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Abstract 

Finite element analyses of 3D quadrilateral meshes for automotive body-in-white panels have stringent mesh quality 

requirements. Several mesh quality metrics, namely element included angles, minimum Jacobian determinant, skew, taper, warp, 

aspect ratio, minimum element length etc. need to be within acceptable limits. No constitutive relations exist that can tie all these 

parameters to a single metric that mesh post-processing can target. In the paper presented, a 3D optimization smoothing 

algorithm is proposed based on element included angles with the constraints of a minimum edge length and geometry fidelity 

envelope. A complex cost-function is set up for each element based on included element angle at the element corners. Element 

angle perturbation methods are devised to exercise local control on included angles of quadrilateral and mixed meshes. A 

minimization principle is worked out to reduce the cost function to an acceptable limit. Goal proximity is defined by acceptable 

error norms and ranges. Mesh nodes are repositioned iteratively but bound by a geometry fidelity envelope apart from the 

minimum element edge length constraint. Striking improvement in mesh quality statistics is reported with reasonably monotonic 

solution convergence patterns.  
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1. Introduction 

According to industrial practice, automotive body-in-white meshes are almost always quadrilateral or hybrid 

(quad-dominant) and are typically generated by creating first a 2D mesh on surface parametric space which is 
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subsequently transformed into 3D. It has become customary in the automotive industry to subject these quadrilateral 

meshes to a plethora of element quality checks, namely – minimum Jacobian determinant, warp, taper, skew, 

quadrilateral and triangular (for quad-dominant meshes) minimum/maximum angle limits, aspect ratio and minimum 

element-edge length or MEL. Most of these checks are performed irrespective of the chosen solver. Quadrilateral 

mesh generation algorithms cannot be conditioned by such a large gamut of pressing quality requirements. 

Furthermore, it is extremely inefficient and non-trivial to evaluate these quality metrics and correcting the mesh in 

3D space while generating it. There is thus a need in the meshing process to incorporate a mesh post-processing step 

where a variety of tools are used to modify element shapes so that they conform to the required quality limits. 

Unfortunately, no well-defined constitutive relations exist that can relate each one of these metrics to a single quality 

measure. On the contrary, some of these metrics can conflict with others. For example, while trying to fix warp, a 

post-processing algorithm might worsen element skew, min/max angles or taper.  

 

2. Optimization smoothing of Quadrilateral meshes 

In any optimization smoothing algorithm, a cost function is set up to define the metric pursued [1]. A 

minimization principle is also worked out to reduce the cost function to an acceptable limit. Goal proximity is 

usually managed by defining error norms and their acceptable ranges [2]. Thus, in an effort to minimize the cost 

function, the nodes of the mesh are repositioned either iteratively [1,2,3,4] or via quasi-static simultaneous equation 

solve systems [5]. Some traditional mesh smoothing cost functions include quality metrics like (a) Element Included 

Angles (Minimum/Maximum defining acceptable range), (b) Element Distortion Metrics, (c) Aspect Ratio [1, 2] etc. 

Element included angles are either maximized or minimized in order to eliminate severely distorted elements. 

Popularly used distortion metrics are defined either in terms of area and the edge length of elements or its angles. 

The use of non-dimensional mesh quality metrics is popular as they offer a good shape quality measure of an 

element in a neutral scale. An equilateral triangle (for triangles) and a square/rectangle (for quadrilaterals) are shown 

to possess the ideal values in that scale. The further an element distortion metric is from these ideal values, the more 

severely distorted it is. Compared to non-optimization smoothing methods (like Laplacian smoothing and its 

variants) optimization-based smoothing methods can guarantee the improvement of mesh quality. Optimizing the 

quality metrics, severely distorted elements can be effectively corrected. The degree of collective improvement 

depends on the computational cost one is willing to incur. Zhou and Shimada [4] observed for or a two-dimensional 

triangular mesh, for example, optimization-based smoothing method can be five times more computationally 

expensive than smart Laplacian smoothing, a variation of Laplacian smoothing [2], and 30 to 40 times more 

computationally expensive than Laplacian smoothing. Knupp [6] has done a significant volume of work in the field 

of smoothing. In a series of investigations [6,7] Knupp laid the foundation for nodally based 2D and 3D objective 

functions using matrices and matrix norms. He showed how some of these objective functions can relate to the 

Jacobian matrix and how the condition number of the metric tensor objective functions in 2D failed to naturally 

extend to 3D. The objective functions were grouped to form weighted combinations and the condition number based 

objective function showed particular promise. In a later work Rao, Shashkov and Knupp [8] used a condition number 

based optimization smoothing algorithm for 3D surface meshes maintaining geometry fidelity by constructing 

element-based local parametric spaces.  

