
Efficient moving mesh technique using
generalized swapping

F. Alauzet1

INRIA Roquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le
Chesnay, France Frederic.Alauzet@inria.fr

Summary. Three-dimensional real-life simulations are generally unsteady and in-
volve moving geometries. Industries are currently still very far from performing such
simulations on a daily basis, mainly due to the robustness of the moving mesh algo-
rithm and their extensive computational cost. The proposed approach is a way to
improve these two issues. This paper brings two new ideas. First, it demonstrates
numerically that moving three-dimensional complex geometries with large displace-
ments is feasible using only vertex displacements and mesh-connectivity changes.
This is new and presents several advantages over usual techniques for which the
number of vertices varies in time. Second, most of the CPU time spent to move the
mesh is due to the resolution of the mesh deformation algorithm to propagate the
body displacement inside the volume. Thanks to the use of advanced meshing oper-
ators to optimize the mesh, we can reduce drastically the number of such resolutions
thus impacting favorably the CPU time. The efficiency of this new methodology is
illustrated on numerous 3D problems involving large displacements.

Key words: Moving mesh, mesh deformation algorithm, dynamic mesh, topology
change, swapping, local reconnection, elasticity equation, large displacement

1 Introduction

The growing expectations of the industrial world for simulations involving moving
geometries have given a boost to this research field for the last decades. Moving mesh
simulations are now used in many research fields: ballistics, biomedical, aeronautics,
blast studies, turbo-machinery, transports, etc. These simulations, which combine
the difficulties associated with unsteadiness, mesh movement and fluid-structure
coupling, are generally hard to perform and very costly in terms of CPU time.

Three leading methodologies have been designed in the literature to handle
geometry displacements during numerical simulations: body-fitted approach [22],
Chimera method [7] and immersed/embedded boundary methods [20]. Each of them
has its own strengths and weaknesses. In this work, we consider the first class of
method where the time-evolving computational domain is treated with a body-fitted
approach, which means that the computational mesh follows time-evolving geome-
tries in their movement. In other words, dynamic bodies have to be moved inside

2 F. Alauzet

the computational mesh using a deformation algorithm. Arbitrary-Langragian-Euler
(ALE) numerical schemes are then considered to take into account vertices displace-
ment inside the flow solver.

This paper focuses on improving moving mesh techniques for real-life three-
dimensional problems involving moving geometries potentially undergoing large
displacements. Only simplicial unstructured meshes are considered mainly be-
cause several fully-automatic and robust softwares are available to generate such
meshes [12, 15, 18]. Another reason is that our final objective is to use highly
anisotropic metric-based mesh adaptation [1, 3] for moving mesh simulations.

Problematics and state-of-the-art

Unfortunately, for body-fitted simulations, the fixed-topology constraint imposed
by the classical ALE framework limits considerably the efficiency of moving mesh
techniques. If the problem induces large displacements of the geometry, the resulting
mesh distortions can adversely affect the accuracy and stability of the numerical
solution process. approach unpractical. Classical approaches generally fail to achieve
the mesh displacement leaving the engineer with no solution or untrustworthy ones.

So far, two different methods are usually adopted to handle large displacements
moving mesh simulations.

The first one consists in moving the mesh as much as possible, keeping the topol-
ogy fixed. Mesh is moved and equations are solved in a fully ALE manner until the
quality of the mesh becomes too bad. The domain is then globally re-meshed with
the current geometry configuration and the current solution is interpolated on the
newly generated mesh. The ALE computation can then resume, see for instance
[6, 14]. One asset of this method is that meshing and solver aspects are entirely
decoupled. However, the number of global re-meshings can become very large espe-
cially when elements undergo shearing. These very frequent global re-meshings can
lead to prohibitive CPU times and can even sometimes fail in three dimensions.

The second approach aims at maintaining the best possible mesh quality while
moving using several local re-meshing operations such as vertex addition, vertex col-
lapsing, connectivity changes and vertex displacements. This strategy is extremely
robust and enables to maintain a good mesh quality throughout the simulation.
However, local re-meshing using various meshing operations requires fully dynami-
cal data structures inside the solver. Besides, this approach involves a large number
of solution interpolations as they are performed on the fly after each mesh modifica-
tion. Hence, the numerical method does not fully comply with the ALE framework.
Illustrations of this method can be found in [8, 10].

Our approach

We have adopted a new approach for moving mesh simulations as compared to exist-
ing methodologies. The guideline to design our strategy is to propose an enhanced
moving mesh method which is compatible with the ALE framework and able to
handle anisotropic adapted meshes.

First, we propose to couple the mesh deformation algorithm with local mesh
optimization using only vertex smoothing and generalized swapping, see Figure 1.
This choice is due to the powerfulness of this mesh-topology-change operator which
is especially appropriate to handle shears and large deformation movements. With

Efficient moving mesh technique using generalized swapping 3

this strategy, only the number of tetrahedra and edges varies in 3D. The number of
vertices remains fixed. The moving mesh algorithm can be summarized as follows:

1. solve the mesh deformation problem
2. optimize the mesh using vertex smoothing and local reconnection
3. move all the vertices.

The mesh deformation algorithm is based on the resolution of a linear elasticity
system even if the proposed approach is compatible with other algorithms.

Second, the use of an efficient local mesh optimization process enables to main-
tain a good mesh quality throughout the geometry displacement. Therefore, it be-
comes conceivable to significantly reduce the number of requested mesh deformation
problem resolutions impacting favorably the CPU time. In this context, as the mesh
deformation algorithm is solved for a large time frame, it is of main interest to supply
mesh vertices with non-uniform velocity curved trajectories.

