
Mesh Improvement Methodology for 3D
Volumes with non-Planar Surfaces

Alan Kelly1, Lukasz Kaczmarczyk2, and Chris Pearce3

1 University of Glasgow a.kelly.2@research.gla.ac.uk
2 University of Glasgow Lukasz.Kaczmarczyk@glasgow.ac.uk
3 University of Glasgow Chris.Pearce@glasgow.ac.uk

Summary A mesh improvement methodology is presented which aims to im-
prove the quality of the worst elements in 3D mesh with non-planar surfaces
which cannot be improved using traditional methods. A numerical optimisa-
tion algorithm which specifically targets the worst elements in the mesh but
is a smooth functions of nodal positions is introduced. A method of moving
nodes on curved surfaces whilst maintaining the domain geometry and pre-
serving mesh volume is proposed and implemented and is shown to be very
effective at improving mesh which traditional mesh improvers cannot improve.

1 Introduction

In the context of the Finite Element Method (FEM), high quality meshes can
be crucial to obtaining accurate results. The quality of an element can be
described as a numerical measure which estimates the effect that the shape
of an element will have on the accuracy of an analysis, [1]. It can be shown
that poor quality elements can result in both discretisation errors and poor
conditioning of the stiffness matrix. In the extreme, a single poor element
can render a problem intractable. Therefore, a high quality mesh is crucial to
performing an analysis.

The field of mesh optimisation is complex and has now become an area of
research in its own right. Numerical optimisation is the process of maximising
or minimising an objective function, subject to constraints on the solution.
When this is applied to a finite element mesh it is referred to as mesh optimi-
sation, where the mesh quality is the objective function and the constraints
include, for example, the domain geometry, maximum element size, etc. It is
important to recognise that an analyst will not generally be an expert in mesh
optimisation. Therefore, in order to make the process of mesh optimisation
more straightforward for the analyst, this project aims to create a set of tools
which make it possible for an analyst to improve a complex meshes used in
actual simulations, in as simple a manner as possible. In doing this, we are

2 Alan Kelly, Lukasz Kaczmarczyk, and Chris Pearce

attempting to simplify a very complex process; this paper will explain the
problems encountered and the solutions to these problems.

1.1 Motivation

The motivation for this project has come from the problems encountered by
the authors and their colleagues. This group is concerned with the computa-
tional modeling of materials and structures, including fracture, microfluids,
surface tension and biological materials. These problems are characterised
by evolving geometries which consequently require an evolving mesh that
will enable the problems to be solved accurately and efficiently. For complex
three-dimensional geometries, automatic mesh generators do not always cre-
ate meshes of sufficient quality to ensure a sufficient level of accuracy in the
solution. This is further complicated by the need to have an adapting mesh
that can resolve the evolving geometry. In the problems mentioned above,
many issues have been traced back to poor quality meshes and although there
are a number of tools already available for improving mesh quality, none of
them have matched the needs of the authors. Therefore, the decision was then
made to develop a new set of tools, either via the modification of existing
open-source software or through the development of new tools.

At the heart of many of the problems being considered is the Arbitrary La-
grangian Eulerian (ALE) formulation where the need to ensure mesh quality
in an evolving mesh is very important. This is a form of finite element analysis
where the positions of the mesh nodes may be determined in a Lagrangian
manner whereby they track a material point or a Eulerian manner where the
mesh is fixed and the continuum moves with respect to the mesh or in some
arbitrary combination of these, [2]. In certain micro-fluids analysis, the posi-
tions of the surface nodes are determined using a Lagrangian formulation and
the interior nodes using an Eulerian formulation. The surface node position-
ing is determined by the physics of the problem being analysed and therefore
any alteration of their positioning must be compatible with the physics of the
problem, i.e. the geometry and the volume of the domain must be preserved.
Therefore a method of improving mesh quality by moving surface nodes but
without changing the geometry or volume of the domain is necessary. Such a
method has been developed and is described in Section 3.3.

1.2 Implementation

This work was implemented using the Mesh Quality Improvement Toolkit
(Mesquite) as a platform, [3]. The architecture of this library makes it ideal
to use as a base for the development and testing of new algorithms. In addition,
the Mesh Oriented Database (MOAB) [4] was used for mesh operations not
available in Mesquite, CBLAS and Lapack were used for numerical operations.
Both Mesquite’s native algorithms [3] and Stellar [5] a mesh optimisation pro-
gram, were used to assess the results obtained. Stellar, whilst a very powerful

Mesh Improvement Methodology 3

program, has restrictions that mean it has limited application to the kind of
problems that motivated this work. The main issue is that the user has limited
control over the optimisation process. However, as an academic package, it is
very powerful as it shows what can be achieved in mesh optimisation, thus
making it an ideal tool for comparison of results.