 

Most of the optimization smoothing algorithms available in open literature, however, are performed in 2D and 

tend to focus more on triangular meshes than quadrilateral. No investigations were found on optimization smoothing 

on body-in-white quadrilateral and quad-dominant meshes in 3D. Need remains for an objective function that 

specifically targets automotive body panel meshes as the mesh quality goals are stringent.  

   

3. Mesh quality challenges in Body-in-White  

In the automotive industry, body-in-white (BIW) refers to the fabricated (usually seam and/or tack welded) sheet-

metal components that form the car’s body (shown in Figure 1). Body-in-white is a stage of the carbody prior to 
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painting and before the moving parts (doors, hoods, fenders etc.), the engine, chassis sub-assemblies, and trim (glass, 

seats, upholstery, electronics, etc.) have been mounted. Most of industrial body-in-white mesh generation is done 

using commercial software which either generate meshes in 2D parametric domains or in some rare cases directly on 

the 3D surface.  

 

BIW meshes are typically bilinear quadrangular-dominant meshes as opposed to triangles. Linear triangles are 

constant-strain and tend to over-stiffen models which are subjected to a large number of structural analyses including 

transient dynamic and frequency response analysis. Consequently, mesh quality of quadrilateral and a small 

percentage of triangular elements used in these BIW models have stringent requirements and a single metric is 

usually not sufficient to measure it. There are additional constraints BIW meshes have to combat. The presence of 

loads and boundary conditions, pre-existing hard-points representing seam and tack welds are some of them. Crash 

analyses also limit the variation of element size in anisotropic meshes which is directly proportional to the time-step 

of quasi-static solutions. This makes the MEL perhaps the most important quality criterion for BIW meshes. Since 

most of the target element quality parameters are measured in 3D, a need arises for the mesh post-processor to 

address them in 3D. In the process mesh nodes are allowed to move off geometry in order to meet the stringent 

quality goals. Movement away from geometry must be limited though, which introduces another positional 

constraint – a geometric fidelity envelope (GFE) or tolerance. No node is allowed to move off geometry by an 

amount more than the GFE.  

   

Several mesh quality parameters like skew, taper, warp, Jacobian determinant, element included angles, edge 

lengths and aspect ratio are used to measure distortion. Of these, with the exception of aspect ratio and warp, most 

other parameters are related to element angles in one way or another. Typically, for BIW quad-dominant meshes, the 

3D angle limits for a quadrangular element are 50-150 deg., 40-140 deg. for triangles; minimum Jacobian ratio 

(min/max Jacobian determinant value) limit is 0.4, MEL is usually 0.4~0.6 times the global element size and the 

GFE is 0.2~0.4 times the global element size. Therefore, these meshes are usually generated either in 2D or 3D 

domains according to well-known meshing algorithms and sometimes smoothed and cleaned (typically in 2D 

parameter space)by elementary post-processing tools that are quick and do not target complex quality metrics. In our 

case, a variational smoother based on nodal valency [9] is used in 2D for each face to smooth the mesh. This 

improves the overall quality of the 2D mesh while maintaining perfect geometry fidelity, but it cannot target specific 

element quality. Thus, as a last step, a heavy-duty 3D post-processer becomes necessary to meet each and every 

single mesh quality metric.  

 

In the present paper, an optimization based 3D quad-dominant mesh smoother is proposed for post-processing 

BIW meshes. The optimization smoother is angle-based. Its design variables are the positional coordinates of the 

nodes. The main objective is to minimize the collective distortion energy of the mesh resulting from element angular 

deviation with respect to an optimum shape. The objective or cost function is the deviation of element angle in 3D 

from an ideal target. This cost function is globally minimized. A non-dimensional element quality metric (EQM), 

defined in section 7, is used to control the smoother. The constraints for this optimization smoother are minimum 

element length or MEL as well as a geometry fidelity envelope or GFE.  

