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Fig. 1. (a) Initial geometric support of Γ2 only. (b) Refined support of both Γ2 and Γ3 = σ(Γ2). (c) Surface patch with boundary curves Γ3.

of the discretization, which is a straight segment [S ] having its two extremities on the curve, and the corresponding
curved segment (S ) is defined by:

d0

(
(S ), [S ]

)
= max

M∈(S )
d0(M, [S ]) . (3)

The C1-distance is similarly defined with a distance d1(M, [S ]) representing the angular gap between the tangent
to the curve at M and the straight segment [S ].

The C0-distance can be analytically evaluated from the defining mapping function and its first derivatives. In
practice, a finite set of sampling points of (S ) is considered by generating pseudo-random values {ti}i=1,...,n in the
interval [p, q] defining (S ). Let tm be the value for which the maximum distance is reached. If this distance exceeds a
given threshold, the curved segment (S ) = ω([p, q]) is split into the subsegments ω([p, tm]) and ω([tm, q]), which are
recursively analyzed. The threshold is considered as relative to the length of the straight segment [S ] instead of being
absolute.

Then, starting with the obtained discretization which is a geometric support for Γ2, the same refinement process
is applied in three dimensions to construct the final discrete model, which is a geometric support for both Γ2 and Γ3.
Actually, the whole process is fully symmetrical for Γ2 and Γ3: if for instance Γ2 is a straight segment and Γ3 a curved
segment, then the support will be oversampled for Γ2, and vice versa. At the end of this step, a set of points and straight
segments in R2 is available, representing the vertices and the edges of the geometric support of the boundary curves
of Ω, while the set of their images in R3 forms the vertices and the edges of the geometric support of the boundary
curves of Σ. To simplify the next steps, bidimensional coordinates are normalized by a homothetic transformation
sending the axis-aligned bounding box of Ω to the unit square [0, 1]2.

For example, Fig. 1a shows the initial geometric support of bidimensional curves Γ2. This support is refined as can
be seen in Fig. 1b, because the images Γ3 = σ(Γ2) are curved boundaries of a surface patch illustrated by Fig. 1c (in
particular, the nose of the aircraft is represented by a small half-circle in three dimensions and consequently discretized
with a minimum size). The data originate from patch 114 of a STEP file made available for the meshing contest of
the 22nd International Meshing Roundtable, Orlando, FL, 2013.

2.2. Build a quadtree from the vertices of the curve geometric support

In the second step, the unit square defined above is partitioned by a quadtree [5,12], where each node corresponds
to a square quadrant. This quadtree is such that the interior of each leaf (node with no children) contains at most one
vertex of the curve geometric support. The boundary of each leaf, however, may contain any number of vertices of this
support to avoid useless refinements (unlike traditional point-region quadtrees). In order to achieve this, the quadtree
is initialized with only one node corresponding to the unit square [0, 1]2, and vertices are successively inserted. To
insert a vertex, a fast recursive algorithm finds in which leaf it lies. If the interior of this leaf does not contain any
vertex then the latter can be inserted, otherwise the leaf is recursively subdivided into four equal-sized squares until a
vacant leaf is found. As an example, Fig. 2a shows the quadtree resulting from the previous curve geometric support.
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Fig. 2. (a) Quadtree such that the interior of each leaf contains at most one vertex of the curve geometric support. (b) Quadtree with inserted and
merged traces. (c) Quadtree with a constrained “triangulation” of each leaf. Close-up pictures are included to clarify these three steps.

2.3. Insert and merge edges into the quadtree

The third step concerns the insertion of the edges of the curve geometric support into the quadtree. An edge can
cross any number of leaves, and the points of intersection between this edge and the borders of these leaves define
a partition of the edge, giving sub-edges that are referred to as traces. In many cases, a quadrant now contains two
adjacent traces of a same curve, hence complying with the properties of proximity and regularity. Then, these traces
are merged into one straight segment. Examples of resulting traces can be seen in Fig. 2b.

