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Abstract. Multiblock structured meshes offer better computational effi-
ciency than the unstructured meshes which, on the other hand, are more
flexible for complex geometries. The multiblock structured meshing could be
more useful if the partitioning of the domain can be performed automatically.
In this paper, we consider various automated blocking approaches for some
turbomachinery zones. We then assess these methods by employing adjoint
based error estimation which shows that medial axis based methods perform
better than the other approaches like Cartesian fitting. A hybrid approach is
also demonstrated for the cases where the existing automatic blocking tech-
niques might not be useful. New blocking templates can also be generated
using the techniques applied in the work presented here.

1 Introduction

1.1 Quad/Hexahedral Mesh Generation

Good quality mesh is critical to the quality and convergence of the flow
simulations. There is a trade-off between the mesh quality, ease of genera-
tion, solver requirements and parallel mesh generation when choosing among
the structured and unstructured mesh types. Structured meshes offer higher
numerical accuracy, less cell count than the unstructured meshes and also
present relatively easier implementation of higher order numerical schemes.
Unstructured meshes on the other hand offer more flexibility for meshing
complex 3D domains. Various approaches to quad and hexahedral mesh gen-
eration can be found in the literature, encompassing both structured and un-
structured methods. These include mapping and multi-blocking (5), sweeping
(1), plastering (paving in 2D) (2), whisker weaving (23), overset mesh meth-
ods (21; 4), quadtree and octree methods (20) and approaches like Q-Morph
and H-Morph (14). The virtues and drawbacks of these methods are discussed
elsewhere, see for example, (9; 13).
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Multiblock structured mesh generation is among the most widely used
meshing techniques. Multiblocking is essentially a two-stage process. In the
first stage, a suitable blocking topology is generated which divides the com-
plex domain into simple sub-domains. The resulting blocks are then meshed
by various mapping methods. While this offers an efficient way to mesh the
complex domains, blocking the domain itself is very time consuming job
and requires considerable human intervention to produce the mesh. For rela-
tively common and simple domains standard blocking layouts like H, O and
C topologies are used but with the increase in geometric complexity, more
manual effort is required. To overcome this bottleneck, various strategies to
automate the blocking process have also been put forward.

Approaches towards automatic blocking are presented, for example, in (10)
and (19). The medial axis transform (MAT) based algorithms also offer an
efficient approach to the automatic blocking. Medial axis, first proposed by
Blum (3), can be defined as the set of lines and curves (surfaces in 3D)
produced from the midpoint of a maximal inscribed disc (sphere in 3D) as it
rolls around the domain. Methods like those presented by Armstrong and col-
laborators (22; 16; 15) use the constrained Delaunay triangulation of points
distributed on the boundary to get the MAT. An alternative has been pre-
sented by Rigby (17), called the ‘TopMaker’ approach, which makes use of
medial vertices and parts of medial axis to block the domain. Additional
rules are then defined to produce a good quality mesh. Distance field based
methods provide an efficient and robust alternative to pure geometric based
MAT approaches as extension to 3D is simpler using differential equations
than pure geometric approaches. One such method called d-MAT approach
is presented in (27). The hyperbolic-natured Eikonal, level set, equation is
used to calculate the distance field (25). Medial axis point clouds are then
extracted from the Laplacian or Hessian determinant of the distance field. A
thinning algorithm is the used for thinning the point clouds into curves and
surfaces. Such a hybrid approach thus avoids complexity of pure geometric
approach and provides more accuracy than the pure image thinning algo-
rithms. A further enhancement to this approach is a biased MAT approach
proposed in (28) which adds more flexibility and thus improves the quality
of the resulting mesh.