1.3 Optimisation-Based Mesh Smoothing

Mesh smoothing is the process of improving mesh quality without changing
the mesh topology [6]. There are many existing mesh smoothing algorithms,
the most famous of which is Laplacian smoothing. Laplacian smoothing in-
volves moving a vertex to the average of its connected neighbours’ positions
and is applied to each mesh vertex in sequence and is repeated several times.
It has been shown to be somewhat effective with 2D triangular meshes, but
is much less effective in 3D [5]. Although Laplacian smoothing is computa-
tionally cheap, there is no guarantee of mesh improvement. It is even possible
that inverted elements will be created [7] when the domain is not convex [2].
Much more sophisticated mesh smoothing algorithms have been developed
which are based on numerical optimisation techniques. Techniques such as
these are referred to as optimisation-based smoothers. These methods require
a means of expressing the quality of an element numerically and of combining
the qualities of every element in the mesh into a single numerical value. A
numerical measure which effectively captures mesh qualities requirements is
described in Section 2.1.

Another requirement of numerical optimisation techniques is the use of
an objective function, which is a means of combining the qualities of a group
of elements into a scalar-valued function. For example, one could express the
quality of a mesh as the sum of the qualities of every element. This objective
function would then be minimised, or maximised, depending on the choice
of quality measure, to improve the quality of the mesh. However, as previ-
ously stated, one poor element may render a problem unsolvable. A simplistic
objective function such as the one described above would be very good at
improving average element quality, but would not improve the worst element
since one poor quality element does not stand out in this case. Such an ob-
jective function may even invert some elements as one negative number may
not sufficiently influence the objective function. Therefore, it is desirable to
use an objective function that targets the quality of the worst element.

At first glance an Infinity Norm seems like an ideal objective function.
This is where the quality of a group of elements is expressed as the quality
of the worst element. In this case, any attempt to optimise the mesh will im-
prove the worst element. However, nodes are shared between elements. So if a
node is moved to increase the quality of one element, the quality of adjoining
elements may be adversely affected. As the infinity norm contains no infor-
mation about the adjoining element’s qualities, there is no way of knowing
when the element being improved is no longer the worst element in the mesh.

4 Alan Kelly, Lukasz Kaczmarczyk, and Chris Pearce

Therefore such an objective function is described as being non-smooth. A
non-smooth optimisation algorithm was developed by [8], which enabled the
improvement of the worst element in a mesh. This algorithm achieved very
high quality results and it is this algorithm which is utilised in Stellar [5]. This
approach works by calculating the search directions for the nodes of the worst
element and attempting to predict the distance each node may be moved in
this direction until the element is no longer the worst element in the mesh. As
element quality is a function of nodal positions, a first order Taylor Series of
the quality of every affected element may be used to approximate the point
at which the element being improved is no longer the worst element.

A genuinely smooth objective function which penalises the worst element
in a mesh to such an extent that the improvement process focuses on this
element should, in theory, yield better results in a shorter analysis time since
the objective function contains information about the qualities of all elements
so there is no requirement to approximate the point at which the quality of
the worst element changes. An objective function which meets the smoothness
criteria and which also adequately penalises the worst element is described in
Section 2.2.

2 Mesh Improvement Methodology

The focus of this research is to produce practical tools which can be used in
a variety of problems. These tools must be easy to use, powerful, efficient and
easy to integrate into existing codes. In the case of domains which are con-
stantly evolving, it is often necessary to perform mesh improvement during an
analysis. Therefore, algorithms which can quickly improve the worst elements
of large meshes are required. Two components are required to achieve this: the
development of a element quality modification function and the identification
of the worst elements in a mesh.

2.1 Quality Measure

Finding a suitable quality measure that provides an accurate estimate of an
element’s effects in terms of discretisation/interpolation error and stiffness
matrix condition is quite difficult and is a very active area of research in it-
self. There are many measures in existence and these may be further studied
in [1]. It was decided to use the Volume-Length quality measure as it has
been shown to be very effective at improving stiffness matrix conditioning
and interpolation errors [1],[5]. Also, since this measure is a smooth func-
tion of vertex positions, the function and its gradient are straightforward and
computationally cheap to calculate. This measure is normalised so that an
equilateral element has quality 1 and a degenerate element (zero volume) has
quality 0.

