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Abstract.  The sweeping algorithm can generate all-hexahedral mesh by sweeping 

an all-quad mesh on the source surface to the target surface. For one-to-one 

sweeping, the most difficult thing is to generate an all-quad mesh on the target 

surface which has the same mesh connectivity as that of source surface. The 

traditional method is to use the affine transformations, like translation, rotation, 

scaling, or combinations of them. This method works very well on the convex 

cases, while it fails for the concave and non-simply connected cases. In this paper, 

harmonic mapping is used to map an all-quad mesh onto the target surface. The 

result shows that it can generate an all-quad mesh on the target surface without 

any inverted element and avoid expensive smoothing algorithm like untangling.  

1 Introduction 

In many applications such as computational fluid dynamics (CFD) [1], hex meshes 

are preferred over the tetrahedral meshes.  According to [2], there are two classes 

of methods for generating all-hex meshes, namely, indirect methods, which con-

vert from tetrahedral to hexahedral meshes [8], and direct methods. The latter may 

be further classified as Grid-Based [3], medial surface [4, 5], plastering [6] and 

Whisker Weaving [7]. Because it is difficult to combine or divide the tetrahedron 

in such a way to guarantee the formation of all-hex mesh, the indirect methods are 

neither reasonable nor tractable for the mesh generation [2]. For the Grid-Based 

method, mesh quality at the boundary of volume is very poor and interior hex 

elements are not aligned with boundary hex elements, which don’t qualify the 

ideal requirements for CFD. The medial surface generates the hex meshes by de-

composing the volume, which is an extension of medial axis method. The decom-

posed volumes are usually meshed with midside subdivision. However, this only 

works for the geometry with 3-valent corner vertices, and lacks reliability for the 

general geometry. Plastering is a 3D extension of the paving algorithm. Whisker 

Weaving method builds the dual of the hexahedral mesh and embeds the mesh in 

3D.  Neither plastering nor Whisker Weaving has been shown to be robust for the 

general 3D models.  

While all-hexahedral mesh generation on the general 3D geometry remains an 

elusive goal, algorithms to mesh two-and-one-half dimensional geometries, gener-

ally referred to as “sweeping” or “projection” methods, continue to be important 

[10, 13]. The traditional one-to-one sweeping procedure consists of four steps: (1) 

generate an all-quad mesh on the source surface; (2) project an all-quad mesh 



from source surface to the target surface; (3) generate the structured all-quad 

meshes on the linking surfaces; (4) generate an all-hex mesh, including interior 

nodes and elements. The source and target surfaces may have different shapes, 

areas or curvatures, but they must be topologically equivalent. Of the above four 

steps, the most difficult one is to map of source surface mesh to the target surface.  

This is especially true for models with concave or non-simply connected features. 

2 Previous Work. 

P. Knupp [10] devised two new algorithms to locate the interior nodes: linear 

transformations between the bounding node loops and smoothing. For the concave 

and non-simply connected source or target surfaces, this approach does not work. 

X. Roca [12, 13] used the least-squares approximation of an affine mapping for 

the projection of the source surface mesh onto the target surface. The extra term is 

added to the general least-squares approximation to avoid the skewn and flattening 

effects during the mesh sweeping. However, this approach still suffers from poor 

mesh quality for source/target surfaces which are concave or non-simply-

connected. The BoundaryError method was introduced to place the interior nodes 

between the source surfaces and target surfaces using the linear affine algorithm 

and a subsequent residual error correction [9, 18]. M. L. Staten et al. [11] devel-

oped a new algorithm BMSweep to place the interior nodes while volume sweep-

ing. The background mesh generated by performing the Constrained Delaunay 

Triangulation for the boundary nodes is used. However, the same mesh connectiv-

ity for all the layers will produce the inverted elements for the background mesh if 

there is a twisted feature in the model.  

Therefore, based on the concept of morphing, both source surface and target 

surface can be mapped to a common domain, which is usually a convex polygon 

such as the unit disk. In this paper, harmonic mapping is used to map the source 

surface and target surface onto a unit disk. Harmonic mapping has many merits 

for surface mapping [18, 14]: (1) Harmonic mapping is computed through the 

global optimization and takes into account the surface topology. Therefore, local 

minimal, folding and clustering can be avoided; (2) insensitive to the resolution of 

face surface and noises on the surface; (3) it does not require the surface to be 

smooth. Even there is a sharp feature on the surface, it can be accurately com-

puted. ; (4) Since we map the surface onto a unit disk, harmonic mapping exists 

and is diffeomorphism; (5) it is determined by the metric, not the embedding. This 

indicates that harmonic mapping is invariant for the same surface with different 

orientations. As long as there is not too much stretching between two surfaces 

with different mathematical expressions, they will induce similar harmonic maps. 

