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Unit tangent bundle of a surface carries various information of tangent vector
fields on that surface. For 2-spheres (i.e. genus-zero closed surfaces), the unit
tangent bundle is a closed 3-manifold that has non-trivial topology and cannot
be embedded in R3. Therefore it cannot be constructed by existing mesh gen-
eration algorithms directly. This work aims at the first discrete construction
of unit tangent bundles over 2-spheres using tetrahedral meshes. We propose a
two-stage algorithm for the construction, which starts from constructing two
local bundles and then combines them into a global bundle.

1 Introduction

A unit tangent bundle of a surface equips each point of the surface with a
unit circle. It is a powerful tool in Riemannian geometry ([1]) that naturally
represents all the unit tangent vector fields on a surface. Each unit tangent
vector field on the surface can be represented as a section (one vector per
point) of the bundle.

Despite the important role of unit tangent bundles on theoretical side, they
are unfortunately missing from the literature of corresponding engineering
fields (such as surface vector field design [3, 5, 2]) due to lack of an appropriate
discrete representation. The goal of this work is to give the first tetrahedral
mesh construction for unit tangent bundles on 2-spheres.

Unit tangent bundle for 2-sphere is non-trivial (i.e. not a direct product).
Here we utilize the idea of local trivialization. Without loss of generality we
use a standard 2-sphere centered at the origin of R3 with radius 1 to illustrate
the idea.

1. Slice the sphere open along the equator into two semi-spheres and map
them to two unit disks (i.e. covering disks) on the XY plane by stereo-
graphic projection.
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2. For each covering disk we build the local bundle, which is a direct product
(i.e. trivial) of disk and circle, namely a solid torus.

3. Glue two local bundles along their boundary surface to form a global
bundle, which is non-trivial. This gives us the unit tangent bundle for the
input sphere. Note that the gluing here depends on the transition function
between two covering disks in the first step, which is ϕ21(z) = 1

z in our
case.

2 Local Bundle

Here we construct the unit tangent bundle T (tetrahedral mesh) for each
covering disk D (triangular mesh), which is a direct product T = D×S1. We
divide this task into two steps.

(a) (b) (c)

Fig. 1. A local bundle is a direct product of a disk and a circle, which is a solid torus.
It can be represented by a prismatic mesh and further subdivided into a tetrahedral
mesh, both with a regular structure that reflects the direct-product nature.

In the first step, we extrude disk D along circle S1 to obtain a prismatic
mesh, which is a volumetric mesh consisting of prisms. Obviously, such a mesh
has a layered structure, where each layer is a direct product of disk D and a
line segment.

In the second step, we subdivide the prismatic mesh into a tetrahedral
mesh. The challenge here is that after the subdivision, the triangulation on
the boundary surface of the volumetric mesh should have certain pattern,
as required in Section 3. This boundary constrained subdivision problem has
been successfully solved in [4]. That paper convert this 3D problem to an
equivalent 2D graph labeling problem on the base mesh, and provided provable
algorithms for all kinds of boundary conditions. Here we simply run that
algorithm on each layer of our prismatic mesh, with the boundary condition
specified in section 3. The output will be a tetrahedral mesh like the one
shown in Figure 1(c).
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3 Global Bundle

After constructing two local bundles T1 and T2 as in Section 2, we can combine
them into a global bundle T . This is equivalent to identifying their boundary
surface ∂T1 and ∂T2 in a special way.

We first look at the requirements that a valid global construction should
satisfy.

1. According to the transition function ϕ21, a vertex v2j ∈ ∂D2 with polar

angle θj should be mapped to vertex v1j ∈ ∂D1 with polar angle θi = −θj ,

together with the fiber at v2j (v1i ) to the fiber at v1i (v2j ).

2. According to the Jacobian J21, the circle (or fiber) at vertex v2j ∈ ∂D2

with polar angle θj should be rotated by π − 2θ after being mapped to
∂D1.

To meet all these requirements, we should not only define an appropri-
ate boundary triangulation of each local bundle, but also define a valid map
between two boundary triangulations.

Recall the prismatic mesh we constructed for each local bundle Ti =
Di × S1 (see Section 2), its boundary surface is a quad mesh with a 2D
grid structure of size M ×M ′, where M is the number of sample points along
the boundary circle ∂Di of the base mesh Di and M ′ is the number of sample
points along fiber circle S1. After the prismatic mesh is subdivided into tetra-
hedral mesh, the sample points on the boundary are not changed, therefore
the grid structure is also preserved. Here we assign each sample point in ∂Ti

with a grid coordinate (i, j), where 0 <= i < M and 0 <= j < M ′.
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Fig. 2. The boundary triangulation and the corresponding map for global bundle
construction.

With this grid structure and grid coordinates, we define the following
boundary triangulation for each local bundle ∂T :
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1. The vertex set forms a 4N × 2N (N ∈ Z+) grid structure;
2. Every edge connects two vertices with one of the following three types

of grid coordinates: (i, j) and (i + 1, j), (i, j) and (i, j + 1), or (i, j) and
(i+ 1, j + 1).

Based on the above triangulation, we define the following map G21 : ∂T2 →
∂T1 to identify the boundary surfaces of two local bundles: G21 sends vertex
(i, j) in ∂T2 to vertex (−i, j + N − i) in ∂T1. By denoting a vertex (i, j) in
mesh ∂Tk as vk(i,j), the gluing map can be written as:

G21

(
v2(i,j)

)
= v1(−i,j−i+N) (1)

Here we claim that such a gluing map induces a bijection between the
boundary surface of two local bundles. We also claim that the resulting tetra-
hedral mesh satisfies all the requirements for a discrete representation of unit
tangent bundle over 2-sphere.

4 Conclusion and Remarks

This paper propose the first discrete representation for unit tangent bundles
over 2-spheres using tetrahedral meshes. This is carried out by building local
bundles over covering disks and then combining them into a global bundle
for the whole sphere. The construction is guaranteed to generate the desired
results.

Note that our boundary triangulation in global construction requires that
the partitioning cycle (which is piecewise linear) on the original surface should
consist of 4N edges for some positive integer N . If the initially picked cycle
does not satisfies this, one can always perturb it or subdivide some edges on
it to make it qualify.

Another note is that, for local bundles, the tetrahedral meshes Ti has
an embedding in R3, and also has a Euclidean metric induced from the em-
bedding. For the global bundle, our construction only guarantees that it is
topologically faithful, without assigning any meaningful embedding or metric
yet. However, it is possible to assign the latter to the tetrahedral mesh we
construct, which will be an interesting direction to explore in the future.
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