Under these assumptions, we numerically demonstrate that moving 3D complex
geometries with large displacements is possible using only vertex displacements and
connectivity changes. Vertex addition or deletion is not mandatory.

This paper begins with a description of the mesh deformation method based on
the linear elasticity. Next, it presents the considered mesh optimization operators.
Section 4 is dedicated to our new changing-topology moving mesh algorithm and the
modifications to enhance its efficiency. This paper ends with numerous 3D examples
which demonstrate the powerfulness of this novel approach.

2 Linear elasticity mesh deformation method

For body-fitted simulations, the whole mesh must be deformed to follow the geom-
etry movement while keeping a geometric conforming mesh. Two alternatives are
generally considered: PDE based or interpolation mesh deformation methods.

Interpolation methods consist in interpolating deformations from boundary
points to other points in space. These approaches are generally based on the ra-
dial basis function (RBF) interpolation method or variations of it [9, 17].

As regards PDE based methods, several models have been considered: Laplacian-
based method [16], spring-analogy methods [5] and linear-elasticity-based method
[4, 21, 23]. As stated in [23], and despite various attempts to improve them, spring-
analogy techniques have shown less robust than elasticity-based methods, and also
tend to deteriorate the quality of the mesh at a faster rate. Besides, linear-elasticity-
based techniques enable vertices to go round moving bodies instead of bumping into
them as compared to Laplacian-like approaches, thus playing in favor of quality.

Consequently, the linear-elasticity mesh deformation approach has been retained,
even if all deformation methods can be combined with the changing topology ap-
proach proposed in this work. The inner vertices movement is obtained by solving
an elasticity-like equation with a P1 Finite Element Method (FEM):

div(σ(E)) = 0 , with E =
∇d + T∇d

2
, (1)

where σ and E are respectively the Cauchy stress and strain tensors, and d is the La-
grangian displacement of the vertices. The Cauchy stress tensor follows the Hooke’s

4 F. Alauzet

law for isotropic homogeneous medium. So far, vertices located on domain bound-
aries cannot slip on these boundary surfaces to simplify the moving mesh algorithm.
This is more restrictive thus making the mesh displacement a harder task. There-
fore, only Dirichlet boundary conditions are used and the displacement of vertices
located on the domain boundary is strongly enforced in the linear system. The
FEM system is solved by a Conjugate Gradient algorithm coupled with an LU-SGS
pre-conditioner.

2.1 Elasticity-dedicated mesh strategy

The resolution is performed on an elasticity-dedicated mesh, which is taken to be
uniform and much coarser than the one used to solve the Euler/Navier-Stokes equa-
tions. The displacement computed on the elasticity-dedicated mesh is then interpo-
lated on the finer adapted CFD mesh [2] using a P2-Lagrangian scheme, which is
sufficiently accurate considering the intrinsic smoothness of the solution of the above
elasticity equation. This is mandatory because, as already said, we intend to couple
moving mesh simulations and anisotropic mesh adaptation. But, it would be very
hard (or impossible) to solve the FEM elasticity linear system on an anisotropic mesh
adapted for the CFD resolution due to the creation of an artificial extra-stiffness
hindering the convergence. This is also the case for viscous meshes when high aspect
ratio structured elements are used in the boundary layer region.

Furthermore, this elasticity-dedicated mesh strategy enables a significant reduc-
tion of the CPU time and memory requirement. Indeed, it reduces the size of the
elasticity linear system to be solved and it avoids to restructure the FEM elasticity
matrix each time a connectivity change is performed in the CFD mesh. Even if the
elasticity mesh must be moved and sometimes optimized along with the computa-
tional mesh, the additional cost is negligible as compared to the gain in terms of
CPU for the linear elasticity resolution.

2.2 Local material properties

Another advantage of elasticity-like methods is the opportunity they offer to adapt
the local material properties of the mesh, especially its stiffness, according to the
distortion and efforts born by each element. Following [21], the way the Jacobian of
the transformation from the reference element to the current element is accounted
for in the FEM matrix assembly is modified. Classically, the P1 FEM formulation
of the linear elasticity matrix leads to the evaluation of quantities of the form:∫

K

s
∂ϕJ
∂xk

∂ϕI
∂xl

dx = s |K| ∂ϕJ
∂xk

∂ϕI
∂xl

where s is either λ, µ or λ+ 2µ and |K| is the volume of tetrahedron K. The above
quantity is replaced by:∫

K

s

(
|K̂|
|K|

)χ
∂ϕJ
∂xk

∂ϕI
∂xl

dx = s |K|

(
|K̂|
|K|

)χ
∂ϕJ
∂xk

∂ϕI
∂xl

,

where χ > 0 is the stiffening power and K̂ is the reference element. This technique
comes to locally multiply λ and µ by a factor proportional to |K|−χ. χ determines
the degree by which smaller elements are rendered stiffer than larger ones.

Efficient moving mesh technique using generalized swapping 5

2.3 Rigidifying regions

Finally, in some situations - geometries involving tiny complex details, boundary
layer meshes, etc. - we have found useful to rigidify certain regions. This can greatly
simplify the moving mesh problem and reduces significantly the size of the elasticity
system. A first strategy consists of rigidifying a certain number of elements layers
around moving objects or a given region. Elements belonging to a rigid layer are
moved in a completely rigid manner using the angular and the translation displace-
ment of the associated body. A second strategy aims at reducing the general problem
of moving arbitrary geometries in a mesh to the much simpler problem of moving
simpler objects (spheres, boxes, convex objects) encompassing them.