2.4. Construct a constrained “triangulation” of each leaf

Each leaf now corresponds to a square containing zero, one or more traces. The aim is to construct a “triangula-
tion” of this square in which the traces are forced. Note that this “triangulation” may contain not only triangles but
also quadrilaterals, but we will use this term in the following without quotation marks. To make such a triangulation,
if the interior of the leaf still contains a vertex (which was necessarily an extremity of a boundary curve of Ω ), this
vertex is simply “starred”, that is, connected to the four corners of the square and possibly to the vertices within some
sides of the square. Otherwise, frequent cases are first considered to simplify and to improve the resulting triangula-
tion. Indeed, if there is no vertex on the border of the square, the triangulation is constructed depending on the number
n of traces crossing the leaf:

• If n = 0, it reduces to one quadrilateral covering the leaf.
• If n = 1, the extremities of the trace are either on opposite sides of the square, or on sides sharing a corner C of

the square. In the first case, two quadrilaterals are constructed, while in the second case four triangles are made
after connecting each extremity of the trace with the opposite corner of C.

• If n = 2, frequently one trace connects two opposite sides of the square, and the second trace connects the same
sides, so only three quadrilaterals are generated. If the extremities of the traces are distributed on the four sides
of the square, one quadrilateral and four triangles are made.

In any other case, a general algorithm is applied to construct a triangulation (made up of triangles only). The input
is composed of the four sides of the square, vertices lying on these sides, and traces crossing the square. An initial
triangulation is created from the four sides and the vertices, which define a partition of the square boundary. Then,
the traces are forced by recursive edge swapping (this simple algorithm converges since all triangulations in 2D are
equivalent by means of swaps). In this swapping algorithm, the shape quality of the triangles is ignored since the
quality of the geometric support is optimized in a further step (cf. section 2.9).

A resulting constrained triangulation of a quadtree is shown in Fig. 2c.
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Fig. 3. (a) Elements of the triangulation inside the parametric domain. (b) Surface geometric support (close-up view). (c) Balanced quadtree
(close-up view).

2.5. Identify all the elements of the triangulation inside the parametric domain

At this stage, the quadtree represents a non-conformal triangulation, containing among its edges an approximation
of the edges of the curve geometric support defined in section 2.1, which is an approximation of the boundary of
the parametric domain Ω. Consequently, it is possible to distinguish between the elements of the triangulation that
are inside or outside an approximation of Ω. Let s (seed) be any element of the triangulation touching the contour
of the unit square. If all the edges of s lying on the contour are edges of the curve support, then s is in the category
“inside”. Otherwise it is in the category “outside”. Growing by adjacency starting from s without ever passing through
an edge of the curve support, a whole connected component of the quadtree is identified with the same category. If
some elements are remaining, a new seed with the opposite category is obtained, this time passing through an edge
of the curve support, then a new connected component is identified, and so on. Since the triangulation is globally
non-conformal, but locally conformal in each leaf of the quadtree, adjacency is defined by considering both the
neighborhood of leaves of the quadtree and the adjacency between elements of a same leaf.

In Fig. 3a, the elements of the triangulation are represented in green if they are inside the parametric domain, and
in red if they are outside. If all the elements of a leaf are outside, the leaf is not represented.

2.6. Make a surface geometric support

We can now analyze leaves or selected parts of leaves with respect to the two properties of proximity and regularity,
and iteratively refine the leaves if necessary. Refining a leaf consists in subdividing it into four equal-sized squares
and to insert the associated traces, if any, to the four new leaves (cf. section 2.3). For each of these four new leaves, a
constrained triangulation is constructed (cf. section 2.4). New elements are simply identified as inside or outside Ω,
based on the initial triangulation of section 2.5.

Let [k] be an element of the triangulation of Ω, [K] the corresponding element of the support whose vertices are
the images of the vertices of [k], and (K) the image of [k] by σ, which is a part of patch Σ. The proximity criterion
involves the distance d0

(
(K), [K]

)
between (K) and [K] defined by:

d0

(
(K), [K]

)
= max

M∈(K)
d0(M, [K]) . (4)

The regularity criterion is similarly defined with a distance d1 representing an angular gap. Distances d0 and d1
are compared to absolute or relative thresholds, for example a percentage of the element size for d0 and a maximum
angular gap for d1.

