
Sharp Feature Preservation in Octree-Based
Hexahedral Mesh Generation for CAD
Assembly Models

Jin Qian and Yongjie Zhang∗

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh,
PA 15213, USA

Summary. This paper describes an automatic and robust approach to convert 3D
CAD assembly models into unstructured hexahedral meshes that are conformal to
the given B-Reps (boundary-representations) with sharp feature preservation. In
previous works, we developed an octree-based isocontouring method to construct
unstructured hexahedral meshes for manifold and non-manifold domains. However,
sharp feature preservation still remains a challenge. In the current algorithm, bound-
ary features such as sharp curves and NURBS (non-uniform rational B-Splines)
surface patches are first extracted from the given B-Reps. An octree-based isocon-
touring algorithm is then carried out to create unstructured hexahedral meshes,
detecting and preserving all the sharp features. After this stage, a two-step pillow-
ing technique is adopted to eliminate triangle-shaped quadrilateral elements along
the sharp curves and “doublets”. To further improve the mesh quality, a combi-
nation of smoothing and optimization is used. The developed algorithm is robust,
and it works for single-component manifold domain, as well as multiple component
non-manifold domains. We have applied our algorithm to several complicated CAD
models and assemblies. Valid meshes are generated and quality statistics are given.

Key words: Hexahedral Mesh, Sharp Feature, Pillowing, Quality Improvement,
CAD Assembly, Manifold and Non-Manifold Domain

1 Introduction

Mesh generation for arbitrary 3D CAD models has played an important role in engi-
neering numerical simulations. These complicated 3D domains like single-component
CAD models or multiple-component assemblies (Fig. 1) need to be discretized into
simple tetrahedra or hexahedra , while hexahedral (hex) meshes are more preferred.
The 3D CAD models contain sharp features consisting of sharp curves and surface
patches. Extracted from B-Reps (boundary-representations), these features need to
be incorporated into hex mesh generation so that the meshes conform to the given

∗Corresponding author. Tel: (412) 268-5332; Fax: (412) 268-3348; Email:
jessicaz@andrew.cmu.edu (Y. Zhang).

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo
kgruda
Rectangle



2 Jin Qian and Yongjie Zhang

Fig. 1. The resulting hex mesh of a four-component gear assembly. (a) The assem-
bly; (b-c) Zoom-in details of two corners; and (d-f) Three single components.

CAD model. Traditional methods such as sweeping [4], plastering [18] and whisker
weaving [2] attain some success, while fully automatic unstructured hex mesh gen-
eration with sharp feature preservation still remains a challenging problem. Among
the recent advances, some grid methods prove to be robust and effective. The octree-
based isocontouring method analyzes each interior grid, and generates a dual mesh
of the grids [21, 22, 23]; The feature embedding method finds an embedding of the
geometric topology into a base mesh and then maps the base mesh to the given geom-
etry [9, 16, 6]. While these methods provide important insights in single-component
domain meshing, mesh generation for domains with multiple components is still a
challenge.

In this paper, we develop an automatic and robust method to generate conformal
hex meshes with sharp feature preservation for single-component models, as well as
multiple-component assemblies. The CAD model is first discretized into a triangle
mesh, and then a binary grid data is calculated by distinguishing interior and exte-
rior regions. For domains with multiple components, instead of using a binary data
we attach a component index to each grid point. From this data, we use an octree-
based isocontouring algorithm to construct all-hex meshes [21, 22, 23]. Based on the
generated mesh, sharp features are detected and preserved. Critical points are iden-
tified first, considering the curve topology in the given B-Reps. Starting from one
ending of each sharp curve, we track the complete path of the curve until the other
ending is reached. Then we analyze each boundary quadrilateral (quad) element



Sharp Feature Preservation of CAD Assemblies 3

and decide which NURBS surface patch it belongs to. Having already detected all
the boundary features, we classify all the vertices into four groups: critical points,
curve vertices, surface vertices and interior vertices, and relocate them to appro-
priate positions via smoothing. The smoothing process is combined with a feature
parametrization so that the features are preserved during vertex relocation. Then
the mesh conforms to the B-Reps, however, there are triangle-shaped quads along
the sharp curves and “doublets”. To eliminate them, a two-step pillowing technique
is developed. Since the mesh still contains a few elements with bad aspect ratios, a
modified Laplace smoothing and Jacobian optimization are used to further improve
the mesh quality.

We have applied our algorithms to several complicated CAD models including
two manifold domains with one single component and two non-manifold assemblies
with multiple components. The generated meshes are all valid, and the mesh quality
statistics are given.