Malcevic (11) presents another automated blocking strategy based on a
Cartesian fitting method. While preserving the geometric topology defini-
tion, a forward geometry simplification is performed followed by fitting the
model into a Cartesian framework. The next step is blocking the domain after
which the blocked model is mapped back on to the original geometry. Further
operations such as removing singularities by J-grid wrapping are performed
to enhance the mesh quality. This technique has been applied for meshing
the end-wall cavities found in turbomachinery. This technique is simple and
but has only been demonstrated for 2D cases so far. The method sometimes
produces some unnecessary mesh clustering across the block interfaces.
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1.2 Adjoint Error Estimation

As compared to the feature based error estimators (18) (which generally focus
the local residual errors), the adjoint based error indicators (6; 8; 26) esti-
mate the global error made in predicting the integral quantity of interest also
called the output functional. Examples of such functionals for turbomachin-
ery applications include the mass flow through a compressor blade row, total
heat flux and pressure loss across a high pressure turbine blade, average noise
level of the aircraft near the population etc. This methodology which is a a
posteriori error estimation identifies the regions which are more sensitive to
the output functional. This error estimate can derive the mesh refinement or
can be indicator for improving the mesh quality (for example by smoothing,
altering block structure) in the areas where the error is large. This will help
generating specially tuned grids for accurate output functional calculation.

The work presented here applies the d-MAT, TopMaker and the Cartesian
fitting methods approaches reviewed above along with manually generated
block topologies to some turbomachinery geometries. We then apply the ad-
joint error estimation procedure to get a comparative view of the meshes of
similar cell count produced through various multiblock topologies. A hybrid
approach combining the distance field contours and the Cartesian fitting for
mesh generation is also demonstrated.

2 Adjoint Error Indicators

2.1 Discrete Adjoint Analysis

After the primal flow solution is available, the discrete adjoint equations are
solved to get the adjoint variables. This section presents the discrete adjoint
analysis. A detailed derivation can be found in (8). Let Q, the flow variables
at discrete set of points with coordinates X, be the solution of system of
steady non-linear equations

R(Q,X, α) = 0 (1)

where R is the discrete residual vector and α is a set of design variables.
Also consider an objective function J(Q,α) which one wishes to optimize.
The sensitivity of this objective function to a set of design variables can be
expressed in the following form

dJ

dα
=

∂J

∂Q

∂Q

∂α
+

∂J

∂α
(2)

The adjoint variables ν can be defined as the effect of the flow residual on
the objective function:

ν =
∂J

∂R
(3)
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Using Equations (1) and (3), Equation (2) can be written as

dJ

dα
= −νT

∂R

∂α
+

∂J

∂α
(4)

Equation (4) can be re-written to give the following equation for adjoint
variables (

∂R

∂Q

)T

ν =

(
∂J

∂Q

)T

(5)

This set of linear equation can be solved to give the adjoint flow variables in
a manner similar to the primary flow solution.

2.2 Adjoint Error Analysis

We apply the adjoint error estimation procedure of Venditti and Darmofal
(26) in this work. A detailed description of this method is presented in the
Appendix. The global error in the objective function J(Q) can be related to
the local residual error with the adjoint variables working as the weighting
function (see Appendix). This relation is described by the equation

J (Q)− Jh
(
QH

h

)
= −(νHh )TRh

(
QH

h

)
(6)

2.3 Flow and Adjoint Solvers

The primal flow solver used in this work is a node-based, second order accu-
rate, and unstructured Reynolds-Averaged Navier-Stokes (RANS) code using
the finite volume method (12). It is fully parallel and uses multigrid solution
with pseudo time marching accelerated by Jacobi preconditioning. The steady
adjoint solver is based upon the discrete adjoint approach (7). The gradients
are evaluated using the automatic differentiation. First the non-linear pri-
mal flow version is linearized and then the adjoint version is obtained by
transposing the linearized equations.

