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Abstract. For a given function, we consider a problem of minimizing the P; in-
terpolation error on a set of triangulations with a fixed number of triangles. The
minimization problem is reformulated as a problem of generating a mesh which is
quasi-uniform in a specially designed metric. For functions with indefinite Hessian,
we show existence of a family of metrics with highly diverse properties. The family
may include both anisotropic and isotropic metrics. A developed theory is verified
with numerical examples.

1 Introduction

Let {2, be a conformal triangulation of a computational domain {2 and Z; (u) be a
continuous piecewise linear Lagrange interpolant of a given function w. The interpo-
lation error

en =u— 71 (u)

depends on the triangulation. We consider the problem of minimizing this error on
a set of triangulations with a fixed number of triangles. Methods developed for so-
lution of this problem can be used to decrease significantly a discretization error in
various applications, including complex fluid flows [12]. A theoretical basis for this
phenomena exploits the fact that a discretization error can be bounded by the best
interpolation error [9].

In many cases, an approximate solution to this minimization problem is suffi-
cient. In [18], we have shown that there exists a sequence of meshes that provide
asymptotically optimal reduction of the interpolation error in the L°°({2)-norm.
These meshes were called quasi-optimal. The theory of quasi-optimal meshes has
been extended to the L”(§2)-norm in [2, 19] and to the W2 (§2)-norm in [2, 3]. In
this paper, we focus on the L°°({2)-norm of the interpolation error, although an ex-
tension of our main result to the L ({2)-norm is possible.
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A constructive approach to generating a quasi-optimal mesh is based on refor-
mulating the minimization problem as a problem of building a mesh which is quasi-
uniform in a metric field. The metric-based mesh generation has a long and success-
ful history (see e.g., [5, 6, 7, 10, 12, 13, 17] and references therein). Many methods
have been developed using a common sense that the mesh size should be small in
regions of a strong solution gradient. A scalar metric proportional to a norm of the
solution gradient is often called a monitor function [15]. It allows one to generate
adaptive regular meshes for problems with isotropic solution singularities. A tensor
metric derived from the Hessian of a solution is considered one of the best metrics
nowadays [18, 1, 7, 16, 17]. It allows one not only to generate an adaptive mesh but
also to stretch it in the direction where the gradient is small.

To the best of our knowledge, the first theoretical justification that a Hessian-
based metric results in an approximate solution of the minimization problem has
been done in [1, 18]. An upper and lower bounds have been derived there for func-
tions with indefinite but nonsingular Hessians. Independently, a similar upper bound
has been proved later in [8] for functions with definite Hessians. Upper bounds for
Py, interpolation errors where k£ > 1 were proved in [16].

In [18, 7, 13] and similar papers, a Hessian is recovered from a discrete solution.
Major disadvantage of this approach is that the recovered Hessian does not converge
to the continuous one on a sequence of refined meshes. An alternative technology
has been proposed in [2, 3, 4]. There, a metric is recovered from a posteriori error
estimates prescribed to mesh edges. Both approaches allows one to implement an
automatic (black-box) mesh adaptation. The primary goal of the first approach is to
minimize the interpolation error. The second one tackles the discretization error and
is potentially more beneficial in problems where the discretization and interpolation
error differ significantly.

This paper extends the theory of quasi-optimal meshes for the P; interpolation
problem. The main focus is on functions with indefinite Hessian. We show that in this
case there exists a few families of quasi-optimal meshes with highly diverse proper-
ties. The developed theory and presented numerical examples demonstrate that one
sequence may consist of isotropic meshes, while the other one includes anisotropic
meshes. Moreover, the interpolation errors differ within 1-3% in both sequences.

The paper outline is as follows. In Section 2, we developed a theory of multiple
metrics that result in quasi-optimal meshes. In Section 3, we verify the theoretical
findings with numerical examples. Concluding remarks are collected in Section 4.