3 Mesh optimization

Mesh quality tends to decrease while the mesh is moving, thus elements may be-
come inverted or highly skewed impacting negatively the stability, efficiency and
accuracy of the flow solver. Therefore, it is advantageous to perform frequent mesh
optimizations to fight against this adverse effect. For 3D adapted meshes, the quality
is measured in terms of element shapes by the following quality function [11]:

QM(K) =

√
3

216

(
6∑
i=1

`2M(ei)

) 3
2

|K|M
∈ [1, +∞] , (2)

where `M(e) and |K|M are edge length and element volume in metricM. MetricM
is a 3×3 symmetric positive definite tensor prescribing element sizes, anisotropy and
orientations to the mesh generator. QM(K) = 1 corresponds to a perfectly regular
element while a high value of QM(K) indicates a nearly degenerated element. For
non-adapted meshes, the identity matrix I3 is chosen as metric tensor.

3.1 Vertex smoothing

Vertex smoothing consists in relocating each vertex inside its ball of elements, i.e.,
the set of elements having Pi as vertex. For each tetrahedron Kj of the ball of Pi,
the face of Kj opposite to vertex Pi, denoted Fj , proposes a new optimal position:

P optj = Gj +

√
2

3
hM(nj)

nj
||nj ||

,

where Gj is the gravity center of face Fj and nj is the inward normal to Fj . hM(n)
denotes the size prescribed by metric M in direction n which is defined by:

hM(n) =
‖n‖
`M(n)

=⇒ P optj = Gj +

√
2

3

nj
`M(nj)

.

Other formulations for P optj can be proposed. The final optimal position P opti is

computed as a weighted average of all these optimal positions {P optj }Kj⊃Pi . If a
weight coefficient depending on the quality of Kj is chosen, we set:

6 F. Alauzet

P opti =

∑
Kj ∈Ball(Pi)

max (QM(Kj), Qmax) P optj∑
Kj ∈Ball(Pi)

max (QM(Kj), Qmax)
,

and Qmax is a parameter to be defined. In this way, an element of the ball is all the
more influent as its quality in the original mesh is bad. Finally, the new position is
analyzed: if it improves the worst quality of the ball, the vertex is directly moved
to its new position. Otherwise, successive relaxed positions Pnewi = Pi + αPiP

opt
i ,

with progressively decreasing values of α are checked.
Mesh smoothing helps to preserve nicely shaped elements but it is really less effi-

cient in 3D than in 2D. Moreover, it cannot solve the shearing issue. To significantly
enhance mesh optimization, topology changes are absolutely needed.

3.2 Generalized swapping

In 2D, edge swapping is a rather simple topological operation which consists in
flipping an edge shared by two triangles, see Figure 1, top left. This operation
changes neither the number of triangles nor the number of edges of the mesh.

The direct extension of the 2D swap in three dimensions is the swap of a face
shared by two tetrahedra. Let α and β be the two tetrahedra’s vertices opposite
to the common face P1P2P3. Then, the swap operator consists in suppressing this
face and creating the edge e = αβ, see Figure 1, top right. In this case, the two
original tetrahedra are deleted and three new tetrahedra are created. This swap is
called 2 → 3. The reverse operator can also be defined which consists in deleting
three tetrahedra sharing such a common edge αβ and creating two new tetrahedra
sharing face P1P2P3, see Figure 1, top right. This swap is called 3→ 2.

In fact, a generalization of this operation exists and acts on shell of tetrahedra
[11]. For an internal edge e = αβ, the shell of e is the set of tetrahedra having e

3 ! 2

3 2
(face swapping)

5 ! 6

5 possible triangulations

e e

e

↵ ↵

↵ ↵
��

��

P1

P1

P2 P2

P3

P3

P4

P5

P1

P1

P2
P2

P3

P3

P4

P5

Fig. 1. Top left, the swap operation in 2D. Top right, edge swap 3 → 2 and face
swap 2 → 3. Bottom left, the 5 possible triangulations of the pseudo-polygon for a
shell having 5 elements. Bottom right, an example of 5→ 6 edge swap. For all these
figures, shells are in black, old edges are in red and new edges in green.

Efficient moving mesh technique using generalized swapping 7

as common edge, see Figure 1, right. From a shell of size n, a non-planar pseudo-
polygon formed by n vertices P1...Pn - shown in blue in Figure 1 - can be defined.
Performing a three-dimensional swap of edge αβ comes (i) to suppress edge αβ
and all tetrahedra of the shell, (ii) then to define a triangulation of the pseudo-
polygon P1...Pn and (iii) finally to create new tetrahedra by joining each triangle
of the pseudo-polygon with vertices α and β. The number of possible triangulations
depends on n the number of vertices of the pseudo-polygon: Ntri = Cat(n − 1)

where Cat is the Catalan’s number defined by: Cat(n) = (2n−2)!
n!(n−1)!

. Figure 1 depicts

the possible triangulations for a pseudo-polygon with n = 5 (bottom left) and one
possible swap configuration (bottom right). The different edge swaps are generally
denoted n→ m where m is the number of new tetrahedra. In this work, edge swaps
3 → 2, 4 → 4, 5 → 6, 6 → 8 and 7 → 10 have been implemented. Except for the
swap 4 → 4, all the 3D swaps change the number of edges and tetrahedra of the
mesh. But, the number of vertices remains constant.