The remainder of this paper is organized as follows: Section 2 summarizes re-
lated previous work. Section 3 describes the overview of our algorithms. Section 4
talks about sharp feature detection and preservation. Section 5 explains the detailed
pillowing algorithm. Section 6 talks about quality improvement based on the con-
structed mesh. Section 7 presents the results and discussion. Finally, Section 8 draws
conclusions and outlines future work.

2 Previous Work

Unstructured Hex Mesh Generation: Generally there are two kinds of un-
structured all-hex meshing methods: indirect and direct [8]. The indirect methods
generate a tetrahedral (tet) mesh first and then convert it into a hex mesh. Com-
pared to indirect methods, the direct method generates hex elements directly. It
includes five distinct methods: grid-based, medial axis, plastering, whisker weaving
and iso-surface extraction. The grid-based method generates a fitted 3D grid of hexes
in the volume, and then adds hex elements at the boundaries to fill gaps [13, 14, 15].
The medial axis algorithms decompose the volume into simpler primitives that can
be meshed using a structured algorithm [10, 11]. The plastering algorithm starts
with a quad boundary mesh and places hexes onto the quads using the advancing
front methods [1, 18]. The whisker weaving method first constructs the dual of a
hex mesh then fits the hex elements into the volume [20]. The isosurface extraction
method extracts the boundary surface and constructs uniform and adaptive hex
meshes from volumetric imaging data [22, 21]. Furthermore, this method has been
extended to meshing domains with multiple materials [23, 12].

Pillowing: Pillowing is a sheet insertion method that refines the mesh boundary.
This method eliminates the situations where two neighboring hexes share two faces,
called a “doublet” [7]. The doublet needs to be eliminated because the dihedral angle
between these two faces are usually large and it becomes impossible to obtain all
positive Jacobians. The pillowing method inserts a new layer of elements over the
selected region called “shrink set”, and splits the doublet hexahedron into several. It
looks as if the selected quads are inflated to become a new hex. This method is not
only useful in removing doublets but also proves to be one powerful tool to insert
element layers in existing meshes [16, 17, 19].



4 Jin Qian and Yongjie Zhang

Incorporating Sharp Features: The plastering [1], whisker weaving [20, 2]
and unconstrained plastering [18] algorithms begin with a well-defined boundary and
then progressively propagate inside. Advancing front algorithms are implemented to
fill the interior void. Differently, the grid-overlay and octree methods begin with a
base mesh and then embed the geometric features into the base mesh. After building
the base mesh, vertices are mapped to their appropriate positions according to
boundary features. In the octree methods the geometric features are captured using
a template-based refinement [14, 3, 21]. The octree-based isocontouring method
detects and preserves features during mesh generation, which is especially suitable
in meshing volumetric datasets [21, 22, 23]. These methods are effective mostly
for biological models where sharp features are not dominant. For models involving
critical sharp features, features can be embedded into a non-conforming base mesh
and then be preserved through feature embedding [16, 9, 6].

The above mesh generation and feature preservation methods were mainly de-
signed for manifold single-component domains. In this paper, we will talk about an
automatic and robust approach for hex mesh generation with sharp feature preser-
vation for both single-component CAD models and multiple-component assemblies.

3 Overview

Fig. 2 shows the pipeline of our hex mesh generation algorithm with sharp fea-
ture preservation. First we extract NURBS curves and surfaces from the given
CAD model, and triangulate the model using NURBS sampling. Then a binary
grid data is created to distinguish the interior and exterior regions for each com-
ponent. For domains with multiple components, the binary sign for each grid point
is replaced by a component index. Based on the constructed grid data, we use an
octree-based method to construct hex meshes [21, 22, 23]. One minimizer point is
calculated for each cell to minimize a predefined Quadratic Error Function (QEF):
QEF (x) =

∑
(ni · (x − pi))

2, where pi and ni are the position and normal vec-
tors at the intersection points. We analyze each interior grid point for all-hex mesh
generation. In this octree data structure, each grid point is shared by eight cells,
and we use the calculated eight minimizers to construct a hexahedron. Sharp curves
and surface patches are detected and mesh vertices are classified into four groups:
critical points, curve vertices, surface vertices and interior vertices. If the domain
consists of multiple components, the common curves and patches shared by multiple
components need to be identified as well. Then we relocate each group of vertices
to appropriate positions while preserving all the sharp features. Due to the triangle-
shaped boundary quads along the sharp curves and “doublet” elements, each surface
patch is pillowed individually first, and then the whole boundary is pillowed. Till
now the mesh still has some elements with bad aspect ratios, therefore a modified
Laplace smoothing and Jacobian optimization are used to make the final mesh valid.