2 Analysis of the P; interpolation error

To analyze the interpolation error, e, = v — Z (u), we employ a divide and conquer
approach. First, we prove error bounds for quadratic functions. Then, we extend them
to C2(2) functions.
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2.1 Bounds for quadratic functions

Let 2 C %2 be a bounded polygonal domain and with N (£2;,) triangles. Let Z; (u)
be the continuous piecewise linear Lagrange interpolant of a given function u on
mesh §2, and Z7 4 (w) be its restriction to triangle A.

Let us consider a triangle A with vertices v;, ¢ = 1,2,3, edge vectors e =
v; —v; and mid-edge points ¢, k =6 —1—7,1 <i < j < 3.Letp;, ¢ =1,2,3,be
linear functions on A associated with vertices v;, and by, = ¢;¢; be quadratic bubble
functions associated with edges e;. We define ¢, by requiring that ;(v;) = 1 and
©i(v;) =0for j # . Note that 0 < ¢; < 1and 0 < by, < 1/4 inside triangle A.

We start analysis of the interpolation error for a quadratic function uy. The
Hessian Hy of this function is constant. Since the local interpolation error es =
ug — 21, A (ug) is zero at vertices of triangle A, we obtain easily the following Taylor
formula:

3
1
ea(x) = 52 (Haey, ex) by (x).
k=1
Thus,
3
lezllze=(a) < g 2 (Hzex, ex)]. M
k=1

The Hessian H is a symmetric matrix; therefore there exists a decomposition
=+VT'DV (2)

where

D= [ Lo } , € =sgn(det(Hy)).
0 €

In the sequel, it is sufficient to assume that the Hessian is either positive definite or

indefinite; thus, we can consider only the plus sing in (2). The conclusions made for

a positive definite Hessian will hold true for a negative one. The spectral module of

Hl is defined as follows

|Hy| = VTV. A3)
If e = 1, we obtain immediately that Hy = |Hs|. Since |Hs| is positive definite,
we can define a local metric as 9o = |Hy|. This approach has been extensively

analyzed in the literature. It can be extended to general functions by approximating
them locally as quadratic functions. The resulting piecewise constant metric 27 al-
lows one to generate a quasi-optimal mesh. In this paper, we look more closely at

the case ¢ = —1 when the Hessian is indefinite. We will show that in addition to (3),
there exist other metrics that produce quasi-optimal meshes with drastically different
properties.

In the approach developed in [18, 19, 2], the maximum norm of e A is bounded
from above by geometric quantities such as the length of edges e, in metric |Hy|:

w

3 3
> |(Haer, ex)| < ([Haler,ex) =Y (V' Vey, ex). (4)
k=1 k=1
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In case ¢ = 1, the above inequality becomes identity. Here, we try to improve the
upper bound when ¢ = —1 by exploiting the fact that the decomposition Hy; =
VT DYV is not unique. This results in the constrained minimization problem with
respect to V: Find M = VI'V,, such that

3

3
|(Haer, ex) <> (VI V,ep,ep) =  inf (V' Ver,er). (5
k’z::l kz:; V:VTDV=H, kz:;

We denote by V,, the solution to this minimization problem. At this moment, we
need to introduce additional notation and prove a technical result.
Let [a | b] denote a 2 x 2 matrix with columns a,b € R? and

o-[13]

Lemma 1. Let Hy, = VI DV and Hy = VT DV. Then, there exists a nonsingular
matrix ® = [¢|¢'] such that V. = ®V. Moreover, the vector ¢ € R? satisfies

(D¢, ¢) = 1 and ¢' = Q ¢.

Proof. The two decompositions imply that V = &V and $7 D® = D, which in
turn implies that (det(®))? = 1. Thus, & is nonsingular. Moreover, (D¢, ¢) = 1,
(D¢, ¢') = € and (D¢, ¢') = 0. Direct verification shows that ¢’ = Q ¢ gives the
last two identities. This proves the assertion of the lemma. |

Immediate corollary of this lemma is that the local metric 9t o defined by (3) is
unique when H, is a positive definite matrix. Since (¢, ¢') = 0, @ is an orthogonal
matrix and s

VIV =VTV = |H,| = H,.