 

The novel technique presented here demonstrates how the angle gradient may be used to improve element shape 

and minimize distortion in 3d surface meshes of industrial complexity. Unlike most authors who have reported on 

node-centered smoothing frameworks, this approach relies on a two-tiered element based configuration. A local 

solution is firstly achieved on an element-by-element basis and iteratively refined until a global solution is 

converged upon. By improving the included angles, other mesh metrics such as the Scaled Jacobian are enhanced 

and a mathematical relationship between the aforementioned quality measures is identified. Incorporating constraints 

such as MEL and GFE ensures the algorithm generates viable, functional meshes with enhanced quality 

characteristics. 
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4. 3D Element angle based optimization smoothing 

    If iδ denotes the deviation of the nodes from an ideal configuration (in which all included angles of quadrilateral 

Qi fall within desired limits) the distortion energy εi due to nodal deviation can be written as  
2

2
1

iii κ δε        (1) 

where iκ is a stiffness constant and aggregate displacement iδ can be expressed as 
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4
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for the i-th quadrilateral element and Xoptj represents the optimum location of element node j, while X0j is its initial 

position. The global distortion functionψ  for a mesh with N failing quad elements is given by  
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This global distortion function ψ represents the objective or cost function for the problem posed. When ψ is 

minimized, most or all elements in the mesh failing angle checks are reconfigured to passing angular limits. In order 

to minimize the global distortion energy with respect to the node coordinates X (x,y,z) we arrive at 
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Equation (3) describes the global solution to the problem posed.  

 

 

Fig. 1. A body-in-white representation of an Opel/Insignia model. 

Large global problems are often ill-conditioned and likely to be awkward in terms of convexity. To get around this, 

we break down the global problem into a series of reduced problems that only involve the most dominant solution 

variables. These can be much more easily solved and convexity is easier to ensure. With each local solution at a 

node, which represents a discrete point in the field of the problem, we move incrementally towards the global 

solution. A local solution is required at the level of an element i to arrive at the optimum location for each one of its 
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j nodes. Figure 2(a) depicts one corner of a typical quadrilateral element. The angle is defined by the points X1, X 

and X2. Figure 3 shows how angle varies if the candidate node is moved holding its two connected nodes (X1 and 

X2) fixed at position (0,0) and (1,0). The closeness of the isolines imply the magnitude of the gradient.  The 

magnitude of the gradient dramatically drops off at 180°. The direction of the gradient is always orthogonal to the 

isoline. Keeping X1 and X2 fixed, the gradient of this function w.r.t. X is a vector made up of partial derivatives. Its 

direction indicates the perturbation to X that will give the maximum change to the angle . Its magnitude indicates 

the rate of change of angle with respect to the perturbation length in said direction. 

  
(a) angle gradient between 2 vectors in 3D space                                      (b)  nodal movement towards optimal configuration 

Fig. 2. Perturbation along the angle gradient. 
 

 

Fig. 3. Variation of angle  with nodal position 
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 10  u  in equation 6, one gets  
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Computing the partial derivatives of θ w.r.t. x 
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leading further to   
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Substituting equations 8 and 9 into equation 6 and adding the partial derivatives w.r.t. y and z yields
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Given the initial position of X is 0X , the objective is to find the position optX . The cost function of the 

optimization problem thus reduces to the absolute difference between )( X , as shown in Figure 2(b) and target angle

tar according to equation 14, where n is the number of element nodes.. 

  tarXXf   )(      (13) 

where 
n

tar




2
      (14) 

In the problem thus posed, X (x,y,z), the node coordinates define the design variables. The cost function defined by 

equation 13 is evaluated at each node of elements failing a target element quality metric. The constraints of this 

optimization problem are MEL and GFE. The element nodes are perturbed so as to minimize the cost function not 

only at each node, but more importantly idealize the quality metric for each element. As a given node is perturbed so 

as to improve a given angle of a defaulter element, it could, in the process, affect the included angles of all neighbor 

or connected elements. A global measure of errors thus becomes necessary. This global error norm is a measure of 

the change in cumulative distortion energy of the entire mesh. A steady and monotonic decay of the error norm is 

indicative of the rate at which the system reaches equilibrium.   