The generalized swap operator is used to improve mesh quality. The following
strategy is considered. Tetrahedra are treated in quality order from the worst to the
best one. For each element, the four face swaps and the six edge swaps are simulated,
then the best of all the configurations is selected and performed if it satisfies all the
specified criteria in terms of size and quality. A key to perform efficient swaps in the
moving mesh context is to authorize a slight quality degradation.

4 Changing-topology moving mesh algorithm

4.1 Basic algorithm

When the classical approach is considered, the changing-topology moving mesh al-
gorithm is called at each solver time step (or for few solver steps) to move the mesh
from t to t+ δt:

Algorithm 1 Basic Changing-Topology Moving Mesh Algorithm

• Mesh deformation algorithm:
1. dbody|∂Ωh

= Compute bodies vertices displacements from current bodies trans-

lation dbody and rotation θbody vectors
2. dels = Solve elasticity system

(
dbody|∂Ωh

, δt
)

• Mesh optimization:
1. Hn = Swaps optimization

(
Hn, Qswaptarget

)
2. dopt = Vertices smoothing

(
Hn, Qsmoothingtarget , Qmax

)
• Hn+1 = Move the mesh

(
Hn, δt,d = dels + dopt

)
For rigid bodies, the Newton-Euler equation for six-degree-of-freedom rigid body

motion are considered. Each body displacement is defined by a translation dbody and
a rotation θbody vectors. These vectors are obtained either as analytical user data or
as the results of a fluid-structure-interaction (FSI) problem. From these data, the
displacement of each body vertex Pi, with coordinates xi, is defined by:

dbody(xi) = dbody − ri + (ri · θu)θu + sin θ (ri × θu) + cos θ (ri − (ri · θu)θu) ,

8 F. Alauzet

where ri = gxi with g the gravity center of the body, θ = ‖θbody‖ and θu =
θbody

‖θbody‖
.

In the case of deformable bodies, the motion of each vertex on the boundary
dbody(xi) is directly obtained from the FSI problem resolution.

The displacement on bodies surfaces provided by these vectors set the boundary
conditions of the linear elasticity system. The resolution of the mesh deformation
algorithm provides a displacement vector dels(xi) for all mesh vertices.

To remain in the ALE framework, the mesh optimization - swapping and smooth-
ing - is seen like a correction of the mesh deformation algorithm. To this end, the
mesh smoothing phase does not optimize the current mesh but the future vertices
location at t + δt providing a motion correction dopt(xi) for time frame [t, t+ δt].
Therefore, the effective displacement of each vertex from t to t+ δt is given by:

d(xi) = dels(xi) + dopt(xi) and xi(t+ δt) = xi(t) + d(xi) .

These mesh modifications change the numerical approximation space thus they have
to be taken into account in the ALE numerical scheme by correcting mesh ver-
tices ALE velocities, see [19] for details. Furthermore, to be able to formulate the
changing-topology ALE numerical scheme, the following constraint on the swap op-
erator must be imposed: once a swap has been performed, all edges/faces belonging
to a new element of the cavity are set as blocked (i.e., cannot be swapped) until the
next swap optimization step. This constraint is not as restrictive as it may seem at
first glance. This is clearly emphasized in the numerical examples section. Moreover,
it has the advantage of simplifying the management of data structures.

4.2 Improving mesh deformation algorithm efficiency

Mesh deformation algorithms, here the elasticity problem, are known to be an ex-
pensive part of dynamic mesh simulations as their resolution is generally required
at each solver time step (or each few solver time step). Therefore, one way to reduce
the CPU time dedicated to this part is to reduce the number of such resolutions.

In our case, instead of solving the elasticity system at each flow solver time step
δt, its resolution is done once for a large time frame of length ∆t. There is a risk to
get a less effective mesh displacement solution but, this is a worthwhile strategy if
our methodology is able to handle such large displacement while preserving the mesh
quality. To this end, we will take the advantage of the mesh optimization methods
and we will consider accelerated velocity curved trajectories for vertices.

Accelerated velocity curved trajectory

Solving the previously described mesh deformation problem once for large time frame
could be problematic in two cases:

• curved trajectories of the boundary vertices
• accelerated bodies.

Indeed, boundary vertices trajectories may intersect inner vertices ones if they have
a constant velocity linear trajectory leading to invalid elements.

Efficient moving mesh technique using generalized swapping 9

To enhance inner vertices path, we propose to supply each vertex with an initial
speed v(t) and a constant acceleration a thus defining an accelerated curved tra-
jectory. During time frame [t, t + ∆t], the position and the velocity of a vertex are
updated as follow:

x(t+ δt) = x(t) + δtv(t) +
δt2

2
a

v(t+ δt) = v(t) + δta

Prescribing a velocity and an acceleration vector to each vertex require to solve
two elasticity systems. For both systems, the same matrix, thus pre-conditionner,
is considered. Only boundary conditions change. If inner vertices displacement is
sought for time frame [t, t + ∆t], boundary conditions are imposed by the location
of the body at time t+∆t/2 and t+∆t. These locations are computed using body
velocity and acceleration. Note that the resolution of the second linear system is
really cheaper than the first one. Indeed, with a good prediction of the expected
solution thanks to the solution of the first linear system, its cost is generally less
than 10% of the first resolution. Now, to define the trajectory of each vertex, the
velocity and acceleration are deduced from evaluated middle and final positions:

∆tv(t) = −3 x(t) + 4 x(t+∆t/2) − x(t+∆t)
∆t2

2
a = 2 x(t) − 4 x(t+∆t/2) + 2x(t+∆t)

In this context, it is mandatory to certify that the mesh motion remains valid for
the whole time frame [t, t+∆t].