3 Harmonic Mapping 

In this paper, the application of harmonic mapping on projecting source mesh 

onto the target surface is proposed. In one-to-one sweeping, the source surface 

and target surface are topologically equivalent. These surfaces are represented as a 



triangular mesh in graphics. Therefore we call them the source surface M1 and the 

target surface M2, respectively. However, they may have different mesh nodes and 

connectivity. It takes two steps to transform from M1 to M2. The first step is to es-

tablish the correspondence map between M1 and M2, and then the interior nodes 

are interpolated accordingly. 

The Harmonic Mapping develops M1 and M2 to the 2D unit disks [15, 16, 17], 

which we call H1 and H2, respectively. H1 and H2 have the same mesh connectivi-

ty as M1 and M2, respectively. H1 and H2 are created by mapping M1 and M2 onto 

the unit disk via harmonic mapping, respectively. Then the correspondence be-

tween H1 and H2 is generated. In order to make the correspondence, a new com-

mon 2D unit disk Hc needs to be created by adjusting the nodes’ location on boun-

daries and combining both H1 and H2 (Hc has both M1’s connectivity and M2’s 

connectivity). For the sake of simplicity, we keep 2D unit disk H2 fixed. Without 

creating a new Hc and mapping H1 and H2 to Hc, the boundary nodes of H1 are ad-

justed in order to make the corresponding nodes between H1 and H2 overlap. After 

boundary correspondence between H1 and H2 is made, 2D unit disk H1 is mapped 

onto H2 directly. Then correspondence between M1 and M2 is established. After 

that, the all-quad mesh on the source surface can be mapped onto the target sur-

face. In order to guarantee that harmonic mapping is one-to-one and well defined 

for geometries with large aspect ratios, the triangular mesh should be smoothed 

before harmonic mapping. The details are shown in Fig 1. 

 

Fig. 1. Road map for mapping all-quad mesh from the source surface to the target surface. 

4 Establish the surface correspondence 

In the Sect 3, two embeddings H1 and H2 are created from the source surface M1 

and target surface M2, respectively. In this section, two embeddings H1 and H2 are 

merged into H2, which has combined mesh connectivity from both source surface 

M1 and target surface M2. After correspondence between H1 and H2 is made, any 

point from source surface M1 corresponds with a point on the target surface M2. 

All-quad mesh generation on the target surface consists of four steps. 

In the first step, rotate H1(or H2) around the center of 2D unit disk so that the 

known corresponding vertices on the outmost boundary of source surface M1 and 

target surface M2 overlap (corresponding vertices can be obtained from linking 

sides between the source surface and target surface). 

In the second step, if the surface is non-simply connected, adjust the known 

corresponding vertices (in H1 or H2) on interior boundaries of source surface M1 



and target surface M2 to ensure that they overlap. Based on the same procedure as 

Harmonic Mapping, redistribute the interior vertices in H1. Then smooth H1 and 

H2 with vertices on the boundaries fixed. 

In the third step, calculate the corresponding 3D positions on source surface M1 

of every mesh node at H1. Because there is an all-quad mesh on the source surface, 

a triangular face is searched at H1 on the source surface where each mesh node      

-----is located in Fig. 2(a). When      is located in a face               of H1, the bary-

centric coordinates can be computed as follows. 
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Fig. 2. Mapping vertex       in H1 to H2 

Finally, calculate corresponding 3D positions on the target surface M2 of each 

mesh node     at H2. Search a face at H2 where a node     in H1 is included in order 

to compute the 3D location of node     on target surface M2 in Fig. 2(b). When    -

is located in a face                at H2, the barycentric coordinates              can be 

computed as follows. 
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An example with concave and multi-connected features is shown in Fig 3. 

(a) (e)(b)
(c) (d) (f)  

Fig. 3. Sweep volume with concavities and varying square holes: (a) the 3D model; (b) the source 

mesh (c) an all-hex mesh by our method; (d) an all-hex mesh from Cubit 12.2 which contains a lot of 

inverted elements; (e) an all-hex mesh from linear method which contains many inverted elements; (f) 

the mesh quality histogram for the result from our method(blue) and Cubit 12.2(red) 

5 Conclusion 

In this paper, a new algorithm to project all-quad mesh on source surface to target 

surface based on harmonic mapping has been developed. The projection between 
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two topologically equivalent surfaces is determined by making the correspondence 

between them based on harmonic mapping by three steps. Firstly, we generate 2D 

unit disk for two surfaces based on harmonic mapping. Secondly, we make the 

correspondence between two unit disks. Finally, all-quad mesh on the source sur-

face is mapped back to the target surface. The result shows that the all-quad mesh 

on the source surface can be mapped onto the target surface without any inverted 

element.  
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