
Efficient and Global
Optimization-Based Smoothing
Methods for Mixed-Volume Meshes

Dimitris Vartziotis1,2,� and Benjamin Himpel1

1 TWT GmbH Science & Innovation, Department for Mathematical Research &
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Summary. Some methods based on simple regularizing geometric element
transformations have heuristically been shown to give runtime efficient and
quality effective smoothing algorithms for meshes. We describe the mathe-
matical framework and a systematic approach to global optimization-based
versions of such methods for mixed volume meshes, which generalizes to ar-
bitrary dimensions. We also identify some algorithms based on simple regu-
larizing geometric element transformation optimizing certain global algebraic
mesh quality measures.
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1 Introduction

In the context of the finite element method mesh quality affects numerical
stability as well as solution accuracy of this method [28]. The class of geomet-
ric element transformation methods (GETMe) consists of mesh smoothing
methods based on simple geometric element transformations. In [34] such a
smoothing algorithm is introduced for tetrahedral meshes based on shifting
vertices of a tetrahedron by the opposing face normals, normalized to be
scaling-invariant. Since it has been tested numerically and extended to other
volume types in a series of papers [34, 31, 32, 30, 33], our focus lies on a
rigorous theoretical understanding of certain GETMe algorithms and we will
postpone numerical experiments to future publications.

In [29] we show that the mean volume can be viewed as a quality measure
for tetrahedron, pyramid, prism and hexahedron, and that the discretization
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of its gradient flow is a natural generalization of the aforementioned tetra-
hedral GETMe algorithm. It enables us to prove that it regularizes certain
polyhedron types and therefore is a local optimization-based smoothing and
untangling method. For tetrahedra, this quality measure is related to the
mean ratio quality measure [16]. Note that our generalization to other poly-
hedron types is inherently very different from previous extensions via dual
polyhedra to hexahedra, prisms and pyramids [31, 32] as well as the mean
ratio criterium for other polyhedra [16].

Several numerical tests have shown, that the GETMe approach combines
the advantages of Laplacian smoothing variants in terms of runtime efficiency
with the mesh quality effectiveness of a global optimization-based smoothing
[33]. While we have shown in [29] that our generalizations of the geometric
element transformations in [34] regularize certain polyhedron types, we have
not touched upon the subject of global optimization for meshes, which is of
particular interest to the meshing community. The main goal of our work is
to describe the mathematical framework, which allows us to systematically
construct global optimization-based GETMe smoothing methods reminiscent
of the transformation in [34]. As a result we identify some simple regularizing
geometric element transformations, which optimize certain algebraic mesh
quality measures. Clearly, if the global quality measure does not accurately
describe the desired quality of a mesh, the smoothing methods are not use-
ful, but all of them are runtime efficient. This approach allows for rigorous
analysis, natural generalizations and problem-specific extensions. We hope,
that it will also serve as a basis for new runtime efficient and quality effective
smoothing algorithms.

Mesh smoothing methods can be classified [20, 21, 35] as geometry-based
[10, 34], optimization-based [4, 12, 22, 25, 18, 23, 5], phyics-based [24] and
combinations thereof [6, 11, 7]. In order to be more effective, these methods
should be combined with topological modifications [3, 13, 15]. Optimization-
based methods often lend themselves to untangling algorithms [17, 19, 14, 1]
and can be further differentiated as local or global optimization-based.
Geometry-based methods like the Laplacian [10] and GETMe [34] smooth-
ings have the advantage of being fast, but have always been heuristic until
we proved in [29], that a minor variation of the GETMe method presented
in [34] generalizes to a local optimization-based mesh smoothing and un-
tangling method for mixed-volume meshes. In the present work we present
GETMe methods that optimize global objective functions containing barri-
ers, which—at least in the case of triangular and tetrahedral meshes—prevent
non-inverted meshes from becoming inverted. In short, we bridge the gap be-
tween geometry-based and global optimization-based smoothing methods.