Validity of the mesh throughout the whole displacement

After computing the trajectory of each vertex, mesh motion validity throughout the
displacement time frame [t, t + ∆t] has to be analyzed as an element may become
invalid in between while being valid at the beginning and at the end of its motion,
see Figure 2. The considered curved trajectory provides element volume functions of
the time that are sixth order polynomial. Let K = [P0, P1, P2, P3] be a tetrahedron,
then each vertex of K has for position in time

Pi(t+ δt) = Pi(t) + δtv(t) + 0.5 δt2 a

= (1− τ)(1− 2τ)Pi(t) + 4τ(1− τ)Pi(t+∆t/2) + τ(2τ − 1)Pi(t+∆t)

= (1− τ)2Pi,0 + 2 τ(1− τ)Pi,1 + τ2Pi,2

with τ =
δt

∆t
∈ [0, 1] and the control points of the Bezier curve are

Pi,0 = Pi(t), Pi,2 = Pi(t+∆t) and 2 Pi,1 = 4Pi(t+∆t/2)− Pi(t)− Pi(t+∆t).

Let us introduce the following notation to express the volume of K at any moment
in the time frame:

Vknm = P0,kP1,k · [P0,mP2,m ×P0,nP3,n] , with k,m, n ∈ [0, .., 2] .

The Vkmn are tetrahedron volumes defined by control points vector. In particular,
we have |K(t)| = V000 and |K(t + ∆t)| = V222. The volume of K expressed in
function of the Vknm and τ at any time is given by:

10 F. Alauzet

K(t)

K(t + �t)

K(t + �t/2)

K(t)

K(t + �t)

K(t + �t/2) < 0

Fig. 2. Left, valid accelerated curved trajectory. Right, invalid accelerated curved
trajectory while initial and final position are valid.

V(τ) = P0P1(t+ δt) ·
[
P0P2(t+ δt)× P0P3(t+ δt)

]
= (1− τ)6 V000

+ 6 (1− τ)5τ
1

6

(
2V001 + 2V010 + 2V100

)
+ 15 (1− τ)4τ2

1

15

(
V002 + V020 + V200 + 4V110 + 4V101 + 4V011

)
+ 20 (1− τ)3τ3

1

20

(
2V012 + 2V021 + 2V102 + 2V120 + 2V201 + 2V210 + 8V111

)
+ 15 (1− τ)2τ4

1

15

(
V220 + V202 + V022 + 4V112 + 4V121 + 4V211

)
+ 6 (1− τ)1τ5

1

6

(
2V221 + 2V212 + 2V122

)
+ τ6 V222 (3)

The study of the sign of this polynomial enables to check the validity of the mesh
motion when vertices have an accelerated velocity curved path. It requires the eval-
uation of 27 tetrahedra volumes.

The mesh deformation is valid if all tetrahedra have a positive volume until
the end of the displacement time frame, i.e., if Polynomial (3) is always positive.
To study its sign, we study the Bézier curve γ(τ) = (τ,V(τ)) associated with the
volume polynomial denoted V(τ). Indeed, Polynomial (3) can be rewritten:

V(τ) =

6∑
i=0

B6
i (τ)Vi or γ(τ) =

6∑
i=0

B6
i (τ) Qi

where Bni (τ) = Cni τ
i(1−τ)n−i = n!

i!(n−i)! τ
i(1−τ)n−i are the Bernstein polynomials

and Vi (resp. Qi) are the control coefficients (resp. points) of the curve. A sufficient
condition for positivity is to have, see Figure 3 (left),

V0 > 0 and ∀i = 1, 5 , Vi ≥ 0 and V6 > 0 . (4)

But, Condition (4) may be too restrictive. To refine the analysis, the well-known
refinement algorithm of De Casteljau is considered, see for instance [13], that consists
in splitting the curve γ(τ) into two curves γ1(τ) and γ2(τ), see Figure 3 (right). If
Condition (4) is not verified, the refinement algorithm for a value t (here t = 1

2
) is

Efficient moving mesh technique using generalized swapping 11

• Set V 0
i = Vi , ∀i = 0, .., 6

• For j=1,..,6
Compute V ji = (1− t)V j−1

i + tV j−1
i+1 , ∀i = 0, .., (6− j)

EndFor

• V(
1

2
) = V 6

0 , V1(τ) =

6∑
i=0

B6
i (τ)V i0 and V2(τ) =

6∑
i=0

B6
i (τ)V

(6−i)
i

Then, the resulting refinement is analyzed:

• If V(1
2
) = V 6

0 < 0 then the tetrahedron volume becomes negatives between t and
t+∆t/2. The mesh motion is not valid. The De Casteljau’s refinement algorithm
is re-applied on V1(τ) to find a ∆t/2n for which the mesh deformation is valid.

• If Condition (4) is satisfied for V1(τ) and V2(τ) then the volume is always positive
and the mesh motion is valid.

• Otherwise, none of the above conditions are verified, the validity is still unknown.
The De Casteljau’s refinement algorithm is re-applied to each curve that does
not comply with Condition (4).

Nevertheless, this sign study is not sufficient to guarantee the validity of the
mesh in any case. This is true if and only if all vertices have a trajectory with
the considered parametrization. But, vertices located on moving objects are always
moved exactly. Thus, their trajectory may not be quadratic. In consequence, we still
have to check the validity of the mesh at each moving time step, at least for elements
having one vertex on a moving boundary.