3 Results

In this section the automatic blocking methods are applied to various 2D tur-
bomachinery geometries. This includes two turbine seal cavities and an engine
intake geometry with cross winds in a tunnel. In addition to the automated
blocking methods, the results from the manually created block topologies are
also included for the sake of comparison. These hand-crafted block topolo-
gies were generated by the members within the research group. The objective
function chosen for all the cases is the total pressure loss (as percentage of
total inlet pressure). We then apply the adjoint error estimation procedure to
these domains. The error is computed with respect to a fine mesh which is two
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step uniform refinement of the original coarse mesh. A hybrid approach using
the wall distance field and the Cartesian fitting method is also demonstrated
for the 2D jet-wing-flap and tandem airfoils cases.

In the implementation of the d-MAT approach (27), curve fitting is used to
generate the medial axis from the point cloud instead of the pixel thinning. In
addition to that, three additional rules described in (24) have been used. The
TopMaker (17) and the Cartesian fitting (11) techniques have been manually
applied for these cases with the aim to automate the procedure in the future.

3.1 Endwall Cavities

Labyrinth Seal

The first geometry considered is a labyrinth seal found in turbine endwalls
to avoid the flow leakage from the main gas flow path. The geometry, block
topologies and the meshes generated by various methods are shown in the
Figure 1. The flow direction is from left to right. The d-MAT approach pro-
duces blocks resulting in a mesh which is aligned with the flow direction
specially around the seal teeth. The TopMaker blocking is similar to the d-
MAT but it produces a number of small blocks around the round sections.
The Cartesian fitting mesh has more orthogonality than the other two ap-
proaches. However the effect of cell clustering to resolve the boundary layer
spreads out into the main flow path in order to retain the mesh quality across
the block boundaries. Interestingly, the hand-crafted blocking looks similar
to the one generated by the Cartesian fitting method.

The axial velocity contours of the primal flow and its adjoint counterpart
are shown the Figure 2. The flow is modelled with an axial Reynolds number
of 10,000. Regions of flow acceleration at the seal tooth tips and flow recircu-
lation at the bottom of the steps are generated in the primal flow field. The
adjoint flow field shows the sensitivity of the objective function to the residu-
als in the axial velocity. One important aspect of the adjoint flow field is that
it propagates information backwards and hence the flow direction is opposite
to that of the primal flow. Seen in the context of design optimization, the
positive values of adjoint variables indicate that the geometry change here
should be such that it increases the fluxes subjected to the design constraints
and vice versa.

The error made in computing the objective function (total pressure loss
in this case) is estimated using the method described in the Section 2. The
overall error can then be obtained by summing individual error contributions
weighted by the square of cell areas. If Ej is the estimated error over a cell
of area Aj , Then the total error TE over the whole domain for N number of
cells is given by

TE =
N∑
j=0

|Ej |A2
j (7)
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Fig. 1 The block topologies and resulting meshes for labyrinth seal using various
approaches

Fig. 2 The contours of (a) axial velocity (b) adjoint counterpart of the axial velocity

A comparison of the error estimates can then be made by normalizing the
total error with the d-MAT error TEdMAT such that the normalized value
TEN is given by

TEN = TE/TEdMAT (8)
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Table 1 Labyrinth seal: Coarse mesh size and the total normalized error

Blocking Type N TEN

d-MAT 59,720 1

TopMaker 59,078 1.13

Cartesian fitting 65,620 1.60

Manual blocking 67,104 1.27

Fig. 3 The error maps for the 4th step of the seal: (a) d-MAT (b) TopMaker (c)
Cartesian fitting (d) Manual