In Sect. 2 we introduce the notions of mesh quality and show, how we can
turn the mean volume function into a useful volume element quality measure.
Sect. 3 describes how the GETMe algorithm in [34] fits into our mathemat-
ical framework. In Sect. 4 we see, how the mean volume function gives the
simple geometric element transformation underlying the tetrahedral GETMe
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algorithm, and construct other simple geometric element transformations
based on quality measures. Most importantly, Theorem 2 shows, when homo-
geneous degree d vector fields give global optimization-based scaling-invariant
smoothing methods. In particular, this gives a way to construct simple ge-
ometric element transformations optimizing certain algebraic mesh quality
measures. In Sect. 5 we generalize our results in various ways. We give con-
crete formulas generalizing the tetrahedral geometric element transformation
in [34] to the pyramid, the prism and the hexahedron, and briefly discuss the
generalization to meshes in arbitrary dimensions, the isoperimetric quotient
as a volume element quality measure, whose discretized gradient flow gives
yet another GETMe smoothing method, and shape preservation.

2 The Mathematical Framework

It is not apparent why a simple geometric transformation for tetrahedra given
by shifting vertices by the opposing face normals should yield such a reliable
and efficient smoothing algorithm for meshes. An elegant mathematical ex-
planation provides a way to systematically develop and analyze some of these
promising GETMe algorithms further. This is the motivation for creating a
suitable mathematical framework, which was used in the proof of the regu-
larizing behavior for the transformation in [34].

A global optimization-based smoothing method increases in each iteration
step the value of a (global) quality function for meshes by repositioning the
vertices of a mesh. A word of caution up front for mathematicians: local
and global optimization refers to whether a mesh is optimized locally in
a neighborhood of a vertex or globally for the entire mesh. In particular,
global optimization generally refers to the search for a local optimum of
a global quality function. Global optimization-based smoothing methods are
known to yield meshes with superior element quality [8, 5]. Our goal is to find
simple geometric element transformations, which give global optimization-
based GETMe algorithms, in order to combine the mathematical advantages
of global optimization with the speed of GETMe.

In order to keep the mathematical overhead to a minimum, we adapt the
notation from [8] and refer to [29] for a complete treatment offered to the
interested reader.

2.1 Element and Mesh Quality

A mesh consists of an ordered set of n vertices V and |E| volume elements E.
Let us write V and E as a tuples (v1, . . . , vn) and (e1, . . . , e|E|) respectively.
Let xv ∈ R3 denote the coordinates for the vertex v ∈ V , so that x =
(xv1 , . . . , xvn) ∈ R3×n is the tuple of all vertex coordinates. Each volume
element e ∈ E consists of an ordered set Ve of ne vertices of V and the edges
between these vertices. If the edges are fixed, then we will simply identify
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e = Ve. Note that the order of vertices determines a preferred orientation
for e. Let xe ∈ R3×ne be the collection of coordinates for e. Associated with
each element e is an element quality measure qe : R3×ne → R as a continuous
function of the vertex positions, where a larger value of qe indicates a higher
quality element. The overall quality of a mesh is measured by a continuous
function Q : R|E| → R, taking as input the vector of volume element qualities
and combining them in a certain way, for example by taking the arithmetic
mean, but even combinations depending on the size, location, direction, and
other properties are conceivable.

In order to simplify the notation, we call the function

q : R3×n → R ,

x �→ Q
(
qe1(xe1 ), . . . , qe|E|(xe|E| ))

) (1)

the mesh quality measure. In general, useful quality measures possess other
properties in addition to continuity, like invariance under translation, scal-
ing, rotation and reflection [16]. Therefore, let us only consider mesh quality
measures, which are at least invariant under translation and scaling. Alter-
natively, we can consider the coordinates x ∈ R3×n up to scaling and trans-
lation. By [29, Sect. 2] the resulting space is simply a (3n− 4)–dimensional
sphere S3n−4 ⊂ R3n−3, if in addition we disregard the one-point meshes,
where all vertex coordinates are equal. We can describe this space concisely
as a quotient of a subspace of R3×n by the equivalence relation given by
translation and scaling. This observation allows us to view a translation-
and scaling-invariant quality measure q : R3×n → R as a function on this
(3n− 4)–dimensional sphere embedded in R3×n. Since spheres are compact
manifolds without boundary and a global optimization-based method is es-
sentially the gradient flow of a function on this sphere, we can now unleash
the power of geometric analysis to study this method.