 Author name / Procedia Engineering 00 (2016) 000–000 7 

5. Node perturbation method 

    After computing the angle gradient, it is necessary to determine the size of the perturbation along this vector to 

optimize the element quality metric or EQM. The premise of this approach is that the more orthogonal we make the 

angle, the smaller the deviation of the element quality metric from its ideal value. For very acute or obtuse angles 

which deviate greatly from 90°, the nodal perturbation will be more dramatic than nodes with included angles which 

are close to 90°. However, the objective is not to make every element a perfect rectangle as this is not viable in a 

global mesh, rather to strive towards an optimal configuration with improved orthogonality via incremental 

perturbation. Section 8 describes an approach which employs the magnitude of the angle gradient to intelligently 

predict the best perturbation per increment.  

6. Optimization constraints 

Certain BIW transient analyses (particularly crash) are performed as a set of quasi-static analysis as an 

approximation of a time-varying problem. The time step of these analyses of very large systems is extremely critical 

for the efficiency of vehicle design life cycle. The time step is a function of the smallest element edge length in the 

mesh and shrinks as the latter reduces, thus vastly increasing the number of analysis iterations performed for the 

entire vehicle. To avoid this analysis bloat, a critical minimum element length (MEL) becomes a mandatory lower 

limit of element size in the mesh. The MEL is defined as a lower threshold and no quadrilateral or triangular 

elements are supposed to violate it. Typically, the MEL is 30-67% of the global element size.  This threshold serves 

as a constraint on the angle optimization smoother. Before moving any node to its predicted location, its distances 

from the adjacent connected nodes are checked to ensure MEL limit is not violated. If violated, the node is moved 

such that MEL is not violated as shown in Fig. 4a.  The initial orange mesh is smoothed to the green state. Node A 

displaces to position B as a result, but in the process dg > MEL. Hence, the node at A is displaced along the desired 

displacement vector   ̅̅ ̅̅ up to point C such that the new element length db <= MEL. The blue elements show the 

final configuration.  

 

In BIW analyses high fidelity geometry proximity for the mesh is unimportant.  Nodes are allowed to move off 

geometry if required to satisfy the stringent quality criteria. However, there is a limit to this movement. This limit 

serves as the second constraint for angle optimization smoothing. The entire mesh can be allowed to move within a 

geometry fidelity envelope or tolerance (GFE) dmt. This is achieved by allowing each node to move within a bound 

sphere of radius dmt as shown in Fig. 4b. The node at position A would have been moved to location B by the 

smoother without this constraint. Instead, it is moved to location C traveling along vector   ̿̿ ̿̿  such that it is not out 

of bounds.    

.     

 

 

 

 

 

 

 

 

 

 

                                                                                                            

Fig. 4a.  Displacement constraint due to MEL.                                                               Fig. 4b. Displacement constraint due to GFE.                         
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7. Element quality metric (EQM) 

The non-dimensional metric,   used to evaluate the quality of each element is based on the root mean square (rms) 

of the deviation of the element included angles, ni  from the optimum, tar where n is the number of element 

nodes and rms  is the root mean square angular deviation. 
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The element quality metric defined in equation 16 is used as a limit which governs the convergence of the local 

solution, described in section 9. 

 

The Scaled Jacobian [7, 10]
 iJdet  at the corner of an element is defined as the (signed) area of the parallelogram 

formed by the unitized edge vectors, 1V  and 2V emanating from the corner, as shown in figure 2. Consequently, the 

Scaled Jacobian at a given node may be related to the included angle, i  according to equation 17. 
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And therefore the included angle may be computed in terms of the Scaled Jacobian. 
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So, for a given corner node of a quad element, as the included angle approaches 90°, the Scaled Jacobian approaches 

1.0. Consequently, substituting equation 18 into 15 it is possible to redefine the element quality metric given in 

equation 16 in terms of the Scaled Jacobian as follows 
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This proves that the element quality metric,   based on the angular deviation of the included angles from an 

optimum configuration is intrinsically linked to the Scaled Jacobian values at each corner node. 