Theorem 1. Let A be a triangle with edges ey,. Furthermore, let Hy be an indefi-
nite matrix and Hy = VT DV be one of the decompositions. Then, solution to the
minimization problem (5) is

1 Y
_viv _ T| M
Mo =Volo=rs—a" {—A " ]V’ ©
where
3 3
p=> (Ver,Ver), A=) (RVe;, Vey), (7)
k=1 k=1
01
R— [10]

Proof. Using Lemma 1, we obtain the following representation of matrix VTV:

VIV =VT(¢| T (6] ']V = [|0|2VIV + (¢, ¢')VIRV. ®)
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Let ¢ = [¢1, ¢2]T, ¢’ = [¢a, ¢1]T. Direct calculations and Lemma 1 give
(0,0)% = (6,¢")% = ¢ + ¢ + 20765 — 49165 = (D¢, ¢)” = L.

Therefore, there exists a number z € R! such that ||¢||> = cosh(z) and (¢, ¢') =
sinh(z). Inserting this into (8), we obtain

VTV = cosh(z)VTV + sinh(z)VTRV. )

Combining estimates (1) and (5) with representation (9), we obtain a one-
dimensional minimization problem: Find z, € R! such that

2o = arg 21€n£1 (u cosh(%) + )\smh(z)), (10)

where p and X are defined by (7).
Let Vey, = [v1k, ng]T. Note that this is a non-zero vector. Then, we have

3 3 3
PN = Z ((Vek,,Vek)Jr(RVek,Vek)) = Z (vfk+v§k+2v1kv2k> = Z(vlkJrvzk)? >0
k=1 k=1 k=1

and s
L= A= Z(vlk — i) > 0.
k=1

We note that ;1 — \ ## 0 since the equality would imply that vi = vog, k = 1,2, 3,
and the vectors e, ez, e3 are collinear which is possible only for degenerate triangle.
Minimization problem (10) has the explicit solution:

W= A
nZ—2

11
20 == .
2 p+A

The number z, corresponds to the matrix V,, producing the metric

Mo = VIV, = ,ﬂl—v (uVTV — AVTRY) = ﬁw [ ” /ﬂ V.
This proves the theorem. ]
Note that the metric 2tp differs from the metric
My = |Hy| = VIV (1)
when A # 0 although
detIy = detMo. (12)

Thus, we derived two independent metrics Mo and My yielding bounds (4) and
(5), respectively. The proof of the theorem implies there exist many metrics V'V
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produced by various values of z in formula (9). Hereafter, we use generation notation
M A to indicate any of these metrics, including the special metric 9.
Combining (1) and (5), we get an upper bound on the interpolation error:

le2][ro(a) < Z lerldn,, — lekllms = (Maex,ex)’?, (13)

where ||eg||on,, is the edge length measured in the constant tensor metric MM A.

A lower bound for the interpolation error can be also expressed as a combination
of geometric quantities associated with triangle A. In [11], the following estimate
was shown
4

> -
Jmax |(Haer, er)| |A|

ool

> =
peleaCl = i, s lea ()

g

where A the image of triangle A under the coordinate transformation x = V x. Note
that

|A| = |Aldet(V) = |A|y/det(VT V) = |A|\/det(MA) = | Al

where |A| is the area of A and |A|gy, is its area in metric 9 4. Thus, we have
immediately that

lleall o (a) > \[|A|9J1A (14)

This implies that the interpolation error ||ez|z, () is controlled from above and
below by geometric quantities associated with triangle A. We proved the following
theorem.

Theorem 2. Let us be a quadratic function with a nonsingular Hessian Hy =
VTDV and ey denote its linear interpolation error on triangle A. Let ia = VT V.
Then,

\f|A|9nA < lleallpe(ay < 3 Z el - (15)
80

If det(Hs) < 0, the specific metric 9o provides the best upper bound in (15)
whereas |A|oy, is the same for any metric (9).