By the above argument, we have not only gained a different angle from
which we can view and study quality measures, but an entirely new approach
to constructing optimization-based quality measures. In fact, any function on
a (3n−4)–sphere embedded inR3×n representing all meshes up to translation
and scaling gives rise to a translation- and scaling-invariant quality measure,
whose gradient flow will give a global optimization-based smoothing method
through the method of steepest descent.

2.2 The Mean Volume Function

The signed volume of a tetrahedron with vertex coordinates x = (x1, . . . , x4)
∈ R3×4 is given by

vol(x) =
1

6
((x2 − x1)× (x3 − x1)) · (x4 − x1) . (2)
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The orientation of the tetrahedron and therefore the sign of the volume func-
tion is determined by the order of vertices. Notice, that it is a well-defined
function for all meshes with the structure of a tetrahedron. This function nat-
urally extends to convex polyhedra by first triangulating them, in particular
to hexahedra, prisms and pyramids. By averaging over all possible triangu-
lations, we can extend the volume function to a mean volume function on all
meshes with the edge structure of a convex polyhedron and again denote it
by vol.

There are alternative definitions for this mean volume function, but this
is the most convenient one for our purpose. For example, in the case of a
pyramid mesh e = (v1, . . . , v5), where v5 is the apex, we only have the two
different triangulations depicted in Fig. 1. For a detailed discussion of trian-
gulations and the mean volume function see [29, Sect. 5].

v1 v2

v3v4

v5

v1 v2

v3
v4

v5

Fig. 1 The two different triangulations of a pyramid

Clearly, the mean volume function is translation-invariant, but not scaling-
invariant. However, if we consider its restriction to a (3n− 4)–sphere repre-
senting all meshes with the structure of a fixed convex polyhedron with n
vertices up to translation and scaling, this yields a scaling- and translation-
invariant quality measure qe for polyhedra, which is essentially maximized by
regular polyhedra [29]. To be more concrete, the quotient map by translation
and scaling viewed as a projection to the submanifold

N := {x ∈ M | ‖x‖ = 1 and x∗ :=

n∑

i=1

xi = 0} ⊂ M (3)

is given by

π : R3×n\{(x0, . . . , x0) | x0 ∈ R3} → N ,

(x1, . . . , xn) �→ (x1 − x∗, . . . , xn − x∗)
‖(x1 − x∗, . . . , xn − x∗)‖ ,

(4)

and the diffeomorphism from N to S3n−4 ⊂ R3(n−1) ∼= R3×(n−1) is given by

(x1, . . . , xn) �→ 1

‖(x1, . . . , xn−1)‖ (x1, . . . , xn−1) . (5)

Similarly, let Ne ⊂ Rne be the sphere corresponding to e.
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2.3 The Mean Ratio Metric

Algebraic mesh quality measures had been introduced by [16], and have been
influential for smoothing, optimization and edge swapping techniques. These
quality measures also fit nicely in our framework. Let us consider the mean
ratio quality measure. It is given by

q(xe) :=
3 det(S)2/3

‖S‖2F
, (6)

with ‖S‖F :=
√
tr(StS) denoting the Frobenius norm of the matrix S :=

DW−1. Here D represents the difference matrix given by

D := (x2 − x1, x3 − x1, x4 − x1) for det(xe) > 0 (7)

and W denotes the difference matrix of a reference tetrahedron. It holds that
q(xe) ∈ [0, 1], where very small values indicate nearly degenerated elements
and larger values elements of good quality. In particular it holds that q(xe) =
1, if xe is regular.

When the desired shape is a regular tetrahedron, the Frobenius norm
is simply a way to make the volume scaling-invariant while preserving the
translation- and rotational invariance. The main reason for this choice is
that this matrix norm is easily implemented and efficient, and has therefore
been used in quality measures. Now, det(S) = det(D) det(W−1) = vol(xe)/w,
where w = det(W ) is constant. Furthermore det(D) = 6 vol(xe), when e is a
tetrahedron. We can rewrite

C (q(xe))
3/2

= vol

(
1

‖S‖F xe

)
for some constant C = C(W ) > 0. (8)

The volume function restricted to the submanifold of M diffeomorphic to a
(3n− 4)–sphere given by