8. Solution Technique 

      The problem, as posed, calls for two solutions; the first one is local - at the level of each finite element failing 

the quality metric and finally a global solution for the entire mesh. In order to pursue an optimized solution at the 

local elemental level, we assume a local linear approximation to predict how  Xf varies with the movement of 0X

as 

 



 Author name / Procedia Engineering 00 (2016) 000–000 9 
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Generally, the gradient of  Xf  is given by: 
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The Newton-Raphson method can be employed to find the root of  Xf and thus approximate the perturbation 

required to make   0Xf . 

 

  001)()( 00
 XXff XX     (23) 

 

Let  01 XXX       (24) 

 

 0)( 0
XfXf X       (25) 

 

As equation 22 describes an underdetermined linear system, we can solve for the least norm solution X by taking 

the pseudo-inverse of  0Xf  . 
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Substituting equation 12 into 23 reduces to 
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Substituting equation 10 and 13 into 24 further reduces to 
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As the objective is to move incrementally towards an orthogonal configuration, the perturbation will be a fraction S  

of X according to equation 26. 

 

100  SXSXXopt      (29) 

 

Equation (29) provides the local solution yielding a new, optimized location for each of the 4 nodes of the failing 

quadrilateral element.  

9. Solution convergence 

The problem posed calls for two levels of solutions – one at a local or elemental level described by equation (29) 

and another at a global or mesh level defined by equation (3). Equation (29) is solved for each element by nodal 

perturbation until the EQM εθ < εθl where εθl is the cut-off limit. While nodes are perturbed for an element, typically 

that can affect neighboring elements, which in turn can begin to fail. This is covered by the global solution.  
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In a typical global mesh optimization smoothing algorithm, the error at each step is usually defined by the 

residual mean square of the positional disturbance of displaced mesh nodes. For a mesh where M nodes get moved 

to fix the quality of N elements, the global error norm for the l-th iteration of the mesh can be expressed as 

  
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M

k
koptkl M

1

2
0 /XX     (30) 

For an error norm of 1%, the global solution for the optimization smoother is assumed to have converged when the 

following criterion is met 

lll   01.01        (31) 

 

Fig. 5 depicts a very typical solution convergence pattern with 437 initial element failures to begin with. An 

asymptotic convergence pattern reaches steady state by iteration 8. Fig. 6 describes via a colour contour plot the 

change in the element angles across smoothing iterations and their relation to the EQM.  

 
Fig. 5. Optimization smoothing convergence pattern showing EQM failures (EQM limit = 0.45) versus number of iterations 

 

 
Fig. 6. Variation of element angles with EQM.  

10. Results and discussion 

Three large panels of the Insignia assembly shown in Fig. 1 are meshed with and without 3D angle optimization. 

The meshes are generated at a size of 7.5mm with a MEL = 3mm and GFE = 3mm. The meshes are Quad-dominant 

with less than 7% triangles. A summary of the results with and without optimization smoothing are compared in 
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Table 1. For body panel No. 1, 80.88 % of the quadrilateral elements failing either min/max angles or skew or 

element quality metric (EQM) limit (0.45) are cured by angle smoothing. For panel No. 2, the biggest, the 

improvement is by 76.7% and for panel No. 3 it is 71.04%. The smoothing solution converges for all problems 

considered. The elements that still fail cannot be fixed because of the constraints of MEL, GFE, angle bounds and 

the presence of loads and boundary conditions. This small number of failing elements is usually corrected by local 

remeshing, quad-splitting and/or manual mesh modification.  