Table 1 shows the coarse mesh cell count N and the normalized error esti-
mates TEN for the four block topologies. The results indicate that medial
axis based meshes provide more accurate value of the objective function than
the Cartesian fitting and the manual block topologies. This is because, for
the similar cell count, the medial axis based approaches generate the meshes
which have a more uniform cell size distribution in the main flow path than
the Cartesian fitting approach and have better alignment with the flow. Fig-
ure 3 highlights this point where the enlarged view of fourth seal step is
shown. The Cartesian fitting mesh is clustered in the main flow path in order
to keep the mesh sizes consistent between the blocks with boundary layer re-
finement and their neighbours. This constraint effects the overall uniformity
of the mesh size producing coarser mesh in the areas away from the block
boundaries, thus contributing to the error. Similar trend can be seen in the
manually generated mesh. The alignment of mesh with the flow direction is
demonstrated the Figure 4 where the streamlines are drawn against the var-
ious meshes for two zones of the seal step. As can be seen, the medial axis
based meshes provide better alignment with the flow. In addition to the mesh
density, the error indicator also marks the areas in meshes where the mesh
quality (for example smoothing and skewness) needs to be improved.

Rim Seal

In this section we consider another seal cavity. The rim seal geometry, the
block topologies and the meshes generated by applying the d-MAT, the Carte-
sian fitting and the hand-crafted blocking are shown in the Figure 5. The
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Fig. 4 Streamlines against the mesh for two zones in the fourth step of labyrinth
seal

manual blocking in this case produces more uniform mesh and less number
of blocks than the rest of the methods. The contours of the flow velocity and
and its adjoint counterpart are shown in the Figure 6.

Table 2 compares the coarse mesh cell count N and the normalized error
estimates TEN for various approaches. As depicted by the numbers in the
table, the manual and the d-MAT meshes produce more accurate functional
estimates than the Cartesian fitting methods. Figures 7 and 8 shows the
error maps and the mesh alignment with the flow for various approaches.
Manual generated mesh performs well here due it smoothness and better
flow alignment. The d-MAT mesh is more skewed and less aligned with the
flow as compared to the manual mesh. The Cartesian meshes struggles to
achieve uniform cell size distribution and the alignment with the flow thus
resulting in the higher error.

Table 2 Rim seal: Coarse mesh size and the total normalized error

Blocking Type N TEN

d-MAT 4,872 1

Cartesian fitting 4,461 2.69

Manual blocking 4,934 0.70
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Fig. 5 Rim seal (a) d-MAT blocking (b) Cartesian fitting blocking (c) Manual
blocking (d) d-MAT mesh (e) Cartesian fitting mesh (f) Manual mesh

Fig. 6 Rim seal: Contours of (a) axial velocity (b) adjoint counterpart of axial
velocity

Fig. 7 The error maps for the rim seal: (a) d-MAT (b) Cartesian fitting (c) Manual
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Fig. 8 Streamlines against the mesh: enlarged view for rimseal: (a) d-MAT (b)
Cartesian fitting, (c) Manual

3.2 Engine Intake

The third geometry considered here is an engine intake in a tunnel with cross
winds. The geometry, block topologies and the meshes using the d-MAT,
Cartesian fitting and the manual blocking are shown in the Figure 9. The d-
MAT mesh wraps around the intake lip geometry nicely while the Cartesian
fitting mesh retains its typical nature along with mesh clustering spreading
out away from the boundary layer. The flow and adjoint flow field for the
axial velocity are shown in the Figure 10.

Table 3 compares the cell count and the normalized estimated error for the
various methods. The d-MAT approach outperforms the other approaches due
to same reasons described for the labyrinth seal case. The Cartesian fitting
approach achieves the similar accuracy when the cell count is increased by
approximately 40% for this case. This difference in cell count for the same
accuracy becomes significant for complex 3D geometries and where LES and
DNS type meshes are desired. The estimated error contours around the intake
lip are shown in the Figure 11.