{p ∈ M | x∗ = 0 and xe = ‖S‖F} ⊂ M (9)

is therefore an equivalent way of describing the mean ratio quality measure.
With the results from [29] in hand, we see, that [34] starts with the same

volume function, but normalizes its gradient rather than the quality mea-
sure, so that it is scaling-invariant. Furthermore, we have proven, that this
scaling-invariant gradient optimizes the quality measure given by a certain
normalized volume. In effect, the aim of both methods is the optimization
with respect to the volume function. This is a heuristic explanation, why
Mesquite [5] and GETMe [34] give meshes of similar quality.
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3 GETMe

The original GETMe algorithm for tetrahedral meshes [34] is based on shift-
ing vertices by opposing face normals. Let us give a few details in order to
describe how this algorithm fits into the mathematical framework.

3.1 Scaling-Invariance

For a tetrahedral volume element e = (v1, . . . , v4) consider the vector

Xe =

⎡

⎢⎢
⎣

Xe,1

Xe,2

Xe,3

Xe,4

⎤

⎥⎥
⎦ :=

⎡

⎢⎢
⎣

(x4 − x3)× (x3 − x2)
(x4 − x1)× (x1 − x3)
(x4 − x2)× (x2 − x1)
(x1 − x2)× (x2 − x3)

⎤

⎥⎥
⎦ ∈ R3·4 ∼= R3×4 , (10)

where we identify the column vector of (column) vector entries with the row
vector of the same vector entries. The GETMe algorithm without the imposed
scaling-invariance applied only to this one volume element e transforms its
coordinates via

R3×4 → R3×4 ,

xe �→ x′
e = xe + σXe

(11)

for some parameter σ > 0 independent of e. The tetrahedral GETMe smooth-
ing introduced in [34] applied to an entire mesh then shifts xi for i = 1, . . . , n
by averaging all (vector) coordinates of Xe over all e containing vi. More
precisely, if V = (v1, . . . , vn) are the vertices of a mesh with coordinates x
and e = (w1, . . . , w4) is a tetrahedral volume element within the mesh, then
let us introduce the notation

φe : R3×4 ↪→ R3×n ,

(y1, . . . , y4) �→ (x1, . . . , xn) where

{
xi = yj if vi = wj ,

xi = 0 else

(12)

where i ∈ {1, . . . , n} and j ∈ {1, . . . , 4}, and let λi be the number of volume
elements containing vi. If we set

X := diag(λ−1
1 , . . . , λ−1

n )
∑

e∈E

φe(Xe) , (13)

then the original GETMe transformation is given by

R3×n → R3×n ,

x �→ x′ = x+ σX .
(14)
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However, in order to make it scaling-invariant, we need to modify X . We
have arrived at a subtle issue, where our solution in [29] and the one in
[34] differ, and which we will encounter again in Sect. 4.2. This can only
be appreciated when considering GETMe from a mathematical rather than a
heuristic point of view. In practice it does not make much of a difference, how
we make the algorithm scaling-invariant, but there is a preferred way within
our mathematical framework. In [34] each face normal in Xe,j was divided
by the square root of its norm ‖Xe,j‖, which seemed to work very well for all
practical purposes. In the language of our mathematical framework on the
other hand, the vector

X ∈ R3×n (15)

determines the dynamical behavior on the (3n − 4)–sphere rather than the
vectors Xe,j ∈ R3 individually, which is why we would prefer not to change
the direction of X . Therefore, we divide X by the square root of its norm
‖X‖, which results in a scaling of Xe depending on the size of the volume
element e. In summary, if we define the normalization function

Ψ : R3×n → R3×n ,

X →
{

1√
‖X‖X if X 	= 0

0 if X = 0 ,

(16)

then we consider the transformation Tσ where

Tσ : R3×n → R3×n ,

x �→ x′ = x+ σ Ψ(X)
(17)

as our variation of the original GETMe smoothing algorithm [34].
If we take a closer look, we choose a scaling different from [34] in two ways:

1. in the normalization for each individual volume element, and
2. in the averaging procedure over all volume elements for the mesh.

From a global point of view we are closer to the initially conceived GETMe
algorithm for tetrahedral meshes without the imposed scaling-invariance than
we have been in [34], because the vector Ψ(X) points in the same direction
as X . As we will see in Sect. 4.1, this entirely rigorous approach to the
algorithm presented [34] is not very useful, because the latter includes other
scaling methods and additional control mechanisms in order to exhibit such
favorable behavior.