V(1)

V(0)

�(⌧)

P0

P1 P2

P3 V(1
2)

V(1)

V(0)

�(⌧)

P3

P2P1

P0

P1
0

P2
0

P3
0

P1
2

P2
1

P1
1

�1(⌧)

�2(⌧)

Fig. 3. Left, volume curve and its control point. Right, refinement of the volume
curved which is split down the middle.

Enhance moving mesh algorithm

When the proposed strategy is considered, we have now a time step for the elasticity
∆t and a time step for each move (i.e., each solver time step) δt. To control the
mesh quality through the considered time frame, mesh optimization is applied at
each move and vertices speed vopt due to mesh smoothing are seen like corrections
of vertices displacements for this step:

xi(t
n + δtn) = xi(t

n) + δtn
(
v(tn) + vopt

)
+

(δtn)2

2
a .

Elasticity time step. A maximal time step ∆tmax between two elasticity resolutions
is set at the beginning of the simulation. However, this time step can be too large
depending on geometric or body motion constraints. Therefore, the chosen ∆t is

12 F. Alauzet

adapted depending on the current situation. After each linear elasticity system res-
olution, the mesh motion is analyzed as described above. If the mesh motion is not
valid, then the elasticity time step is reduced accordingly by dichotomy until va-
lidity is achieved: ∆t = ∆tmax/2

n. Eventually, the interval between two elasticity
resolutions can be reduced when bad elements qualities are anticipated or shortened
when mesh quality degrades abruptly.

Geometric time step. A good restriction to be imposed to the mesh movement is that
vertices cannot cross too many elements on a single move. Therefore, a geometric
parameter CFLgeom is introduced to control the number of stages used to perform
the mesh displacement between t and t + ∆t. If CFLgeom is greater than one, the
mesh is authorized to cross more than one element in a single move. As each moving
step is coupled with an optimization procedure, cutting a large displacement into
several smaller displacements by reducing the geometric CFL enables to ease mesh
movement. The moving geometric time step is given by:

δtmov = CFLgeom max
Pi

h(xi)

v(xi)
,

where h(xi) is the smallest altitude of all the elements in the ball of vertex Pi. In
practice, when coupled with a flow solver, the effective time step is the minimum
between the flow solver time step and the geometric one.

Algorithm. The enhance moving mesh strategy is:

Algorithm 2 Moving Mesh Algorithm with Curved Trajectories

While (t < T end)

1.
{

dbody|∂Ωh
(t+∆t/2)

}
= Compute bodies vertices displacements from current

translation speed vbody, rotation speed θbody and acceleration a for [t, t+∆t/2]

d(t+∆t/2) = Solve elasticity system
(
dbody|∂Ωh

(t+∆t/2), ∆t/2
)

2.
{

dbody|∂Ωh
(t+∆t)

}
= Compute bodies vertices displacements from current trans-

lation speed vbody, rotation speed θbody and acceleration abody for [t, t+∆t]

d(t+∆t) = Solve elasticity system
(
dbody|∂Ωh

(t+∆t), ∆t
)

3. {v,a} = Deduce inner vertices speed and acceleration from both displacements
{d(t+∆t/2),d(t+∆t)}

4. If mesh motion is invalid then ∆t = ∆t/2n and return to 1.
Else T els = t+∆t

5. While (t < T els)
a) δt = Get moving mesh time step

(
Hk,v, CFLgeom

)
b) Hk = Swaps optimization

(
Hk, Qswaptarget

)
c) vopt = Vertices smoothing

(
Hk, Qsmoothingtarget , Qmax

)
d) Hk+1 = Move the mesh and update vertices speed

(
Hk, δt,v,vopt,a

)
e) t = t+ δt

EndWhile

EndWhile

Efficient moving mesh technique using generalized swapping 13

5 Numerical illustrations

Numerous analytical examples on academic geometries have been addressed to
demonstrate the feasibility of performing 3D moving mesh simulation while keeping
the number of vertices constant. This means that large displacements can be handled
without any remeshing using only vertices displacements and edges/faces swaps.
Here, three of them are presented: a moving rotating cube, a swirling cylinder and
two cylinders interpenetrating. Then, first applications to industrial problems are
shown. All examples have been run in serial on a 64-bits MacPro with an IntelCore2
chipsets with a clockspeed of 2.8 GHz with 32 Gb of RAM.

5.1 Academic examples

A moving rotating cube. We translate through the domain a rotating cube in a mesh
composed of 34 567 vertices and 188 847 tetrahedra. The cube movement is shown in
Figure 4. 26 elasticity systems have been solved during the movement while 25 have
been initially prescribed. A total of 325 moving steps have been done. In Table 1,
we observe that at the end of the move the quality of the mesh is excellent with an
average quality of 1.4158, 99.40% of the elements with a quality less than 2 and a
worst quality of 4.78. The worst created element during the whole movement has
a quality of 7.07. The quality is thus excellent throughout the simulation. A total
of 293 978 swaps have been performed which represent 904 swaps per moving steps.
As regards the CPU time, it took 3m05s to move the cube, 61% of the CPU time
being spent in elasticity resolutions.