2.2 Illustrative example

In order to illustrate diversity of metrics generated by (8), we consider the bilinear
function us = xy with the indefinite Hessian

01
= |1y



Families of meshes minimizing P; interpolation error 7

It is shown in [11] that for a quadratic function with an indefinite Hessian, the inter-
polation achieves maximum on the boundary of triangle A:

1
llezll o (a) = 3 kI:nl%gfg (Haer, er)|-

Let us apply this result to various meshes with a characteristic mesh size h schemat-
ically shown in Fig. 1. Consider a triangle A; from the isotropic mesh, e.g. the one
with vertices vi = [0,0]T, vo = [h, h]T, and v3 = [0, h]T. The interpolation error
on this triangle is

1 1
lleall oo (a,) = [(Haes, e3)| = zhz = §|A1|-

Due to the mesh structure, the interpolation error is the same for all triangles.
Consider a triangle A, from the first anisotropic mesh, e.g the one with vertices
v1 = [0,0]%, vo = [h, 1], and v3 = [0, 1]7. The interpolation error on this triangle
is
1 1
leallze (a,) = [(Hzes, e3)] = 7h = 5[Aa.

Again, the interpolation error is the same for all triangles in this mesh. Exactly the
same interpolation error holds true for the triangles in the second anisotropic mesh,
e.g. for triangle Az with vertices vi = [0,0]7, vo = [1,0]7, and v5 = [1, h]7.

/

Fig. 1. Illustration of one isotropic and two anisotropic meshes.

Let all three meshes cover the unit square and have the same number of trian-
gles, N. Then, the interpolation error equals to 1/(2/N) in all three examples. These
three meshes represent three different families of meshes yielding the optimal (i.e.
reciprocal to N) reduction of the interpolation error. Thus these meshes belong to
three different families of quasi-optimal meshes. One family contains shape regular
meshes; while the other two contain anisotropic meshes stretched in « and y direc-
tions, respectively.

Consider the following decomposition of Hessian Ho:

_orf1o0 111
mov [ ]y v i)

Using formula (11), we obtain the isotropic metric 9ty = |Hz| = L. Only triangles
from the isotropic meshes are shape-regular in metric 91y,. However, using formulas
(6)-(7), we obtain



8 A.Agouzal , K. Lipnikov and Y. Vassilevski

Mo (A1) = {é (1)] , o Mo(Ag) = [h(_)l 2] ;o Mo(4s) = [g h(‘)l} :

Note that the triangles Ay, are shape-regular in the respective metrics Mo (Ag), k =
1,2,3.

2.3 Bounds for C?-functions

Let u be a continuous function and 75 A (w) be its quadratic Lagrange interpolant on
triangle A. In Theorem 2, we derived the geometric representation of the L°°-norm
of ez o = To, a(u) — I1,a(u). It was shown in [2] that the norm of e A provides a
good approximation for the corresponding norm of the true error ep = u — 77 A (u).
For completeness, we formulate this result in the next lemma. Let F be a space of
symmetric 2 X 2 matrices. We define the following norm:

3
2 2 2
OAN e = ;1 lewrlliz,  llexllim = max (H(x)lex, ex). (16)

Lemma 2. [2] Let u € C?(A). Then

3 1, ,
plezalli=a) < lleallz=(a) < llezalli=(a) + 7 jof 10Al_g- A7

The second term in the right inequality is the typical for a contemporary posteri-
ori error analysis. It depends on the triangle and particular features of function u. In
many cases it is essentially smaller than [|ea A || (). For instance, a quasi-optimal
mesh (2;, generated by MM = My = |Hy| is characterized by balance between
volume and perimeter of its triangles:

Alons = 045, VA€ D,

where ¢ ~ b means existence of a constant C' independent of the mesh and the
triangle such that C —1 4 < b < C a. Hereafter, C denotes a generic constant. Using
(14) and the fact that Hl, is a constant Hessian, we obtain

-1 2 -1 2
le2.allie(a) = O[04, = €19
Therefore, for a function with a nonsingular Hessian, we obtain
I I0ANE 5 ENOAN sl 19