In practice, as for curves, only a reduced sample of points of (K) are considered, namely the image of the middle of
each edge of [k] and the image of its barycenter. If [K] is a quadrilateral, distances are approximated by subdividing
[K] into four triangles around its barycenter. If a relative threshold is utilized, the distance for the middle of each edge
is relative to the corresponding edge length in [K], and the distance for the barycenter is relative to the size of [K]. For
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Fig. 4. (a) Conformal triangulation. (b) Smoothed geometric support. (c) Same support in 3D.

each leaf, distance d0 is computed for each of the elements of its triangulation, and if one of the evaluated distances
exceeds the threshold then the leaf is subdivided into four equal-sized squares, and constrained triangulations are
constructed in the new leaves as stated before.

Fig. 3b is a close-up picture of the quadtree after the above refinement producing a surface geometric support.

2.7. Balance the quadtree

The quadtree now represents a non-conformal triangulation that accurately reflects the geometry of curves and
surfaces. In this step, in order to make the next step of building a conformal triangulation easier, the tree is balanced
in order to impose a 2:1 rule between neighboring leaves. As in the previous step, if a leaf violates this rule then it
is subdivided into four equal-sized squares and new constrained triangulations are constructed. In fact, a stricter rule
applies: if a leaf has 2 neighbors at one side, and also 2 neighbors at the opposite side, then it is also subdivided.

Fig. 3c shows the previous region of the quadtree after balancing.

2.8. Make a conformal triangulation

For each edge of each element [k] of the triangulation of Ω, let us consider the number n of neighboring elements
at this edge. After the previous balancing operation we always have n ≤ 2, and the configuration n = 2 defines one
hanging point on an edge of [k]. To make a conformal triangulation, the total number p of hanging points for each
element [k] – be it a triangle or a quadrilateral – is examined:

• If p = 0, no action is taken.
• If p = 1, and if [k] is a triangle (resp. quadrilateral), then [k] is subdivided in 2 (resp. 3) triangles by connecting

the hanging point with its opposite vertex (resp. vertices).
• If p = 2, the only possible configuration corresponds to 2 hanging points on 2 adjacent edges, and a simple

pattern is used for building 3 triangles if [k] is a triangle, or 4 triangles if [k] is a quadrilateral.

Again, the quality of the triangles is not considered here since it is optimized in the next step. Examples with p =

0, 1 and 2 can be seen in Fig. 4a.

2.9. Smooth the geometric support

In this final step, the geometric support is made smoother by edge swapping. If e1 and e2 are two adjacent triangles
in a leaf of the quadtree, e1 is adjacent to e2 and possibly two other elements e3 and e4, and e2 is adjacent to e1 and
possibly two other elements e5 and e6. Let a(ei, e j) be the angle between the normal to ei and the normal to e j if both
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elements ei and e j exist, or else 0, for any i, j = 1, ..., 6. The roughness r(e1, e2) of the adjacent triangles e1 and e2
involves angles between normals to triangles e1, e2 and their adjacent elements e3, e4, e5 and e6:

r(e1, e2) = a(e1, e2) + a(e1, e3) + a(e1, e4) + a(e2, e5) + a(e2, e6) . (5)

By edge swapping, adjacent triangles e1 and e2 become e′1 and e′2. If the roughness decreases, meaning that
r(e′1, e

′
2) < r(e1, e2), then the triangles are actually swapped, and this is repeated for each pair of adjacent triangles of

the leaf until no improvement can be made.
In practice, to compute the normal to a quadrilateral, the latter is subdivided into four triangles around its barycen-

ter. The normal is approximated by the normalized sum of the four normalized normals to these triangles.
Fig. 4b is a bidimensional view of a smoothed geometric support where swapped triangles are displayed in yellow.

Fig. 4c shows the same support in the tridimensional space.

After the construction described in this section 2, the resulting discrete model constitutes a triangulation that
is globally non-conformal, but conformal in each surface patch. This triangulation is close to the geometry, by
construction, and represents an appropriate model for visualization. In particular, the accuracy of the geometric model
can be controlled (via the different introduced thresholds). The second advantage of the discrete model is that it can
also be used as a support and as a base for redefining a parametrization that is appropriate to mesh generation, as
explained in the next section.

3. Surface meshing via the parametrization of the geometric support

For meshing a parametric surface, direct or indirect approaches can be used. In a direct approach, the mesh is
generated on the surface directly in R3, as in octree-based methods [14], advancing-front methods [9] and paving
methods [6]. In an indirect approach, the parametric domain is meshed and then mapped onto the surface.