It can be concluded from the three cases considered in this section that the
medial axis based approaches perform better than the Cartesian fitting ap-
proach due to more uniform cell size distribution and better flow alignment.
We have also observed that the manually generated block topologies yield
better results in some cases while not performing well in the others. Seen
from this perspective, the automated approaches can always guide a CFD
practitioner to optimally block the domain in addition to being less time con-
suming. Thus blocking templates can be generated for different parts of, for
example, an aeroengine. The other factors which might influence the choice
of a specific blocking approach are the objective function, ease of blocking
especially in 3D and the number of blocks it produces for running simulations
on parallel machines.
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Fig. 9 Engine Intake geometry (a) d-MAT blocking (b) d-MAT mesh (c) Cartesian
fitting blocking (d) Cartesian fitting mesh (e) Manual blocking (f) Manual mesh

Fig. 10 Engine Intake: Contours of (a) axial velocity (b) adjoint counterpart of
the axial velocity around the intake lip

Table 3 Engine Intake: Coarse mesh size and the total normalized error

Blocking Type N TEN

d-MAT 26,564 1

Cartesian fitting 27,536 3.69

Cartesian fitting 37,442 0.96

Manual blocking 26,712 1.28
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Fig. 11 The error contours near the intake lip: (a) d-MAT (b) Cartesian fitting (c)
Manual

3.3 Hybrid d-Cartesian Fitting Blocking

The three blocking approaches demonstrated in the previous sections may not
always provide a valid block topology. In that case some new blocking rules
or hybrid approaches might be desired. An example for such an occurrence is
shown in the Figure 12(a) which is a 2D jet-wing-flap geometry. Figure 12(a)
also shows the medial axis generated with the d-MAT approach which does
not produce a valid blocking topology.

Fig. 12 2D Jet-wing-flap (a) geometry with d-MAT blocking (b) distance field
contours

The distance field contours around the jet-wing-flap shown in 12(b) might
be used in this case for blocking. Currently the distance field contour selec-
tion is arbitrary with the aim to automate the procedure in the future. The
area between the jet-wing-flap boundary and the distance field wrap can be
meshed using the d-MAT approach while the Cartesian fitting method is ap-
plied in the far field. This hybrid approach produces a good quality block
topology. The resulting blocking and the mesh are shown in the Figure 13.
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Fig. 13 Jet-wing-flap: (a) Blocking using distance field contour and the Cartesian
fitting for tandem airfoils (b) resulting mesh

Fig. 14 Tandem airfoils: (a) geometry with d-MAT blocking (b) distance field
contours

Fig. 15 Tandem airfoils: (a) Blocking using distance field contour and the Cartesian
fitting for tandem airfoils (b) resulting mesh

The second example of the hybrid approach is 2D flow domain around
tandem airfoils shown in 14(a). With the d-MAT blocking shown, it is difficult
to mesh the region in between and around the airfoil. Again, the distance field
contours around the airfoils might be used to form an O-type block around
them. The distance field is shown in the Figure 14(b). Once this block is
generated around the airfoils, the Cartesian fitting can then be applied in
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the far field and in the interior of the O-type block to produce a good quality
blocking. The resulting blocking and the mesh around the airfoils are shown
in the Figure 15. This hybrid approach can be used to create standard block
topology templates.

4 Conclusions

Three automated blocking techniques have been considered for meshing vari-
ous turbomachinery geometries. Adjoint based error analysis shows that me-
dial axis based approaches yield better output functional estimates due to
more uniform mesh size distribution and flow alignment. The error estima-
tion can also be used to improve the mesh both in terms of quality and
quantity. A hybrid approach is also demonstrated for the cases where previ-
ous techniques might not perform well. Such approaches can also be employed
to produce standard templates for various geometric configurations. The fu-
ture work includes extension of the analysis to three-dimensional cases and
further development and automation of the hybrid approach.

Appendix

Adjoint Error Estimation

Consider a computational domain Ω and let ΩH and Ωh are the coarse mesh
and the fine mesh discretizations of this domain respectively. H and h (H > h)
here represent the mesh length scales associated with a particular discretiza-
tion such as finite difference or finite volume. The coarse mesh has a mesh
density that is able to capture the basic feature of the flow but might not yield
the desired level of accuracy. The fine mesh on the other hand is a systematic
uniform refinement of the coarse mesh which can provide the accuracy re-
quired but is computationally expensive. The discretization of the governing
equations on the coarse and fine mesh yield the residual vectors which can
be denoted by RH (QH) and Rh (Qh) respectively where Q is the solution of
system of the governing flow equations. Let J (Q) be the objective function
which one wants to estimate. The estimation of this objective function on
the coarse and fine mesh are denoted by JH (QH) and Jh (Qh).