     Table 1. Comparison of EQM and Max/Min Angle  improvements for body panels  

Body panel 

Number 

Optimization 

Smoothing 

No.of 

Elements 

Element Quality 

Metric (EQM) 

failures 

Maximum Quad / 

Tria Angle failures 

Minimum Quad / 

Tria Angle failures 

Skew 

failures 

Performance 

(CPU secs) 

1   No                      24835 47 89 8 0  

1   Yes 24835 14 11 3 0 1.276 

2   No 61482 72 177 25 2      

2  Yes 61482 16 43 8 0 2.70 

3   No 40135 70 171 14 5  

3  Yes 40135 14 53 3 2 0.609 

Element Size = 8mm;   MEL=3mm; GFE=3mm; Element Quality Metric Limit = 0.45; Min/Max Quad Angle Limits = 300/1500; Skew Limit=300 

Fig. 7 depicts the smoothed mesh on body panel No. 1 showing a total of 19 elements (highlighted in red) failing 
either or all of the four checks performed.  The same for body panel No. 2 are described in Fig.8 with overall 50 
elements failing any of the checks. Fig.9 covers panel No. 3 with 55 failing elements. Fig. 10 presents zoomed-in 
views of certain parts of the meshes in these panels where element angles have been repaired. The images with blue 
elements are meshes before optimization smoothing. Elements failing angles are boundary-traced in red. Figures 10a 
and 10c underline trivalent quadrilateral nodes where included angle failure occurs. Typically, trivalent and 
pentavalent (or higher) nodes in a quadrilateral mesh are the most sensitive connection sites for included angle 
bounds. Figures 10b and 10d show the corrected states of these angles when subjected to optimization smoothing.    

 

 

 

 

 

 

 

 

Fig. 7. Body panel (No. 1) meshed with angle optimization smoothing (19 failures shown in red). 

Fig. 11 provides a close-up of an embossed section of the mesh from body panel No.2. As before, the blue mesh 
represents the mesh before smoothing while the golden mesh is optimization-smoothed.  A chunk of quadrilateral 
elements, both isolated and clustered, with a variety of connection styles are all angle-fixed by the angle smoother as 
is evident in Fig. 11b.  
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Fig. 8. Body panel (No. 2) meshed with angle optimization smoothing (50 failures shown in red). 

 

Fig. 9. Body panel (No. 3) meshed with angle optimization smoothing (55 failures shown in red). 
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                   (a)                                      (b)                                              (c)                                 (d)  

Fig. 10. Details of body panel (No. 2) showing how certain angle failures have been resolved by optimization smoothing. 

 

    
(a)                                                                                           (b) 

Fig. 11. More details of Body panel (No. 2) showing fixes made with angle optimization smoothing. 

 

 
Fig. 12. A sectional detail of Body panel (No. 3) showing the effect of optimization smoothing. 

 

 
 
   

 

Fig. 13. EQM plot of a sectional detail of Body panel (No. 2) before optimization smoothing. 
 

 

Fig 12 shows another section (of body panel No. 3) before and after optimization smoothing. It is clearly evident 
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that several distorted quadrilateral elements are angle-corrected thereby enhancing nearly all of the quality metrics 

tracked in the section. Fig 13 shows the effect of optimization smoothing on EQM on another section from a 

different body panel. 
 

On dual core processors (Intel(R) Xeon(R) CPU E3-1270 v5 @ 3.60 GHz) with a 32 GB RAM with Windows 7 

Enterprise OS, the cpu seconds consumed by optimization smoothing for the three Insignia body panels are listed in 

the rightmost column of Table 1. Optimization smoothing time, at its most expensive, is less than 23% of the total 

time for mesh generation from loading geometry to storing mesh and geometry association data to the database.   

11. Conclusion 

In this paper, a constrained angle-based optimization smoother is proposed for 3D quadrilateral or quad-dominant 

BIW meshes. The smoother is developed as a 3D mesh post-processor. Its main objective is to minimize the 

collective distortion energy of the mesh resulting from element angular deviation from acceptable angular limits. An 

objective or cost function is constructed to represent the deviation of 3D element angle from a target optimum. This 

cost function is first locally minimized for each failing element by perturbing along the angle gradient of each 

failing included angle. A global error norm, computed from the collective displacement of the entire mesh is used to 

control solution convergence. A non-dimensional element quality metric (EQM)is used to control the smoother. As 

constraints the optimization smoother uses two criteria, namely minimum element edge length (MEL) and geometry 

fidelity envelope (GFE). Results of optimization smoothing on several industrial size automotive carbody panels 

clearly indicate the robustness, benefits and efficacy of the proposed algorithm.  
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