The indirect approach is expected to be simpler, faster and more robust since the mesh is generated in two dimen-
sions. It was first used for visualization without considering mesh quality [3,4,11,13]. A difficulty with this method
is to follow prescribed size specifications on the surface. For instance, to obtain an isotropic mesh of the surface,
an anisotropic mesh of the parametric domain must generally be generated, because of metric distortions from the
surface to its parametric domain. Various algorithms can be found in the literature [2,15,16]. Methods to generate a
geometric mesh (that is, complying with the properties of proximity and regularity) in an indirect manner have been
proposed in the isotropic and anisotropic cases [1,7].

Using the indirect approach, let us recall (see [7] for more details) the main necessary ingredients. The usual length
L(e) of an edge e in R2 or R3 is defined by L2(e) = eT e, and the length LM(e) of e in a constant metric M is defined
by L2

M(e) = eT M e. In R2, for a given point P, the locus of points X such that L2
M(−−→PX) = 1 is an ellipse, and in R3 an

ellipsoid. The size and the shape of the elements can be controlled using such metrics.
To build an isotropic geometric mesh, the prescribed size at any point P of the surface must be h(P) = λ ρ1(P),

where λ is a given constant and ρ1(P) is the minimum radius of curvature at P. This defines an isotropic metric
M3(P) = (1/h2(P)) I3 on the surface, where I3 is the 3 × 3 identity matrix. For an anisotropic geometric mesh, the
prescribed sizes must be h1(P) = λ1 ρ1(P) and h2(P) = λ2 ρ2(P) along the principal directions of curvature, where
ρ1(P) and ρ2(P) are the minimum and maximum radii of curvature at P, λ1 is a given constant and λ2 ≤ λ1 is a factor
depending on the constant λ1 and the ratio ρ1(P)/ρ2(P) ≤ 1. This defines a metric in the tangent plane to the surface
at P, which can be expressed as an anisotropic metric M3(P) in the usual basis of R3.

Having an isotropic or anisotropic metric M3 at any point of the surface, the induced metric M̃2 in the parametric
space is given by:

M̃2 =

σ
T
u

σT
v

 M3

(
σu σv

)
, (6)
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where σu and σv denote the partial derivatives of σ with respect to u and v. This yields in the isotropic case:

M̃2 =

σ
T
u

σT
v

 1
h2 I3

(
σu σv

)
=

1
h2

σ
T
u σu σT

u σv

σT
v σu σT

v σv

 =
1
h2 Mσ , (7)

where Mσ is a 2 × 2 symmetric matrix which characterizes the local intrinsic metric of the surface.
This indicates that, in order to build a surface mesh using an indirect approach, function σ as well as its first

partial derivatives σu and σv must be known for each patch. In particular, a constant size mesh of the surface can
be generated without knowing other derivatives. For a geometric mesh, however, the curvatures of the surface must
also be evaluated, which generally requires the second partial derivatives σuu, σuv and σvv. Similarly, function ω is
necessary for a constant size discretization of curves, and its derivatives at order 1 and 2 for a geometric discretization.
Using the discrete model instead of the continuous model, functions ω and σ defining curves and surfaces are replaced
by simpler polynomial functions ω̄ and σ̄ for which the derivatives and curvatures can easily be evaluated. Another
advantage is that the code implementing ω̄ and σ̄ can efficiently be called in parallel for different patches, contrary to
ω and σ because most CAD systems use memory caches to save information [8].

3.1. Approximate function ω̄ to define a curve

In the support defined in section 2, each boundary curve Γ2 is represented by separate edges associated to leaves
of a quadtree. However, the discretization of Γ2 should be defined by a sequence of vertices (P0, P1, ..., Pn), where
P0 = A and Pn = B are the two extremities of Γ2, and (Pi−1, Pi), i = 1, ..., n, are the edges of the curve support. This
can be efficiently obtained by finding P0 = A in the quadtree and get the first edge (P0, P1), then finding P1 and get
the second edge (P1, P2), and so on until Pn = B is reached.