Swirling cylinder. In this example, a cylinder is swirling inside a domain performing
two turns. This displacement mainly involve shear inside the mesh. It is thus very
appropriate to illustrate the efficiency of the swap topologic operation. The initial
mesh is composed of 25 135 vertices and 139 540 tetrahedra. The cylinder rotation
is depicted in Figure 5. 36 elasticity systems have been solved during the movement
as initially prescribed. A total of 388 moving steps have been done. In Table 1,
we note that at the end of the move the quality of the mesh is excellent with an
average quality of 1.4458, 97.86% of the elements with a quality less than 2 and a
worst quality of 4.81. The quality remains excellent throughout the simulation as
the worst created element during the whole movement has a quality of 7.25. A total
of 875 702 swaps have been performed which represent 2 256 swaps per moving steps.
The number of swaps per move is quite large because a shear movement occurs in
a large part of the domain. As regards the CPU time, it took 2m28s to rotate the
cylinder, 48% of the CPU time being spent in elasticity resolutions.

Interpenetrating cylinders. The last example is more challenging, two cylinders in-
terpenetrate each other and during this movement there is only one layer of elements

Case Average Qend 1 < Qend < 2 Worst Qend Worst Qall # of swaps CPU

Cube 1.4158 99.40% 4.78 7.07 293 978 3m05s

Cylinder 1.4458 97.86% 4.81 7.25 875 702 2m28s

Two cylinders 1.4645 97.74% 5.57 595 760 130 6m38

Table 1. Mesh statistics and CPU time for the three academic test cases.

14 F. Alauzet

between both cylinders, i.e. internal edges connect both cylinders. Hence, a shear
layer appears between the two cylinders. This movement is shown in Figure 6. The
initial mesh is composed of 34 567 vertices and 188 847 tetrahedra. A total of 106
elasticity systems have been solved during the movement while initially 100 reso-
lutions have been prescribed. The added elasticity resolutions are done when both
cylinders start to interpenetrate. At that moment, the worst quality elements appear
because some tetrahedra are crushed by the two cylinders displacement. A total of
398 moving steps have been done. In Table 1, we note that at the end of the move
the quality of the mesh is excellent with an average quality of 1.4645, 97.74% of
the elements with a quality less than 2 and a worst quality of 5.57. But, during
the movement bad shape elements appear, the worse of them has a quality equal
to 595. However, the optimization process is able to get rid of these elements to
finally achieve an excellent quality. A total of 760 130 swaps have been performed
which represent 1 909 swaps per moving steps. As regards the CPU time, it took
6m38s to perform the displacement, 75% of the CPU time being spent in elasticity
resolutions.

Fig. 4. Snapshots of a moving rotating cube.

Efficient moving mesh technique using generalized swapping 15

Fig. 5. Snapshots of a swirling cylinder. From left to right and from top to bottom,
the cylinder after a rotation of 0, 0.4π, 0.8π, 1.2π, 1.6π and 2π.

Fig. 6. Snapshots of two cylinders interpenetrating.

5.2 Industrial configurations

To illustrate that the presented method can be applied in an industrial context, two
realistic problems are imitated. The geometry displacement is given by an analytical
function. Be aware that there is no FSI computation for these test cases.

Ejected cabin door. The first problem is the door ejection of an over-pressurized
aircraft cabin. This is a usual industrial benchmark for aircraft designers whose aim
is to evaluate when the door hinge will yield under cabin pressure. Indeed, the trend
for new aircrafts is to lower the cabin altitude.

The difficulty is that the geometry is anisotropic and rolls over the elements while
progressing inside a uniform mesh composed of 98k vertices. The door movement
is shown in Figure 7. At the end of the move, the quality of the mesh is excellent
with an average quality of 1.2924, 99.75% of the elements with a quality lower
than 2 and a worst quality of 6.48. But, at the beginning of the movement badly
shaped elements appear when the door is ejected from its sash where the free space
is tiny, see Figure 8, left. The worse of them having a quality equal to 83. The

16 F. Alauzet

number of mesh deformation resolutions automatically adapts to the complexity of
the problem. Initially, a number of 20 elasticity resolutions has been specified but at
the end a total 50 have been resolved and 1379 moving steps have been performed.
Again, the optimization process is able to get rid of these elements to finally achieve
an excellent quality. In this example, 394 420 swaps have been done and the total
CPU time is 14m45s.

Space Shuttle ejecting its two Solid Rocket Boosters. The second example is the Space
Shuttle ejecting its two Solid Rocket Boosters (SRB) after burnout. SRBs separation
occurs just after two minutes into the flight, at an altitude close to 50 km and a
Mach number above 4. The objective of such numerical simulation is to understand
the separation dynamics of the SRBs attached to the space shuttle, notably to know
if booster separation motor plume will hit the orbiter wind-shield.

This example deals with a very complex geometry, see Figure 8, right. The
two SBRs progress inside a uniform mesh composed of 930k vertices, they have a
parabolic trajectory and they rotate at the same time. The SBRs long-time move-
ments are depicted in Figure 9. A total of 300 elasticity resolutions have been done
as initially prescribed. At the end of the simulation the quality of the mesh is excel-
lent with an average quality of 1.366, 99.92% of the elements with a quality lower
than 2 and a worst quality of 7.89. Again, the quality is excellent throughout the
simulation as the worst created element during the whole movement has a quality
of 39. For this larger mesh application, a total of 2 302 moving steps and 8 899 889

Fig. 7. Snapshots of the ejection of an aircraft cabin door.

Efficient moving mesh technique using generalized swapping 17

Fig. 8. Left, ejection door surface mesh and cut plane. Right, space shuttle geometry
and surface mesh.

swaps have been carried out to achieve the SRBs displacement. The global CPU
time is 8h.