3.2 Face Normals

As we have seen, face normals play an essential role in the tetrahedral GETMe
approach. By the face normal of an oriented triangle we simply mean the
cross product of two edge vector compatible with the orientation. In order to
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simplify notation, let us define face normals for arbitrary polygonal curves in
R3 by

ν(1, . . . , k) :=(x2 − x1)× (x3 − x1) + (x3 − x1)× (x4 − x1) + . . .

+ (xk−2 − x1)× (xk−1 − x1) + (xk−1 − x1)× (xk − x1)

=x1 × x2 + x2 × x3 + . . .+ xk−1 × xk + xk × x1 .

(18)

Clearly, if (x1, x2, x3) are the coordinates of a triangle in R3, then

ν(1, 2, 3) = (x1 − x2)× (x2 − x3) (19)

is the usual face normal considered in the previous section. In particular, we
can write

Xe =

⎡

⎢
⎢
⎣

ν(4, 3, 2)
ν(4, 1, 3)
ν(4, 2, 1)
ν(1, 2, 3)

⎤

⎥
⎥
⎦ for a tetrahedral element e =

v1

v2

v3

v4

. (20)

For polygonal curves in a hyperplane ofR3, ν is a natural generalization of the
face normal from triangles to the planar surface enclosed by the curve. The
direction of ν can be determined by the right-hand (grip) rule. For arbitrary
polygonal curves in R3, ν corresponds to the sum of the face normals of an
arbitrary triangulated surface, whose boundary is the curve. For more details
on face normals, please consult [29, Sect. 3].

4 An Efficient and Optimization-Based Approach

Often, quality effective smoothing methods are developed using global opti-
mization. In fact, global optimization-based methods yield meshes of superior
quality with respect to the corresponding global quality measure. We show
how to find they way back from GETMe to the basics of global optimiza-
tion via reverse engineering, because the resulting algorithms will combine
the best of both worlds, being not only very efficient, but also effective with
respect to the choice of global quality function. We will also discuss how
previously tested algorithms fit into this framework.

4.1 Suitable Mesh Quality Functions

Aswe havementioned in Sect. 2.1, any function onN can be viewed and used as
a global mesh quality function, whose gradient flow will find local maximums.
There are lots of different ways of combining element quality functions in order
to get a global one for meshes. Our immediate goal is to find potentially useful
measures, whose gradients preserve the GETMe characteristic.



302 D. Vartziotis and B. Himpel

The most naive option is to add all the element quality functions up. A
straight-forward computation as in [29, Sect. 3] shows, that the mean volume
for meshes defined in Sect. 2.2 satisfies

6∇ vol = X , (21)

where ∇ vol is the gradient vector field of vol. The method of steepest descent
applied to six times the negative mean volume clearly yields the transforma-
tion

x′ = x+ σX for σ sufficiently small. (22)

Up to the averaging process at each node, this is the original GETMe al-
gorithm [34] without the imposed scaling-invariance, relaxation, weighted
averages and any further control mechanisms. This might provide some con-
fidence, that this would yield an efficient and effective GETMe algorithm.
Instead, this uncovers a big drawback of the core GETMe transformation:
inner vertices are fixed when shifting via X , because the mean volume is
independent of the location of the inner vertices. More concretely, consider
a regular tetrahedra with a single inner vertex and four smaller tetrahedra
whose edges connect the outer vertices v1, . . . , v4 with the inner vertex v5 as
in Fig. 2.

v1 v2

v3

v4

v5

Fig. 2 The triangulation of a regular tetrahedra with one inner vertex

The inner point is fixed by the flow of X and and stays fixed after aver-
aging the corresponding face normals, no matter where it is located, because
the opposite face normals add up to the trivial vector. One could argue, that
by rescaling the regular tetrahedra, the inner point moves towards the center.
However, if we havemore than one inner point, all of them wouldmove towards
the center. Therefore, the correct way to rescale the resulting mesh is by pro-
jecting the boundary vertices onto the original boundary surface, even though
this means, that the inner vertices are fixed. It is therefore surprising, that the
GETMe algorithm in [34] works as well as it does. In any case, a systematic ap-
proach might lead to a more stable and mathematically predictable algorithm
without the need of control mechanisms.