Mesh Improvement Methodology 5

q = 6
√

2
V

l3rms

(1)

where V is the volume of a tetrahedral element, lrms is the root mean square
of the element’s edge lengths and q is the element quality.

2.2 Worst Element Improvement Algorithms

The Log-Barrier Objective Function

This section describes an objective function which both satisfies the smooth-
ness criteria described in Section 1.3 and punishes the worst element in the
mesh. This is achieved by expressing the quality of every element as a func-
tion of the worst element, equation (2), and is referred to as a log-barrier
function. This equation was developed iteratively until a function which had
the required characteristics was found, i.e. one which punishes harshly the
worst element. It has been found that choosing the barrier constant term C
in the range 0.75-0.95 is most effective. The optimisation process starts with
a lower value of C and becomes more aggressive with C increasing. Smaller
values of C tend to increase average element quality as the worst elements
are not punished as harshly, whereas higher C tends to improve the quality of
the worst element. The gradient and Hessian of the quality measure are also
shown in Equations (3) and (4). Expressing the quality of a group of elements
in this manner ensure that the optimisation process is always focused on the
worst element.

I =
q2

2(1− γ)
− log(q − γ) (2)

∇I = (
q

1− γ
− 1

q − γ
)∇q (3)

∇2I = ∇q[1

1− γ
− 1

(q − γ)2
]∇q + [

q

1− γ
− 1

q − γ
]∇2q (4)

Where q is the element quality, γ the barrier which is a constant, C, times the
quality of the worst element in the mesh, qmin, ∇q the gradient of the quality
measure and ∇2q the Hessian of the quality measure.

Figure 1 shows the Log-Barrier function graphically. It can be seen that
the function value rapidly increases as the quality of the element reduces, thus
achieving our aim of punishing the worst element. Figure 1b demonstrates that
this effect is further magnified by squaring the Log-Barrier function.

The optimisation process is repeated several times for the Log-Barrier
function as the parameters change as the worst element changes. Unlike tra-
ditional mesh optimisation, which is allowed to run until it is deemed to have
converged or some other termination criteria has been achieved, Log-Barrier
optimisation performs one pass over each patch and then the worst element

6 Alan Kelly, Lukasz Kaczmarczyk, and Chris Pearce

(a) Log-Barrier (b) Log-Barrier Squared

Fig. 1: Plot of the Log-Barrier function (equilateral element has quality 1 and a
degenerate element (zero volume) has quality 0) (C=0.8)

quality is re-calculated and γ updated to reflect this. This ensures that the
optimisation process is always aggressively tackling the worst element.

The Log-Barrier function also has several other very useful features. It
comes with an invertibility guarantee - if the initial mesh is valid, that is
to say a mesh without any inverted or negative volume elements, is input, no
inverted elements will be created. If the initial mesh is invalid, the Log-Barrier
function can untangle it as the quality is always chosen to be worse than the
worst element. The form of the Log-Barrier function adopted here is different
to the form describe by [9]. The differences between both methods should be
investigated to compare their respective merits.

2.3 Comparison of Measures

Mesh optimisation was performed on the two meshes shown in Figure 2,
’P’ containing 926 elements and ’Star’ containing 34880 elements. The Log-
Barrier function combined with the Volume-Length quality measure was com-
pared with Mesquite’s Ideal Weight Inverse Mean Ratio quality measure com-
bined with an Infinity Norm objective function. The Infinity Norm was found
to be the most effective objective function in Mesquite at improving the worst
element in the mesh. Each smoothing algorithm was run until convergence,
with no restrictions on time, to measure the highest quality each smoother
could achieve. The results may be seen in Table 1.

As may be seen for both meshes, the Log-Barrier function achieved greater
improvement, albeit slight. This demonstrates that the Log-Barrier function
is as effective as the existing mesh smoothers in Mesquite. It can also be
seen in Table 1 that the mesh was also improved using Stellar as well. For the
purposes of this comparison, Stellar’s topological transformation functionality
was disabled so as to provide a meaningful comparison. In both cases, the other
two smoothers performed slightly better.