An estimate of Jh (Qh) on the fine grid, without solving on the fine grid,
can be made by a Taylor’s series expansion of Jh (Qh) about the solution on
the coarse grid

Jh (Qh) = Jh
(
QH

h

)
+

∂Jh
∂Qh

∣∣∣∣
QH

h

(
Qh −QH

h

)
+ ... (9)
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Also the expansion of Rh (Qh) about the coarse mesh yields

Rh (Qh) = Rh

(
QH

h

)
+

∂Rh

∂Qh

∣∣∣∣
QH

h

(
Qh −QH

h

)
+ ... (10)

The vector
(
QH

h

)
in the above equation is the coarse mesh solution estimated

on the fine mesh with a suitably defined prolongation operator. The vector
∂Jh

∂Qh

∣∣∣
QH

h

in Equation (9) represents the linear sensitivity of the fine mesh

function with respect to
(
QH

h

)
. Moreover, the vector ∂Rh

∂Qh

∣∣∣
QH

h

in Equation

(10) is the fine mesh Jacobian evaluated using the projected coarse mesh
solution.

(
QH

h

)
can be evaluated by

QH
h = IHh QH (11)

where IHh represents an appropriate prolongation operator. For example the
coarse grid solution can be reconstructed on the fine mesh using linear or
higher order interpolation. Assuming the well-posedness, the Equation (10)
can be inverted. Also knowing that Rh (Qh) = 0 for steady state problem,
Equation (10) yields

(
Qh −QH

h

) ≈ −
{

∂Rh

∂Qh

∣∣∣∣
QH

h

}−1

Rh

(
QH

h

)
(12)

From Equations (12) and (9) we get

Jh (Qh) ≈ Jh
(
QH

h

)− (νh|QH
h
)TRh

(
QH

h

)
(13)

where νh|QH
h
is the discrete adjoint solution vector estimated at the fine mesh

using QH
h . This adjoint solution vector satisfies the equation

{
∂Rh

∂Qh

∣∣∣∣
QH

h

}T

νh|QH
h
=

{
∂Jh
∂Qh

∣∣∣∣
QH

h

}T

(14)

Equation (13) requires the evaluation of the term (νh|QH
h
)T on the fine grid.

To avoid this evaluation, (νh|QH
h
)T can also be estimated thorough coarse

grid adjoint interpolation onto the fine grid via some projection operator

νHh = IHh νH (15)

where the coarse mesh adjoint solution νH is the solution of following adjoint
equations on the coarse mesh

{
∂RH

∂QH

}T

νH =

{
∂JH
∂QH

}T

(16)



180 Z. Ali and P.G. Tucker

The final estimate of the objective function J (Q) is then given by

J (Q) = Jh
(
QH

h

)− (νHh )TRh

(
QH

h

)
(17)

The second expression on the right hand side of the above equation is called
the error correction term. It can be seen that the error in the objective func-
tion is related to the local residual error through the adjoint variables which
act as weight function. Equation (13) can be disintegrated into the following
form

Jh
(
QH

h

)− Jh (Qh) ≈
(
νHh

)T
Rh

(
QH

h

)
+ (νh|QH

h
− νHh )TRh

(
QH

h

)
(18)

The first term on the right hand side of Equation (18) is the main computable
error estimate while the second term is the error in this computable error es-
timate. This first term on the right hand side shows that the adjoint variables
directly relates the error in the given functional to the local residual errors.
Stating in another way, the adjoint solution act as a weight function to the
local residual error and gives the effect of the residual error on the output
functional.
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