In the following, we will talk about sharp feature detection and preservation, a
two-step pillowing technique, as well as quality improvement in detail.



Sharp Feature Preservation of CAD Assemblies 5

Fig. 2. Meshing pipeline. The modules in orange are critical steps involving sharp
feature detection and preservation.

4 Sharp Feature Detection and Preservation

Starting from the constructed binary data, we first use the octree-based isocontour-
ing method to generate a base mesh, and then detect sharp features and embed
them into the base mesh. Two kinds of features are preserved: sharp curves and
surface patches. For multiple-component assemblies, the boundary features may be
shared by two or more components. To preserve features, we find the appropriate
position of each boundary vertex according to the given B-Reps.

4.1 Sharp Curve Detection

We begin from detecting the endings of each curve and then track the mesh edges to
locate the complete curve trajectory. If the two endings of one single curve happen
to be the same vertex, this is a closed curve, like a circle. Starting from one ending
of the curve, we track its neighboring boundary edges to find the next curve point.
To decide which vertex should be chosen, two criteria are considered: how small the
distance from the vertex to the curve and how far the vertex “advances” along the
curve. Generally the vertex closest to the curve is chosen as the next curve point.
However, with a similar distance, the vertex having a greater “advance” is selected.
In Fig.3, V0 is one ending point of the red curve, V1 has the minimum distance from



6 Jin Qian and Yongjie Zhang

the curve, but V2 has greater “advance” along the curve. In this case, V2 is selected
as the next curve point. We keep tracking the boundary edges until the other ending
point is reached, and these continuous edges form a complete mesh curve.

Fig. 3. V2 is chosen as the next curve vertex due to its greater advance along the
curve. The distances from V1, V2 to the curve are similar.

To preserve the correct curve topology, we restrict any two curves can not share
any edge segments. There are two special cases violating this restriction. We can
change either the non-manifold point or the curve paths to overcome this problem.
When three curves share one ending point in the B-Reps topology, it is possible to
form the red curves in the constructed hex mesh as shown in Fig. 4(a). Here V0 is
the detected non-manifold point, Curve 1 contains V0 − V1 − V2, Curve 2 contains
V0 − V1 − V3, and Curve 3 contains V0 − V4. Curve 1 and Curve 2 share one edge
V0 − V1. To preserve the correct topology, V1 is set as the new non-manifold point.
Now Curve 1 becomes V1 − V2, Curve 2 becomes V1 − V3, and Curve 3 becomes
V1 − V0 − V4, as shown in Fig. 4(b). When four or more curves share one ending
point, we may have another special case as shown in Fig. 4(c). Here V0 is the detected
non-manifold point, Curve 1 contains V0 − V1 − V2, Curve 2 contains V0 − V1 − V3,
Curve 3 contains V0 −V4, and Curve 4 contains V0 −V5. Curve 1 and Curve 2 share
the common edge V0−V1. In this situation, we can not choose V1 as the non-manifold
point as what we did for the first special case, because if we do that Curve 3 and
Curve 4 will share the edge V0−V1. Therefore, we still choose V0 as the non-manifold
point, but we change the path of Curve 2. In this way as shown in Fig. 4(d), Curve
2 becomes V0 − V6 − V3, while Curves 1, 3 and 4 stay the same. After handling
these two special cases, the complete path of each sharp curve is identified with the
correct topology.

(a) (b) (c) (d)

Fig. 4. Correct curve topology preservation. Red lines are curve segments, and red
dots are non-manifold points. Different colors represent various surface patches.



Sharp Feature Preservation of CAD Assemblies 7

4.2 Surface Patch Detection

In addition to sharp curves, we need to preserve NURBS surface patches as well.
Similarly, we need to find out the set of quads corresponding to each NURBS patch.
To obtain these sets, we check each boundary quad to see which patch it belongs
to. The four vertices of each quad are compared with the triangle mesh generated
from the NURBS patch. In order to save the computation time, we set a small
visual box around the targeting quad, and only check the quad vertices in that box.
We check which triangle the vertex is closest to, and then decide which patch it
belongs to. Note that vertices on sharp curves are shared by multiple patches and
thus should not be counted. If all the vertices (except the ones on the curve) of one
quad belong to one patch, then this quad belongs to that patch. When the four
vertices of one quad all lie on sharp curves, we use the quad geometric center to
decide which surface patch it belongs to. Following these guidelines we can find the
set of quads belonging to each surface patch. These sets can also be identified using
a propagation algorithm. From the B-Reps we know all the curves surrounding each
patch. Beginning from the quads along these curve vertices we propagate to other
elements until the whole set of quads are found.