Instead of simply using the mean volume as a global mesh quality function,
the sum of the scaling-invariant element quality functions qe
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q(x) =
∑

e∈E

qe(xe) (23)

given by first projecting xe to Ne would be a more promising albeit more
complicated approach, which we will not pursue at this point. However, there
are other ways of combining the mean volumes to give potentially useful mesh
quality functions. Let us consider the restriction of

q1(x) =
∏

e∈E

vol(xe) and q2(x) = −
∑

e∈E

1

vol(xe)
(24)

to N . We compute

∇q1 = k1(x)
∑

e∈E

1

vol(xe)
Xe and ∇q2 = k2(x)

∑

e∈E

1

vol(xe)2
Xe , (25)

where
k1(x) = q1(x) and k2(x) = 1 . (26)

Obviously, vanishing (and negative) mean volume is problematic. For conve-
nience, let us assume that all of our volume elements have positive mean vol-
ume. In particular, all valid volume elements should satisfy this mild assump-
tion. For tetrahedra, positivemean volume is equivalent to them being valid. In
particular, both quality measures ensure in the case of tetraehedra, that they
stay valid under sufficiently small transformations using the gradient.

We observe, that ∇q1 and ∇q2 look similar, and therefore we expect them
to behave similarly. Furthermore, in the above concrete example of the regular
tetrahedron triangulated by 4 tetrahedra, the inner point is not fixed by the
gradient flow. Instead, it moves away from the smaller (and more irregular)
tetrahedra towards the center. In general, the resulting transformation seems
to prefer volume element distributions, which are similar in size and at the
same time as regular as possible. As Fig. 4 for the two-dimensional analogue
of q1 shows, this does not create good meshes for the finite element method.
There are a lot of other conceivable mesh quality functions and combinations
of them. In this paper we emphasize the mathematical framework rather than
specific algorithms.

4.2 Scaling-Invariance

Whatever the gradient flow does, it would be nice to have a scaling-invariant
flow of some related vector field. This can be achieved just like we have done
in [29] by introducing an appropriate factor. The proof of the following result
is entirely analogous to the proofs of [29, Lemma 3.3 and Theorem 4.2], but
it is more general.

Theorem 1. Let ∇π denote the gradient with respect to the induced subman-
ifold metric 〈·, ·〉π on N . Let X be a homogeneous vector field of degree d and
q a quality measure satisfying
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d(π)(Xx) = cx∇πq|x and cx > 0 for x ∈ N. (27)

Consider Ψ : R3×n → R3×n given by

Ψ(X) = ‖X‖(1−d)/dX . (28)

Then the vector fields on N given by

Y := D(π)(X) and Ỹ := D(π)(Ψ(X)) (29)

start and end at singularities of Y , and the vector field Ỹ on N corresponds
to Ψ(∇q) on the quotient manifold R3×n\{(x0, . . . , x0) | x0 ∈ R3}/ ∼.

In particular, the above theorem applies to qi defined in Sect. 4.1, where
cx = (ki(x))

−1 and Xi = cx∇qi|x is homogeneous of degree −(3i+ 1).
In [29, Theorem 4.2] we have been content with results about the dynamical

behavior for volume elements. If we look more closely, our proof implicitly
shows something else: on the mesh given by the single volume element, the
GETMe algorithm with our normalization is optimization-based. The same
is true above. The vector fields Y and Ỹ yield optimization-based GETMe
transformations.

4.3 Global Optimization-Based Algorithm

Since there are many quality functions which might yield global optimization-
based algorithms, let us consider an arbitrary homogeneous degree d vector
field X and a quality measure q satisfying

d(π)(Xx) = cx∇πq|x and cx > 0 for x ∈ N . (30)

In particular the following theorem applies to qi in Sect. 4.1 and similar
algebraic quality measures.

