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Summary. This paper addresses the construction of anisotropic metrics from
higher-order interpolation error in 2 dimensions [2, 3] for mesh adaptation. Our
approach is based on homogeneous polynomials that model a local interpolation
error. Optimal orientation and ratios are found by using the Sylvester decomposi-
tion [4]. Then we apply a global calculus of variation to get the optimal metric field
minimizing the L? norm of the interpolation error. We illustrate this approach on a
numerical example.

1 Third order interpolation error model

We define the quadratic interpolate IT?u of u on a mesh H by:

Vx € 2, ITiu(x) = Zu(m)%(x)

i=1

where p; is the i*" mesh nodes, ¢;(.) is the it" P? Lagrange shape function
defined by :

ei(x) = hi(x)(2¢i(x) —1),  i=1,2,3
@i(x) = 49 (x) Yy (x), @ =4,5,6 (edges midpoints)
and 1); is the i** P! Lagrange shape function defined by :
Yi(ps) = dij, Pj €H.

We approximate the local interpolation error e = |u — ITu| by an homoge-
neous polynomial of degree k = 3 in 2 variables :

k
P.(x) =Y (Haiz'y" " (1)
i=0
(¥) are the binomial coefficients and a; are the third-order derivatives of u on
each vertex of the mesh. When u is a numerical solution, they are obtained by
using a reconstruction method based on the Clément interpolation operator.
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To recover the third-order derivatives Dg’)

stant Hessian Hu i on K given by :

u, the process starts from the con-

6
Hug(x Zu p:) Hp;(x).
i=1

For each p;, we thus have the following Hessian reconstruction :

Hru(p;) = =& i\5-|] . (2)

where |K;| denote the area of K; and S; the aera of the stencil of p,. To

recover the third-order derivatives a; = [Dg)]i from u, we apply a gradient
reconstruction procedure to each component of the Hessian.

Yok es, K| V(Hru) K,
Du(pi) = === - (3)

2 Local error decomposition and optimal local metric

In this section, we approach locally the variations of P, by a quadratic definite
positive form (a metric tensor) taken at power g, i.e, for x = (z,y) € R?,

Pe(x)] < (X Mg %)% (4)
Geometrically, the local optimal metric is the one of maximal aera whose unit
ball is included in the isoline 1 of |P.|. To obtain M, we propose a lo-
cal optimization problem based on the Sylvester’s theorem [4]. The Sylvester
binary decomposition allows to write the 2-dimensional homogeneous polyno-
mial P.(z,y) of degree k as a sum of k' powers of r distinct linear forms in

C: .
x) = A(ajz+By)F, (5)
j=1
r is the decomposition rank, i.e it is the minimal number of linear terms such
that (5) holds. We use the algorithm proposed in [4].

Once we obtain the decomposition (5), Mlpt is obtained differently according
to the nature of the coefficients (o, 5;):

lor hi 0
e Real case: My = 'Q 0 1] @

h3
1

l 1 w0

e Complex case: My =273 0 A

72

2
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ai i

where =
@ (042_ B
transpose and *Q is the conjugate complex transpose of (). The sizes along

optimal directions are: h; = ﬁ We depict in Figure 1 two error models
il k

and their corresponding optimal metric M

> gives the optimal directions of Mﬁ,‘;ft tQ is the real

loc
opt*

Fig. 1. Examples of error models : P. = 50z — 120z%y — 1000zy? — y* (left),
P. = z® — 500z%y — 500zy? — y° (right). Representation of their iso-values and their
corresponding optimal ellipse included in the isoline 1(in red).

3 Global variational calculus problem

The global optimal continuous metric MY, = (MP,(x))xer2 is the solution
of the following variational calculus problem written in L? norm:

1 1
M = in 5,00 = [ lemorix)” = ([ a0 ix) " (0
2 2
under the constraint C(M) = [, (hihs)~! = N. To solve this problem, we

use the Euler-Lagrange necessary condition which states that there exists «
a constant such that VM, §E(M, M) = a 6C(M, 6M). MY, writes:

-1
Mg, = N (/()\1A2)2%’£717+2)) (Adg)~ 772 <)\1 0 )
2 0 )\2

The optimal value of the density is :

N kp -1 kp
di, =N (/ ()\1)\2)2<kp+2>> (A Ag) 2R F2) |
9]

and the optimal value of the error is:
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E,(M},)» =25 N~> (/{2()\1)\2)2@%2)) (A1 o) 077 |

The order of convergence for a sequence of continuous meshes (M£F, ) ; verifies:

Cst
[l = I3 ullLe (o) < NE (7)

Relation (7) points out a global kth-order of spatial mesh convergence.

4 Numerical example

To validate our approach, we compare an adaptation based on the previous
optimal metric (with third order derivatives recovery) with an adaptation only
based on the Hessian on u (constant by triangles). For both strategies, the
interpolation error level is computed by mean of 5th order gauss interpolation
to estimate ||u—IT7ul|r (). Consequently, we compare a P!-driven adaptation
with a P2-driven adaptation having a P2-Lagrange triangle to represent the
function. We consider:

0.01sin(50xy) if xy<—

f(x,y) = S%H( 50.1‘y) 7,f —5% < xyzg %
0.01 Sln( 50 .ry) Zf zy > =0
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Fig. 2. Convergence curves : L' norm of the error versus the number of dof (left),
L? norm of the error versus the number of dof (right) for the function f.

The spatial convergence curves are depicted in Figure 2 and the meshes in
Figure 3. The sequence of P2-driven adapted mesh shows a 3rd order of con-
vergence while P!-driven adaptation shows an asymptotic rate of convergence
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Fig. 3. Closer view of the meshes obtained for a P?-driven adaptation (left) and
P'-driven adaptation (right) for f. Both meshes contains around 42000 dofs.

of one (despite the interpolation is still 2nd order) for L' and L2 norms. This
emphasizes the needs to consider higher-order interpolation error in order to
achieve an optimal rate of convergence.

5 Conclusion

We have shown that anisotropic mesh adaptation can be extended to higher
order interpolations. We are currently extending this approach to the 3 di-
mensional case by using tensor decomposition methods. Extension to curved
isoparametric triangles is also ongoing.
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