We can now approximate function ω defined by Eq. 2 as follows. Let t be a real parameter in the interval [0, n],
and let btc denote its image by the floor function. Then it = min(btc, n − 1) is an integer between 0 and n − 1, and
function ω̄ can be defined by:

ω̄ : [0, n] ⊂ R → R2 , t 7→ ω̄(t) = Pit + (t − it) (Pit+1 − Pit) . (8)

This provides a piecewise linear function approximating ω. When t varies from 0 to n, ω̄(t) sweeps a polyline
approximating Γ2. For a given t and the corresponding integer it, the first derivative of ω̄ is Pit+1 − Pit, and its second
derivative is zero. However, curvatures can be approximated at each vertex of the discretization of Γ2 by considering
the directions of the two edges sharing the vertex, and then interpolating along the edges these curvatures.

3.2. Approximate function σ̄ to define a surface

Having a point p in the discretized parametric domain Ω̄, a fast algorithm can find the leaf of the quadtree where
p is located. This leaf contains one or more elements of the triangulated support. For the sake of simplicity, any
quadrilateral element will be considered like 4 triangles around its barycenter. The triangles of the leaf, which are
very few in number, are examined until a triangle contains p. To test if a triangle with vertices a, b, c contains point p,
the signed barycentric coordinates α, β, γ of p are computed (here we will have α, β, γ ∈ R and α + β + γ = 1). These
are defined by α = |

−→pb−→pc| /∆, β = |
−→pc−→pa| /∆, γ = |

−→pa−→pb| /∆, where |.| denotes a 2 × 2 determinant and ∆ = |
−→ab−→ac|

is the signed area of triangle abc (positive as the vertices are in a direct order). The triangle contains p iff all the
barycentric coordinates are positive, α, β, γ ≥ 0. Hence α, β, γ become classical barycentric coordinates between 0
and 1, and function σ̄ can be defined by:

σ̄ : Ω̄ ⊂ [0, 1]2 → R3 , p 7→ σ̄(p) = α A + β B + γC , (9)

where A, B, C are the tridimensional images of the bidimensional points a, b, c by σ.
To compute the partial derivatives of σ̄ with respect to u and v, let us define the coordinates of the bidimensional

points p = (u, v)T, a = (a1, a2)T, b = (b1, b2)T, c = (c1, c2)T. Therefore, we have σ̄(u, v) = α(u, v) A + β(u, v) B +

γ(u, v) C with:

α(u, v) =
1
∆

∣∣∣∣−→pb −→pc
∣∣∣∣ =

1
∆

∣∣∣∣∣∣ b1 − u c1 − u
b2 − v c2 − v

∣∣∣∣∣∣ =
1
∆

(b2 − c2) u +
1
∆

(c1 − b1) v +
1
∆

const. . (10)
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Similar expressions are obtained for β(u, v) and γ(u, v), hence the partial derivatives of σ̄ with respect to u and v:

σ̄u(u, v) =
∂σ̄

∂u
(u, v) =

1
∆

(
(b2 − c2) A + (c2 − a2) B + (a2 − b2) C

)
, (11)

σ̄v(u, v) =
∂σ̄

∂v
(u, v) =

1
∆

(
(c1 − b1) A + (a1 − c1) B + (b1 − a1) C

)
. (12)

Since the first partial derivatives are constant on each triangle, they can be stored once and for all to improve
computational efficiency. Second partial derivatives always equal zero. However, curvatures can be approximated
at each vertex of the triangulation of Σ by considering the normals to the elements sharing the vertex, and then
interpolating in the elements these curvatures.

4. Examples

The proposed methodology has been implemented in ALIEN, which is a software component that can be plugged
in CAD systems. In particular, it has been added to the Open Cascade platform [10] to make an application that can
read a CAD model from an IGES or STEP file, build a discrete support of this model and generate meshes from this
support. Three models are utilized in this section, all provided for meshing contests at the International Meshing
Roundtable: the White House (IMR25, Washington, DC, 2016), an exhaust fan (IMR25 also) and an electric guitar
(IMR24, Austin, TX, 2015).

4.1. White House

The input model of the White House (IMR25) contains 1580 patches in STEP format. Tests and performance
measurements have been carried out on a MacBook Pro laptop with a 2 GHz Intel Core i7 processor including 4
physical cores. Using ALIEN, a discrete model has been generated with a relative threshold 0.03 for curves and
surfaces (Fig. 5). This discrete model contains 62251 elements (29593 triangles ≈ 47.54% of elements and 32658
quadrilaterals ≈ 52.46% of elements). The computation time (without times for reading and writing files) is 0.192
seconds. A second discrete model has been generated with a smaller relative threshold 0.01, which is the default value
(Fig. 6). The triangulation is finer in regions where curves or surfaces are curved. A total of 385987 elements (49636
triangles ≈ 12.86% of elements and 336351 quadrilaterals ≈ 87.14% of elements) has been created in 0.969 seconds.

