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Summary. This paper addresses the construction of anisotropic metrics from
higher-order interpolation error in 2 dimensions [2, 3] for mesh adaptation. Our
approach is based on homogeneous polynomials that model a local interpolation
error. Optimal orientation and ratios are found by using the Sylvester decomposi-
tion [4]. Then we apply a global calculus of variation to get the optimal metric field
minimizing the Lp norm of the interpolation error. We illustrate this approach on a
numerical example.

1 Third order interpolation error model

We define the quadratic interpolate Π2
hu of u on a mesh H by:

∀x ∈ Ω, Π2
hu(x) =

6∑
i=1

u(pi)ϕi(x)

where pi is the ith mesh nodes, ϕi(.) is the ith P2 Lagrange shape function
defined by :{

ϕi(x) = ψi(x)(2ψi(x)− 1), i = 1, 2, 3
ϕi(x) = 4ψ[i](x)ψ[i+1](x), i = 4, 5, 6 (edgesmidpoints)

and ψi is the ith P1 Lagrange shape function defined by :

ψi(pj) = δij , pj ∈ H.

We approximate the local interpolation error eh = |u−Π2
hu| by an homoge-

neous polynomial of degree k = 3 in 2 variables :

Pe(x) =

k∑
i=0

(ki ) ai x
i yk−i. (1)

(ki ) are the binomial coefficients and ai are the third-order derivatives of u on
each vertex of the mesh. When u is a numerical solution, they are obtained by
using a reconstruction method based on the Clément interpolation operator.
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To recover the third-order derivatives D
(3)
R u, the process starts from the con-

stant Hessian Hu|K on K given by :

Hu|K(x) =

6∑
i=1

u(pi)Hϕi(x).

For each pi, we thus have the following Hessian reconstruction :

HRu(pi) =

∑
Kj∈Si

|Kj |Hu|Kj

|Si|
, (2)

where |Kj | denote the area of Kj and Si the aera of the stencil of pi. To

recover the third-order derivatives ai = [D
(3)
R ]i from u, we apply a gradient

reconstruction procedure to each component of the Hessian.

D
(3)
R u(pi) =

∑
Kj∈Si

|Kj | ∇(HRu)|Kj

|Si|
. (3)

2 Local error decomposition and optimal local metric

In this section, we approach locally the variations of Pe by a quadratic definite
positive form (a metric tensor) taken at power k

2 , i.e, for x = (x, y) ∈ R2,

|Pe(x)| 6 (txMloc
opt x)

k
2 . (4)

Geometrically, the local optimal metric is the one of maximal aera whose unit
ball is included in the isoline 1 of |Pe|. To obtain Mloc

opt, we propose a lo-
cal optimization problem based on the Sylvester’s theorem [4]. The Sylvester
binary decomposition allows to write the 2-dimensional homogeneous polyno-
mial Pe(x, y) of degree k as a sum of kth powers of r distinct linear forms in
C :

Pe(x) =

r∑
j=1

λj (αj x+ βj y)k, (5)

r is the decomposition rank, i.e it is the minimal number of linear terms such
that (5) holds. We use the algorithm proposed in [4].
Once we obtain the decomposition (5),Mloc

opt is obtained differently according
to the nature of the coefficients (αj , βj):

• Real case: Mloc
opt = tQ

(
1
h2
1

0

0 1
h2
2

)
Q.

• Complex case: Mloc
opt = 2−

1
3 tQ̄

(
1
h2
1

0

0 1
h2
2

)
Q,
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where Q =

(
α1 β1
α2 β2

)
gives the optimal directions of Mloc

opt.
tQ is the real

transpose and tQ̄ is the conjugate complex transpose of Q. The sizes along
optimal directions are: hi = 1

|λi|
1
k

. We depict in Figure 1 two error models

and their corresponding optimal metric Mloc
opt.

Fig. 1. Examples of error models : Pe = 50x3 − 120x2y − 1000xy2 − y3 (left),
Pe = x3− 500x2y− 500xy2− y3 (right). Representation of their iso-values and their
corresponding optimal ellipse included in the isoline 1(in red).

3 Global variational calculus problem

The global optimal continuous metric MN
Lp = (MN

Lp(x))x∈R2 is the solution
of the following variational calculus problem written in Lp norm:

MN
Lp = min

M
Ep(M) =

(∫
Ω

|eM(x)|p dx
) 1

p

=

(∫
Ω

|txM(x)x)|
kp
2 dx

) 1
p

(6)

under the constraint C(M) =
∫
Ω

(h1h2)−1 = N . To solve this problem, we
use the Euler-Lagrange necessary condition which states that there exists α
a constant such that ∀ δM, δE(M, δM) = α δC(M, δM). MN

Lp writes:

MN
Lp = N

(∫
Ω

(λ1λ2)
kp

2(kp+2)

)−1
(λ1λ2)−

1
kp+2

(
λ1 0
0 λ2

)
.

The optimal value of the density is :

dNLp = N

(∫
Ω

(λ1λ2)
kp

2(kp+2)

)−1
(λ1λ2)

kp
2(kp+2) ,

and the optimal value of the error is:
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Ep(M
N
Lp)p = 2

k
2 N−

k
2

(∫
Ω

(λ1λ2)
kp

2(kp+2)

) k
2

(λ1λ2)
k

2(kp+2) .

The order of convergence for a sequence of continuous meshes (MN
Lp)N verifies:

||u−Π2
MN

Lp
u||Lp(Ω) 6

Cst

N
k
2

. (7)

Relation (7) points out a global kth-order of spatial mesh convergence.

4 Numerical example

To validate our approach, we compare an adaptation based on the previous
optimal metric (with third order derivatives recovery) with an adaptation only
based on the Hessian on u (constant by triangles). For both strategies, the
interpolation error level is computed by mean of 5th order gauss interpolation
to estimate ‖u−Π2

hu‖Lp(Ω). Consequently, we compare a P1-driven adaptation
with a P2-driven adaptation having a P2-Lagrange triangle to represent the
function. We consider:

f(x, y) =

0.01 sin( 50xy) if xy 6 − π
50

sin( 50xy) if − π
50 < xy 6 2π

50
0.01 sin( 50xy) if xy > 2π

50

Fig. 2. Convergence curves : L1 norm of the error versus the number of dof (left),
L2 norm of the error versus the number of dof (right) for the function f .

The spatial convergence curves are depicted in Figure 2 and the meshes in
Figure 3. The sequence of P2-driven adapted mesh shows a 3rd order of con-
vergence while P1-driven adaptation shows an asymptotic rate of convergence
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Fig. 3. Closer view of the meshes obtained for a P2-driven adaptation (left) and
P1-driven adaptation (right) for f . Both meshes contains around 42 000 dofs.

of one (despite the interpolation is still 2nd order) for L1 and L2 norms. This
emphasizes the needs to consider higher-order interpolation error in order to
achieve an optimal rate of convergence.

5 Conclusion

We have shown that anisotropic mesh adaptation can be extended to higher
order interpolations. We are currently extending this approach to the 3 di-
mensional case by using tensor decomposition methods. Extension to curved
isoparametric triangles is also ongoing.
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