6 Conclusion

In this paper, numerical evidence have been given to prove that 3D large displace-
ments are possible with a mesh deformation algorithm coupled with mesh opti-
mization using only swaps and vertex movements. No re-meshing are required. This
clever strategy clearly improves the robustness, efficiency and accuracy of the mov-
ing mesh method. This strategy has been successfully applied to rigid body large
displacement but also to deformable bodies.

However, several problematics have not yet been addressed. We need to define an
optimal strategy for moving geometries simulations where the volume of the domain
varies considerably, e.g. the simulation of a four-stroke engine. In that case, it seems
mandatory to add or remove vertices. Similarly to metric-based anisotropic mesh
adaptation [1, 3], a local re-meshing strategy will be employed. Other issues are the
simulations of deformable geometries with possible topology change and the efficient
treatment of contact problems.

References

1. F. Alauzet, A. Belme, and A. Dervieux. Anisotropic goal-oriented mesh adap-
tation for time dependent problems. In Proceedings of the 20th International
Meshing Roundtable, pages 99–121. Springer, 2011.

2. F. Alauzet and M. Mehrenberger. P1-conservative solution interpolation on
unstructured triangular meshes. Int. J. Numer. Meth. Engng, 84(13):1552–1588,
2010.

3. F. Alauzet and G. Olivier. Extension of metric-based anisotropic mesh adapta-
tion to time-dependent problems involving moving geometries. In 49th AIAA
Aerospace Sciences Meeting, AIAA Paper 2011-0896, Orlando, FL, USA, Jan
2011.

18 F. Alauzet

4. T.J. Baker and P. Cavallo. Dynamic adaptation for deforming tetrahedral
meshes. AIAA Journal, 19:2699–3253, 1999.

5. J. Batina. Unsteady Euler airfoil solutions using unstructured dynamic meshes.
AIAA Journal, 28(8):1381–1388, 1990.

6. J.D. Baum, H. Luo, and R. Löhner. A new ALE adaptive unstructured method-
ology for the simulation of moving bodies. In 32th AIAA Aerospace Sciences
Meeting, AIAA Paper 1994-0414, Reno, NV, USA, Jan 1994.

7. J.A. Benek, P.G. Buning, and J.L. Steger. A 3D chimera grid embedding tech-
nique. In 7th AIAA Computational Fluid Dynamics Conference, AIAA Paper
1985-1523, Cincinnati, OH, USA, Jul 1985.

8. G. Compere, J-F. Remacle, J. Jansson, and J. Hoffman. A mesh adaptation
framework for dealing with large deforming meshes. Int. J. Numer. Meth. Engng,
82(7):843–867, 2010.

9. A. de Boer, M. van der Schoot, and H. Bijl. Mesh deformation based on radial
basis function interpolation. Comput. & Struct., 85:784–795, 2007.

10. C. Dobrzynski and P.J. Frey. Anisotropic Delaunay mesh adaptation for
unsteady simulations. In Proceedings of the 17th International Meshing
Roundtable, pages 177–194. Springer, 2008.

11. P.J. Frey and P.L. George. Mesh generation. Application to finite elements.
ISTE Ltd and John Wiley & Sons, 2nd edition, 2008.

12. P.L. George. Tet meshing: construction, optimization and adaptation. In Pro-
ceedings of the 8th International Meshing Roundtable, South Lake Tao, CA,
USA, 1999.

13. P.L. George and H. Borouchaki. Construction of tetrahedral meshes of degree
two. Int. J. Numer. Meth. Engng, 90:1156–1182, 2012.

14. O. Hassan, E. J. Probert, K. Morgan, and N. P. Weatherill. Unsteady flow
simulation using unstructured meshes. Comput. Methods Appl. Mech. Engrg.,
189:1247–1275, 2000.

15. R. Löhner. Extensions and improvements of the advancing front grid generation
technique. Communications in Numerical Methods in Engineering, 12:683–702,
1996.

16. R. Löhner and C. Yang. Improved ALE mesh velocities for moving bodies.
Comm. Numer. Meth. Engnr, 12(10):599–608, 1996.

17. E. Luke, E. Collins, and E. Blades. A fast mesh deformation method using
explicit interpolation. J. Comp. Phys., 231:586–601, 2012.

18. D.L. Marcum. Unstructured grid generation using automatic point insertion
and local reconnection. Revue Européenne des Éléments Finis, 9:403–423, 2000.

19. G. Olivier and F. Alauzet. A new changing-topology ALE scheme for moving
mesh unsteady simulations. In 49th AIAA Aerospace Sciences Meeting, AIAA
Paper 2011-0474, Orlando, FL, USA, Jan 2011.

20. C.S. Peskin. Flow patterns around heart valves: a numerical method. J. Comp.
Phys., 10:252–271, 1972.

21. K. Stein, T. Tezduyar, and R. Benney. Mesh moving techniques for fluid-
structure interactions with large displacements. Jour. Appl. Mech., 70:58–63,
2003.

22. P.D. Thomas and C.K. Lombard. Geometric conservation law and its application
to flow computations on moving grids. AIAA Journal, 17(10):1030–1037, 1979.

23. Z. Yang and D.J. Mavriplis. Higher-order time integration schemes for aeroelas-
tic applications on unstructured meshes. AIAA Journal, 45(1):138–150, 2007.

Efficient moving mesh technique using generalized swapping 19

Fig. 9. Snapshots of the Space Shuttle ejecting its two SRBs after burnout.

	Efficient moving mesh technique using generalized swapping
	F. Alauzet