This finer discrete representation has been used as a geometric support for generating a uniform mesh with a
constant size h = 380 (see Fig. 7a). The mesh contains 222706 triangles with an average shape quality 0.972570. The
shape quality of a triangle is defined as its area divided by the sum of the squares of the lengths of its sides, normalized
by a factor 4

√
3. The elapsed times for meshing are respectively 2.440, 1.277, 0.884 and 0.675 seconds on 1, 2, 3 and

4 cores, demonstrating an almost linear scaling.
A geometric mesh has also been generated from the same discrete representation (see Fig. 7b). The maximum

angular gap between the elements and the tangent planes to the surface at their vertices is 8 degrees and the size
gradation is limited to 1.25. The resulting mesh contains 137970 triangles and the average shape quality is 0.957108.

4.2. Exhaust fan

In this second example, the STEP model of an exhaust fan (IMR25) contains 697 patches. The discrete model
(Fig. 8), constructed by ALIEN with a relative threshold 0.01, contains 893765 elements (82621 triangles ≈ 9.24415%
of elements and 811144 quadrilaterals ≈ 90.7558% of elements). As a remark, with this geometric accuracy, two
intersections of boundary curves have been detected.

From this discrete support, two meshes have been generated by ALIEN. Fig. 9a shows the uniform mesh with size
h = 0.85, containing 214264 triangles with an average shape quality 0.950649. Fig. 9b shows the geometric mesh
with the same size specifications as above, containing 527989 triangles with an average shape quality 0.960465.
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a b

Fig. 5. (a) Discrete model of the White House (relative threshold 0.03). (b) Close-up.

a b

Fig. 6. (a) Discrete model of the White House (relative threshold 0.01). (b) Close-up.

4.3. Electric guitar

The third example is the STEP model of an electric guitar (IMR24) made up of 2018 patches. The ALIEN discrete
model (Fig. 10), for a relative threshold of 0.01, contains 9105422 elements (1395773 triangles ≈ 15.329% of elements
and 7709649 quadrilaterals ≈ 84.671% of elements).

The first mesh generated by ALIEN (Fig. 11a) is a uniform mesh with size h = 1.0, 1054754 triangles with an
average shape quality 0.985242. The second mesh (Fig. 11b) is a geometric mesh, 901648 triangles and an average
shape quality 0.970245.
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a b

Fig. 7. (a) Uniform mesh of the White House (h = 380). (b) Geometric mesh (angle 8◦, gradation1.25).

a b

Fig. 8. (a) Discrete model of an exhaust fan (relative threshold 0.01). (b) Close-up.

5. Conclusion

We have presented a new method for building a discrete CAD model. Most elements of this model are aligned with
iso-parametric curves, which generally provides an accurate description of the surface geometry. The accuracy can
easily be controlled by absolute or relative thresholds. The algorithm for constructing the model is fast and robust.
With all these advantages, this approach is well suited for visualization.

Such a discrete representation also concerns mesh generation for numerical simulations. In this case, CAD para-
metric functions are replaced by simpler polynomial functions that can be efficiently evaluated, as well as their deriva-
tives (that are always non-degenerate and piecewise constant) and discrete curvatures. A further important benefit is
the possibility of meshing surface patches in parallel. Most CAD systems use memory caches to store information for
each patch, making CAD queries difficult to parallelize. Using a discrete representation, the CAD system is entirely
disconnected from the mesher, and consequently the latter can readily be parallelized.
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a b

Fig. 9. (a) Uniform mesh of an exhaust fan (h = 0.85). (b) Geometric mesh (angle 8◦, gradation1.25).

a b

Fig. 10. (a) Discrete model of an electric guitar (relative threshold 0.01). (b) Close-up.

The extension of the method to discrete representations of degree 2 or higher is under investigation. It will signifi-
cantly reduce the number of elements of the geometric support for a given accuracy, and also produce more accurate
calculations of curvatures. A little more computing time will be necessary for the evaluation of higher degree polyno-
mials and their derivatives, but the code will remain easy to parallelize.
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