It is also important to note that Stellar can achieve significantly better
results (maximum quality of 0.714 for ’Star’ mesh) when all of its functionality

Mesh Improvement Methodology 7

’P’, Klingner [5] ’Star’

Fig. 2: Mesh used for Testing

Mesh Smoother Highest Quality

’P’ Inverse-Mean 0.47391
Log-Barrier 0.48496
Stellar 0.466157

’Star’ Inverse-Mean 0.42576
Log-Barrier 0.44392
Stellar 0.359

Table 1: Highest Quality Achievable

is enabled. However, this results in a mesh with approximately half the number
of elements as the original mesh. This demonstrates the potential improvement
that may be achieved by performing topological changes during the mesh
optimisation process, although in practice it would be necessary to restrict
the reduction in the number of elements. Although not the subject of this
paper, it is intended to add topological changes to Mesquite at a later date.

The performance of the Log-Barrier smoother in terms of mesh quality
alone is not dramatic. However, as may be seen in Figure 3, it is significantly
quicker than both other smoothers. This effect is further emphasised when it
is combined with the selective patch-improvement procedure described in the
next section.

2.4 Patch Improvement

As we are only interested in improving the worst elements in a mesh, it is
inefficient to operate on all elements. Therefore a modified form of patch-
based improvement is used. Patch improvement involves breaking the mesh
up into smaller mesh patches and improving each patch individually. Since we
only wish to operate on the worst elements, we select the patches containing
these elements and improve them. Algorithm 1 explains how this is achieved.
This method is also very effective at reducing the time taken to improve
a mesh using other, non-barrier quality measures such as the Inverse Mean

8 Alan Kelly, Lukasz Kaczmarczyk, and Chris Pearce

Fig. 3: Comparison of time versus quality achieved for the Log-Barrier function,
Inverse Mean Ratio and Stellar

Ratio. However, in this case, a different approach is necessary whereby a target
mesh quality is chosen by the user. All elements with quality worse than the
target quality are selected for improvement. It has been found that the most
efficient means of achieving this is to work towards the target quality, i.e.
perform several iterations on elements with qualities much worse than the
target and gradually work towards the target. Figure 4 shows the time taken
to improve ’Star’. It is clear how big an impact this method has when these
results are compared to the results presented in Figure 3.

Fig. 4: Comparison of time versus quality achieved for the Log-Barrier function and
Inverse Mean Ratio using patch based improvement

Mesh Improvement Methodology 9

Algorithm 1 Patch Improvement

Assess quality of every element (q) and calculate standard deviation (σ)
Identify elements whose quality is qmin + 3σ or worse.
Identify all the free nodes contained in this sub-group of elements and create mesh
patches with a layer of two elements deep around these nodes.
Loop through each patch and improve.

3 Surface Mesh Optimisation

Meshes associated with complex domains often have complex boundaries. If
the worst element of a mesh lies on a boundary, then it becomes difficult
to improve the mesh without changing the geometry of the domain. Several
methods have been developed to tackle this [3]. If the domain of the boundary
is a straight line or a planar surface there are two possible options. Mesquite
provides built in functionality which ”snaps” nodes which have been moved
from either a planar surface or a straight line back onto the correct domain.
Another means of achieving this is to project the gradients of the quality
measure onto the surface. Both of these methods are effective for surfaces
which may be mathematically defined, i.e. an equation may be derived for the
surface, but are not sufficient for more complex ones which cannot be defined
mathematically.

3.1 Surface Quadrics

Klingner [5] developed a method of using surface quadrics as part of his PhD
project and implemented this into Stellar. This method assigns an error to a
vertex which has been moved based on how far it has moved from the planes
created by the original triangular faces that adjoined it [5]. This approach is
summarised here. Let P be the set of planes created by the triangular faces
adjoining a vertex, v. The quadric error for a point f relative to v is defined
as

Qv(x) = Σδi(x)2 (5)

This means that if a vertex moves along a surface, there is no quadric error.
However, if a vertex moves perpendicular to a surface, the quadric error in-
creases rapidly. By limiting the quadric error, the amount by which a vertex
may move from a surface is limited [5]. A penalty function is used to trade the
quality of an element off against its quadric error. Klingner [5] has shown that
it is possible to achieve high quality improvement by making small changes
to the surface of a mesh.

Although using surface quadrics has been shown to be effective, this
method has the disadvantage that the geometry of the domain is being
changed. It is always desired that the domain shape be determined by the
physics of the problem and not by mesh quality requirements. Therefore, we

10 Alan Kelly, Lukasz Kaczmarczyk, and Chris Pearce

wish to develop a method whereby surface vertex movement does not change
the geometry of the domain, using only information which may be derived
from the discretised domain.