Sometimes the surface patches need to be modified. For example in Fig. 5, the
assembly consists of two components: an inner cylinder and an outer ring. The
cylinder has a big pink patch. However, the shared surface is only part of it. Therefore
the pink surface patch needs to be split into three smaller ones (green, pink and blue)
to match the two components.

(a) (b) (c) (d)

Fig. 5. One CAD assembly with an inner cylinder and an outer ring. (a) The
two-component assembly; (b) The inner cylinder; (c) The outer ring; and (d) The
modified cylinder patch. The pink surface in (b) is divided into three.

4.3 Sharp Feature Parametrization and Preservation

Having detected all the vertices on sharp curves and surface patches, we classify
them into four categories: critical points, curve vertices, surface vertices and interior
vertices. In order to preserve all the sharp features, we relocate each vertex to
its appropriate location via smoothing. Critical points are fixed. Curve and surface
vertices are smoothed and projected to the given NURBS curves and surface patches.
Finally, the interior vertices are smoothed to their volume center via a weighted-
averaging method.



8 Jin Qian and Yongjie Zhang

The critical points are defined as the points where multiple curves meet. Note
that open curves are always split if they meet with other curves in the middle, while
close curves are not. Therefore all the ending points of open curves are critical points.
Following this rule the critical points can be among the following three situations:
the shared ending of two open curves (Fig. 6(a)), the intersection of one open curve
and one closed curve (Fig. 6(b)), or the joint point of three or more curves (Fig.
6(c)). All critical points are fixed during smoothing.

(a) (b) (c)

Fig. 6. Critical points (the red points). (a) The shared ending point of two open
curves; (b) The intersection of one open curve and one closed curve; and (c) The
joint point of three curves.

For other curve vertices, they are “interior” in the curve compared to the crit-
ical points. During smoothing, we need to calculate a new position for each curve
vertex. Here, we first find its two neighboring vertices on the curve, calculate their
middle point, and then project the middle point to the curve via a NURBS curve
parametrization. The NURBS curve in the given B-Reps is represented as:

C(u) =

n∑
i=0

ωiPiNi,d(u)

n∑
i=0

ωiNi,d(u)

, (1)

where Pi are the control points, ωi are the weights, Ni,d(u) are B-spline basis func-
tions of degree d, and u is the parameter ranging from 0 and 1. In order to find
the projection of one curve vertex on the NURBS curve, we need to first find its
parameter u on the NURBS curve, and then compute its exact position according
to Equation (1). The NURBS curve is first discretized into a series of line segments
using equally-spaced parameters u, and then we find the segment closest to the tar-
geting curve vertex. Based on the u values of the two ending points of that segment,
we compute the parameter u value for the targeting vertex using a linear interpo-
lation. Then Equation (1) is used to compute its exact position. Finally the curve
vertex is moved toward this position iteratively during smoothing.

The new position for one surface vertex is calculated as follows: we find the
area center of its neighboring boundary quads, and project the area center to the
detected NURBS surface patch via a NURBS surface parametrization. The NURBS
patch can be represented as:



Sharp Feature Preservation of CAD Assemblies 9

S(u, v) =

n∑
i=0

m∑
j=0

ωijPijNi,d(u)Nj,d(v)

n∑
i=0

m∑
j=0

ωijNi,d(u)Nj,d(v)

, (2)

where Pij are the control points, ωij are the weights, and Ni,d(u), Nj,d(v) are B-
spline basis functions of degree d, and (u, v) are the parameters ranging from 0 to
1. To find the projection of one mesh vertex on the NURBS patch, we discretize
the NURBS patch into triangles, compute the vertex parameter values (u, v) using
a barycentric interpolation, and obtain the exact position using Equation (2).

In concave corners, the smoothing algorithm may produce bad aspect ratios. As
shown in Fig. 7(a), the quads tend to have large angles, therefore we project them to
the corner angular bisector like Fig. 7(b). In addition, some other vertices tend to be
very close to the concave corners, see Fig. 7(c), therefore we move them away from
the concave corner as in Fig. 7(d). After smoothing and feature parametrization,
the mesh is smoothed and all the sharp features are preserved. Fig. 8 shows one
example.

(a) (b) (c) (d)

Fig. 7. Mesh correction near concave corners. (a-b) Nearby quads have large angles,
therefore some vertices are projected to the corner angular bisector; and (c-d) Nearby
vertices are very close to the corner, therefore they are moved to the middle points
of the corner and themselves.