= =o(1

le2,alleeay — 10AN3 I0AN[,,

This argument justifies usage of the quadratic Lagrange interpolant for the derivation
of the optimal metric for functions u € C?(A) with nonsingular Hessians on quasi-
optimal meshes.
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The local analysis is naturally extended to triangulations. Let 9)t be a piecewise
constant metric composed of local metrics 9t A. Let N (§25,) be the number of trian-
gles in mesh §2;,. If (2}, is a quasi-uniform mesh with respect to metric 9, then all
triangles have approximately the same area measured in this metric:

N(2,) 7 Q2o ~ |Alan, ~ |04, VA€ 2.
Thus, the following error estimates is held

—1
llell Lo (o) = Inax llel| oo (ay < Cgﬂea(;i |Alon, < C|2|on N (£2,)77,

which implies the asymptotically optimal error reduction and proves quasi-optimality
of 9M-quasi-uniform meshes.

3 Numerical experiments

Generation of a quasi-optimal mesh for a given function u is in general an iter-
ative process. First, we generate an initial mesh with a desirable number of ele-
ments and calculate a piecewise constant metric 9. Second, we generate a new
mesh which is quasi-uniform in metric 91. Also, we require that the number of tri-
angles in the new mesh is approximately the same as that in the initial mesh. To
generate a 9)1-quasi-uniform mesh, we use a sequence of local mesh modifications
described in [18] and implemented in the publicly available package Ani2D (source-
forge.net/projects/ani2d). Frequently, the initial mesh is not related to the function u
which results in a large interpolation error and a non-optimal metric 91. In this case,
the two-step adaptation process can be repeated (see Algorithm 1). A few iterations
may be required until the interpolation error is stabilized. The number of iterations
depends on smoothness of function w.

Algorithm 1 Adaptive mesh generation

1: Generate an initial mesh (25, and compute the metric 97.

2: loop

3 Generate a 9Jt-quasi-uniform mesh (2, with the prescribed number triangles.
4: Recompute the metric 1.

5 If 2}, is M-quasi-uniform, then exit the loop

6: end loop

In practice, Algorithm 1 convergences faster and results in a smoother mesh when
the metric is continuous. To define a continuous metric we use a method of shifts.
For every node v; in (2, we define the superelement o; as the union of all triangles
sharing v;. Then, 9(v;) is defined as one of the metrics in o; with the largest de-
terminant. This method always chooses the worst metric in the superelement. Once
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the metric is computed at nodes of each triangle, the metric is linearly interpolated
inside triangles.

We consider three examples of functions with indefinite Hessians. Their isolines
are presented in Fig.2. In the experiments, we study the asymptotic behavior of the
P interpolation error for two families of quasi-optimal meshes based on the local
metrics My = VIV and Mo = VIV, respectively.

Fig. 2. From left to right: Isolines of functions u(l), u(2), and u®.

Let {2 be the unit square in all examples. The first function is the canonical hy-
perbolic function,
u(l)(xvy) = ((E - 05)2 - (y - 0‘5)2a

with the constant indefinite Hessian Hy = diag{2, —2}. Isolines of this function
are shown on the left picture in Fig. 2. Fig. 3 shows first two meshes in two se-
quences of quasi-optimal meshes with approximately 4000 and 8000 triangles. The
meshes in the top row are quasi-uniform in metric 9t generated by local metrics
Mo. The meshes in the bottom row are quasi-uniform in metric 9t generated by lo-
cal metrics 91y,. Obviously that both sequences are different, one contains strongly
anisotropic meshes stretched along bisectors of four quadrants, while the other one
contains isotropic meshes. The data in Table 1 also confirm that. The second and the
fifth columns in this table show maximal ratio of the circumscribed radius R to the
inscribed radius r across all triangles in the mesh. The interpolation errors are pro-
portional to N (§2;,)~! which is the optimal error reduction. Thus, both sequences
contain quasi-optimal meshes. Moreover, the errors in two sequences differ by 1-3%
only.
The second function is

u® (z,y) = (z + sin(rx))? — (y + sin(7z))?.