3.2 Optimising Mesh Surface Using Boundary Representation

All modern CAD systems use a Boundary Representation or B-Rep solid
model to store geometry. If this information is available, then Mesquite can
optimise surface meshes whilst restricting surface vertices to their respective
surfaces. Mesquite also contains a deforming domain class whereby the initial
mesh of the undeformed domain is used to guide the optimisation of deformed
mesh, [3]. However, there are many cases of domain deformation whereby this
information will not be available such as crack propagation and dam break
analysis to give two examples from our research group.

3.3 Generating Surface Geometry from Discretised Domain

This section discusses the development and implementation of an algorithm
which allows for the movement of nodes on a non-planar surface. This algo-
rithm does not change the underlying mesh geometry as it is based on our
hypothesis that for a given shape, the surface area to volume ratio is a con-
stant.

V

A
= C (6)

where V is the domain volume, A is the surface area of the domain and C is
a constant.
From this expression the following equation may be derived:∫

T

N−→ndT.δxi+1 =

∫
T

N−→(x0.n0)dT −
∫
T

N−→(xi.ni)dT (7)

where the domain T is the surface triangles being integrated over, N is the
matrix of element shape functions, δx is the change in nodal positions, x0 is the
nodal coordinates for the initial mesh and xi for the mesh at the ith iteration
and n0 is the unit outward normal evaluated at the element integration points.
The derivation for this equation may be found in Appendix A.

Equation (7) allows us to express the domain geometry in terms of the
discretised domain, which enables us to move surface nodes whilst maintaining
the domain geometry. Furthermore, this method conserves mesh volume due to
the underlying assumption. This is of great importance in some analysis such
as in the case of microfluids where minute changes in volume can adversely
affect the results of an analysis. This underlying equations for this method
are derived from a continuous shape, not a discretised shape, meaning that
this equation is valid for the continuous domain and not just the discretised

Mesh Improvement Methodology 11

domain. This therefore allows for the movement of surface nodes based on the
actual domain geometry and not on the discretised geometry. Furthermore,
this equation is valid for all element types and orders. The equation takes
the following form and is expressed in this case using triangles as the surface
element:

Cδx = g (8)

where
C =

∫
T
NndA

and
g =

∫
T
NxndA

C is a constraint matrix and g is a solution vector. A Newton based solver is
used to optimise the mesh. The system of equations which is being minimised
in order to optimise the nodal positions is expressed as

Sx = f (9)

where S is the Hessian matrix, x is the nodal search directions which are
required and f is the gradient vector. Using an expression developed by [10],
this system of equation may be modified as follows:

S′ = CTC +QTSQ (10)

f ′ = CT g +QT (f − SRg) (11)

R = CT (CCT)−1 (12)

Q = I − CT (CCT)−1C (13)

This modified system of equations,

S′x = f ′ (14)

is then solved using an iterative solver to calculate nodal search directions.
A line search algorithm is used to find the optimal nodal locations based on
element quality and the surface constraints.

The mesh in Figure 5 was optimised using this algorithm. The original
mesh and optimised mesh are overlain on each other so that it is possible to
see the movement of surface nodes. As is often the case with complex mesh,
many of the worst elements have all four nodes on the surface. This means
that traditional optimisation-based smoothers will not be able to improve it
due to the inability to move surface nodes. The results obtained from using
this complex mesh demonstrate how effective this is. The movement of sur-
face nodes may be seen in Figure 5b, which is an enlarged view of the neck
region of the mesh. Even though the movement of surface nodes is slight,
the quality of the worst element has improved by 15% from 0.237 to 0.273.

12 Alan Kelly, Lukasz Kaczmarczyk, and Chris Pearce

’Cow’, Klingner [5] Surface Node Movement

Fig. 5: Effectiveness of Surface Algorithm, red mesh is optimised and blue is original
mesh

This movement of surface nodes was achieved with a change in volume of
0.00017% and a change in the volume to surface ratio of 0.0014%, which is
negligible. The same mesh was optimised using Stellar with its default settings
enabled, including topology modification and surface quadrics. Stellar could
not successfully improve the mesh. The mesh optimisation routines included
in Mesquite could not improve this mesh due to all the nodes of the worst
elements being on the mesh surface. The quality improvement achieved using
such a complex mesh demonstrates just how effective the combination of the
algorithms presented in this paper are, with the movement of surface nodes
enabling the other algorithms to improve the mesh.