Theorem 2. The GETMe operator given by

Tσ : N → N ,

x �→ x′ = π(x+ σ Ψ(X)) for X =
∑

e∈E

Xe .
(31)

is a global optimization-based smoothing method for mixed-volume meshes as
long as σ > 0 sufficiently small, which is invariant under translation and
scaling. More precisely, for the mesh quality function q and for any x ∈ N
we have

q(Tσ(x)) > q(x) for σ > 0 sufficiently small. (32)

Proof. Fix x ∈ N , and let xσ = x+ σ Ψ(X) ∈ R3×n. Since π(x) = x and
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d

dσ
(xσ) = Ψ(X) = ‖X‖(d−1)/dX , (33)

the chain rule gives

d

dσ
q(Tσ(x))

∣
∣
∣
∣
σ=0

=
d

dσ
(q(π(xσ)))

∣
∣
∣
∣
σ=0

= ‖X‖(d−1)/ddqx ◦ dπx(Xx) . (34)

Now consider the flow line γ of dπ(X) on N starting at x. The path γ(t) ∈ N
therefore satisfies the initial value problem

γ(0) = x and γ̇(t) = dπ(Xγ(t)) . (35)

Then

d

dσ
q(Tσ(x))

∣
∣
∣∣
σ=0

= ‖Xx‖(d−1)/ddq(γ̇(0))

= ‖Xx‖(d−1)/d d

dt
(q ◦ γ(t))|t=0 .

(36)

Fig. 3 shows the flow line γ, the linear path in the direction of the vector
field Ψ(X) and its projection to the sphere N via π. Since by assumption we

γ(t)

x

xσ

π(xσ)

ι(S3n−4)

·

Fig. 3 The different players in the proof

have dπ(Xx) = cx∇π(q|N )x , we get

‖Xx‖(1−d)/d · d

dσ
q(Tσ(x))

∣
∣
∣∣
σ=0

=
d

dt
(q ◦ γ(t))

∣
∣
∣∣
t=0

= 〈∇π(q|N )x, γ̇(0)〉ι
= 〈c−1

x dπ(Xγ(0)), γ̇(0)〉ι = c−1
x ‖γ̇(0)‖2ι > 0 .

(37)

Given x ∈ N , we therefore have that

q(Tσ(x)) > q(x) for σ > 0 sufficiently small. ��



306 D. Vartziotis and B. Himpel

5 Generalizations

As we have discussed, the GETMe algorithm for volume meshes was orig-
inally conceived for tetrahedral meshes [34] and later generalized to mixed
volume meshes [31, 32] via dual polyhedra. Furthermore, it is standard in ap-
plications to modify smoothing algorithms, so that they preserve the shape or
features like corners and edges of a model. Let us outline, how such general-
izations fit into our mathematical framework. Lastly, we have focused only on
volume meshes, but with the same approach we can generalize the smoothing
methods to arbitrary dimensions, in particular surface meshes. This allows
us to construct a GETMe algorithm optimizing the isoperimetric quotient as
a quality metric.

5.1 Mixed Volume Meshes

An important feature of our systematic approach is the natural compatibility
of the GETMe algorithm for different volume elements by way of the mean
volume. Let us give an explicit description of a method globally optimizing
this mixed mesh quality. As we have already seen in (20), the vector Xe for
tetrahedra e has an elegant description in terms of face normals. Not surpris-
ingly, the same is true for hexahedra, prisms and pyramids. We compute the
following vectors

Xe =
1

2

⎡

⎢
⎢
⎢⎢
⎣

ν(5, 4, 2) + ν(5, 4, 3, 2)
ν(5, 1, 3) + ν(5, 1, 4, 3)
ν(5, 2, 4) + ν(5, 2, 1, 4)
ν(5, 3, 1) + ν(5, 3, 2, 1)

2 · ν(1, 2, 3, 4)

⎤

⎥
⎥
⎥⎥
⎦

for e =

v1 v2

v3v4

v5

, (38)

Xe =
1

2

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

ν(3, 2, 4) + ν(2, 5, 4, 6, 3)
ν(1, 3, 5) + ν(3, 6, 5, 4, 1)
ν(2, 1, 6) + ν(1, 4, 6, 5, 2)
ν(5, 6, 1) + ν(6, 3, 1, 2, 5)
ν(6, 4, 2) + ν(4, 1, 2, 3, 6)
ν(4, 5, 3) + ν(5, 2, 3, 1, 4)

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

for e =

v1 v2

v3

v4 v5

v6

, (39)