Isolines of this function are shown on the middle picture in Fig. 2. The Hessian of
this function is indefinite almost everywhere in the computational domain except for
a parabola-shaped region around point (0.6,0.4). This region can be identified on
the top-right picture in Fig. 4 as the region where the mesh is isotropic. Each row in
this figure shows two meshes with approximately 4000 and 8000 triangles. The top
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Fig. 3. Example 1. Quasi-optimal meshes with approximately 4000 (left column) and 8000
(right column) triangles. The top and bottom rows correspond to two different families of
meshes.

mA = mo mA == fmv

N(£2,) R/r |lenllLoe ()| N(2n) R/r llenll=(o)
4073 834.2 7.974e-05 | 3930 15.1 8.195¢-05
8267 768.1 4.054e-05 | 7885 24.6 4.064e-05
16589 1121. 2.047e-05 | 15813 18.7 2.040e-05
33118 2259. 1.053e-05 | 31786 27.9 1.018e-05
66557 4794. 5.233e-06 | 63373 46.2 5.126e-06

rate 0.991 0.936

Table 1. Example 1. Interpolation error on two families of quasi-optimal meshes.

and bottom rows correspond to local metrics 9o and My, respectively. Clearly, the
metric (6) results in more stretched meshes.

The interpolation errors presented in Table 2 verify that both metrics result in
quasi-optimal meshes. The error decrease is again proportional to N (§2;)71, i.e.
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both sequences contain quasi-optimal meshes. The values of the maximal anisotropy

ratio, R/r, confirm visual impression that one sequence of meshes is much more
stretched than the other. Thus, for this example, there exist at least two different

families of quasi-optimal meshes. There is no conclus

of meshes gives a consistently smaller error.
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Ma = Mo Ma =My

N(£2n) R/r |lenlloee )| N(2n) R/r llenll=(2)
4070 2489. 9.523e-04 | 3934 62.0 8.818e-04
8097 1492. 5.393e-04 | 7839 82.6 3.977e-04
16269 937.1 2.281e-04 | 15761 203. 2.376e-04
32881 2704. 1.209e-04 | 31478 190. 1.374e-04
65147 4142. 6.427e-05 | 63031 239. 5.837e-05

rate 0.991 0.936

Table 2. Example 2. Interpolation error on two families of quasi-optimal meshes.

The interpolation errors presented in Table 3 verify that both metrics result in
quasi-optimal meshes. The errors are again proportional to N (£2;,)~! which is the
optimal error reduction. As in the first example, they are within 1-3% of one an-
other which indicates that neither of the sequences is preferable for minimizing the
interpolation error.

Ma = Mo Ma =My
N(£2,) R/r |lenllLoe )| N(£2n) R/r llenll=(2)
4003 380.1 2.643e-03 | 3946 19.0 2.562e-03
8087 353.2 1.285e-03 | 7872 12.8 1.295e-03
16069 652.0 6.502e-04 | 15776 10.9 6.457e-04
32206 955.7 3.283e-04 | 31579 11.8 3.254e-04
64478 5291. 1.647e-04 | 62970 26.3 1.620e-04
rate 0.996 0.996

Table 3. Example 3. Interpolation error on two families of quasi-optimal meshes.

4 Conclusion

We extended a theory of optimal meshes that minimize the P; interpolation error for
a given function u. We have shown that the exist families of quasi-optimal meshes
giving approximately the same interpolation error for a fixed number of triangles.
At the same time, the properties of this meshes may vary significantly, one mesh
can be isotropic, while the other one is anisotropic. These quasi-optimal meshes are
generated using different metric fields. Formally, one of the metrics can be referred
to as optimal since it provides the sharpest bound for the local interpolation error.

The existing metric-based mesh generation technology can produce any of the
available families of quasi-optimal meshes. The result depends on selection of an ini-
tial mesh for the adaptive iterations. In the future, we shall analyze this phenomenon
in more details.
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Fig. 5. Example 3. Quasi-optimal meshes with approximately 4000 (left column) and 8000
(right column) triangles. The top and bottom rows correspond to two different families of
meshes.
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