This method is also effective when applied to planar surfaces - however as
such surfaces may easily be defined mathematically there are much simpler
and efficient means of optimising surface nodes, as shown in Section 3.

4 Conclusions and Future Work

We have developed and implemented a very effective mesh optimisation
methodology. The combination of a log-barrier objective function, selective-
patch based improvement and surface optimisation has enabled us to optimise
mesh which previously would not have been possible, such as ’Cow’ , in Fig-
ure 5. The log-barrier objective function both improves the quality of the
mesh obtained and achieves this much quicker than other optimisation based
smoothers. The optimisation of surface nodes is completely automated and
integrated into Mesquite as are the log-barrier objective function and worst
patch selector.

The surface optimisation algorithm works very well for curved surfaces.
However, this algorithm breaks down on sharp edges. Therefore, a 2 dimen-
sional version of this algorithm must be implemented in order to enable this
method to be applied to mesh with sharp edges. This will enable nodes to move

Mesh Improvement Methodology 13

along curved lines without changing the mesh geometry. Routines which au-
tomatically detect which nodes lie on curved surfaces and which lie on curved
lines must be developed, similar to routines which we have already developed
and implemented into Mesquite which automatically classify nodes lying on
planar surfaces and straight lines. This is a step towards this project’s main
goal of automating and simplifying as much as possible the mesh improvement
process.

References

1. Jonathan Richard Shewchuk. What Is a Good Linear Finite Element? Interpo-
lation, Conditioning, Anisotropy, and Quality Measures. 2002.

2. J Donea, Antonio Huerta, J Ponthot, and A Rodr. Encyclopedia of Computa-
tional Mechanics. John Wiley & Sons, Ltd, Chichester, UK, November 2004.

3. Patrick Knupp, Lori Freitag-Diachin, and Boyd Tidwell. Mesh quality improve-
ment toolkit user’s guide. Technical report, 2012.

4. Timothy J. Tautges, Jason A. Jason A. Kratfcheck, Brandon M. Smith, and
Hong-Jun Kim. Mesh Oriented Database Version 4.0 User’s Guide, June 2011.

5. B Klingner. Tetrahedral mesh Improvement. PhD thesis, University of California
at Berkeley, November 2008.

6. Lori A Freitag and Carl Ollivier-Gooch. A Comparison of Tetrahedral Mesh
Improvement Techniques. In 5th International Meshing Roundtable, 1996.

7. Zhijian Chen, Joseph R Tristano, and Wa Kwok. Combined Laplacian and
Optimisation-Based Smoothing for Quadratic Mixed Surface Meshes. In 12th
International Meshing Roundtable, pages 360–370, 2003.

8. Lori a. Freitag, Mark Jones, and Paul Plassmann. An Efficient Parallel Algo-
rithm for Mesh Smoothing. In Proceedings of the Fourth International Meshing
Roundtable, 1995.

9. Shankar P Sastry, Suzanne M Shontz, and Stephen A Vavasis. A Log-Barrier
Method for Mesh Quality Improvement.

10. Mark Ainsworth. Essential boundary conditions and multi-point constraints in
finite element analysis. Computer Methods in Applied Mechanics and Engineer-
ing, 190(48):6323–6339, September 2001.

14 Alan Kelly, Lukasz Kaczmarczyk, and Chris Pearce

A Derivation of Surface Constraint Equation

Our hypothesis is that for a given shape, the volume to surface area ratio is
a constant. Therefore:

V

A
= C (15)

where V is the domain volume, A is the surface area of the domain and C is
a constant.

Therefore∫
V
dV = C

∫
A
dA

1
3

∫
V
div(x)dV = C

∫
A
dA

Using Green’s theorem this may be rewritten as:∫
A
n.xdA = C3

∫
A
dA

where n is unit outward pointing normal, x is the domain surface and C3

is C times 3.

localise by dropping integral

n.xdA = C3dA

n.x = C3

∀xε Surface

Multiple both sides by the element shape functions and integrate over the
surface triangle and sum for all surface triangles.∫
T
NndA.x =

∫
T
NC3dA

Expand the right hand side using a Taylor Series and truncate after the linear
term, gives the linearised version∫
T
N−→ndA.δxi+1 =

∫
T
N−→(X0.n0)dA−

∫
T
N−→(Xi.ni)dA

where 0 is the initial mesh and i is the mesh at the ith iteration.