Xe =
1

2

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

ν(2, 5, 4) + ν(6, 5, 8, 4, 3, 2)
ν(3, 6, 1) + ν(7, 6, 5, 1, 4, 3)
ν(4, 7, 2) + ν(8, 7, 6, 2, 1, 4)
ν(1, 8, 3) + ν(5, 8, 7, 3, 2, 1)
ν(1, 6, 8) + ν(6, 7, 8, 4, 1, 2)
ν(2, 7, 5) + ν(7, 8, 5, 1, 2, 3)
ν(3, 8, 6) + ν(8, 5, 6, 2, 3, 4)
ν(4, 5, 7) + ν(5, 6, 7, 3, 4, 1)

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

for e =

v1 v2

v3v4

v5 v6

v7v8

. (40)

For details we refer to [29, Sects. 5 and 6].
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5.2 Isoperimetric Quotient

If we want to construct a quality measure, which measures how round a given
polyhedron is, we can try the isoperimetric quotient given by 36π times the
volume squared divided by the surface area of the boundary cubed, where
the constant normalizes the measure to be 1 for the unit sphere. Steiner [26]
conjectured that platonic solids maximize the isoperimetric quotient, which
has been confirmed for all polyhedra but the icosahedron [27, 9, 2]. Instead
of the isoperimetric quotient we will consider its square root, which allows us
to naturally introduce a sign using the signed volume (2). This generalizes to
a function on the space of mixed volume meshes

iq(xe) = 6
√
π

vol(xe)

area(xe)3/2
, (41)

where area is the mean surface area of the boundary of the polyhedron
mesh p defined analogously to the mean volume vol. The function iq extends
to all polyhedral meshes by summing or multiplying the element qualities.
A straight-forward computation of the gradient of iq gives us yet another
GETMe global optimization-based smoothing and untangling algorithm. We
expect this algorithm to be powerful, and by the very definition of the quality
measure, it yields a scaling-invariant transformation.

As a side note, all tested meshes with an icosahedron structure converge to
the regular icosahedron. A proof of this heuristic observation will not be easy
and would imply Steiner’s conjecture. Note that the isoperimetric volume
element quality measure can be constructed using the mean volume function
restricted to all polyhedra with a fixed boundary surface area, which exem-
plifies that different embeddings of the sphere of polyhedra induce different
quality measures from the same volume function.

5.3 Arbitrary Dimensions

The gradient of the volume has a particular nice and computationally efficient
expression. Nevertheless, we get similar transformations in arbitrary dimen-
sions. In particular, the area enclosed by a polygon is the two-dimensional
analogue of the volume for polyhedra, and we also have an isoperimetric
quotient for polygons. Therefore we can construct a GETMe transformation
for triangulations of the plane and even of surface meshes. These will yield
global optimization based smoothing methods for surface meshes. We have
performed preliminary tests for planar triangle meshes (see Fig. 4).

5.4 Shape Preservation

In order to preserve shape or features of a model, there exist standard
projection techniques. If we consider the flow of X rather than the discrete
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transformation method, we can constrain feature vertices to the submanifolds
of N given by the boundary surface, edges or corners. These submanifolds
might not be smooth. Nevertheless, this approach fits nicely into the math-
ematical framework by considering the restriction of the volume function to
these submanifolds of N .

0 0.2 0.4 0.6 0.8 1

Fig. 4 From left to right: The initial mesh and results from optimizing
∏

area(xe)
and

∏
iq(xe) with each element colored according to its mean ratio quality number

6 Conclusions

We have described the mathematical framework and a systematic approach
to global optimization-based GETMe smoothing methods, which enables us
to systematically prove, generalize and analyze properties of GETMe. These
methods have the potential of being both runtime efficient and provably qual-
ity effective. Together with the local optimization-based GETMe smoothing
and untangling method discussed in [29] as well as standard topology modi-
fication techniques, this provides a powerful framework for preparing meshes
in the context of the finite element method. We have described some algo-
rithms optimizing global objective functions, which will be analyzed further
in future publications. See Fig. 4 for results from GETMe methods optimizing
the product of the triangle areas and the product of the isoperimetric quo-
tients, which show that the product of the areas does not yield a good global
measure for the finite element method, while the isoperimetric quotient does.
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26. Steiner, J.: Über Maximum und Minimum bei den Figuren in der Ebene, auf
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