5 Pillowing to Create Boundary Layers

After sharp feature preservation, the constructed hex mesh conforms to the given
CAD model. However, some boundary quads may have two edges lying on the same
curve, which leads to triangle-shaped quads along the curves. In addition, some
hex elements may have two or three faces lying on the same surface patch, which
leads to big dihedral angels. These two situations decrease the mesh quality and
make it impossible to obtain all positive Jacobians via smoothing and optimization.
On the contrary, the desired meshes should have two attributes [16, 23]: each hex
element has at most one quad on the boundary, and each boundary quad has at most
one edge on the sharp curves. To make the mesh fundamental, we use a two-step
pillowing technique to improve the mesh: (1) pillow each individual surface patch,
and (2) pillow the overall boundary surface.



10 Jin Qian and Yongjie Zhang

(a) (b)

Fig. 8. One sharp curve before (a) and after (b) NURBS curve tracking, smooth-
ing and projection for hook2 model. The boundary surface is also smoothed and
projected to the given NURBS surface patches.

5.1 Manifold Domain with Single Component

For single-component domains, the first pillowing step eliminates the triangle-shaped
boundary quads along sharp curves. As shown in Fig. 9(a-c), the shrink set is defined
as the set of quads corresponding to each surface patch. These sets of quads are
already identified in the previous steps. Then we duplicate the nodes of each quad
belonging to the shrink set, and connect them to the original nodes to form a new
layer of hexes. In this procedure, these quads seem to be inflated to form new hex
elements. Finally we project these new vertices to the original surface patch. In
this case, the original mesh boundary remains unchanged, however, the inserted hex
layer now becomes “flat”. This creates elements with multiple faces on the same
boundary patch, therefore another layer insertion is necessary. The second pillowing
step eliminates the hex elements with multiple quads on the same surface patch. We
choose the whole boundary as the shrink set, and then duplicate all the boundary
vertices at the original positions. Finally we connect the new vertices to the original
ones. Since we keep the new vertices at the original positions while move the old
vertices inside, the original mesh boundaries are kept. The effect of these two layer
insertions are shown in Fig. 9(d-f). The yellow elements are the original ones, the
blue ones are the first pillowed layer and the pink ones are the second pillowed layer.

From Fig. 9(f), we can observe that the corner angle is divided into two. If the
corner angle is small, the divided angles are smaller and thus decrease the mesh
quality. Therefore, we choose not to pillow these small angles to attain better mesh
quality. This can be done by modifying the shrink set in the first pillowing step,
as shown in Fig. 10. When we define the shrink set, if one quad contains a small
angle formed by two sharp curves, the quad is excluded from the shrink set. In this
manner, that quad is not pillowed, and the small sharp angle is preserved as shown
in (d-f). Note that if all the four vertices of a quad are on the curves, see the sharp



Sharp Feature Preservation of CAD Assemblies 11

(a)

(b)

(c) (d) (e) (f)

Fig. 9. two-step pillowing. (a-c): Inserting one boundary layer for the top surface.
The shrink set (yellow) is defined in (a), pillowed in (b) and projected to the top
surface patch in (c). (d-f): Inserting two boundary layers. (d) and (e) are the original
mesh, and (f) is the resulting mesh. In (f), the yellow elements are the original mesh,
the blue and pink ones are the first and second pillowed layers, respectively.

corner in (g-i), we cannot exclude that quad and the sharp angle has to be split.
Otherwise, the triangle-shaped quad cannot be removed.

Fig. 10. Small sharp angle preservation. (a): A meshing result before pillowing; (b):
Each surface patch is pillowed and all the sharp angles are split; (c): Sharp angles
in (d-f) are preserved by modifying the shrink set, while the sharp angle in (g-i) has
to be split because all the four vertices of that quad are on the sharp curves; (d-i):
Zoom-in details of two corners.

After two boundary layers are inserted, each boundary quad has at most one
edge on the sharp curves while each hex element has at most one quad on the
boundary. Fig. 11 shows the pillowing result of the multiaxis model.



12 Jin Qian and Yongjie Zhang

Fig. 11. Meshing results before (a) and after (b) inserting two boundary layers. (c)
and (d) show the details.

5.2 Non-Manifold Domain with Multiple Components

For domains with multiple components, patch matching is essential especially for
patches shared by multiple components, here we use different matching strategies
for the first and second pillowing steps.

In multiple-component models there are two kinds of surface patches: patches
contained in one component and the common patches shared by two components.
During the first pillowing step, we first mark the sets of common patches. Then we
pillow the faces that belong to only one component in the same way as the single-
component domain, and one layer of elements are inserted at one time. Whenever
we come across a common patch, two instead of one hex layers are inserted. If the
original nodes on the common patch is Set A (yellow in Fig. 12(a)), we duplicate
two different layers, Sets B (blue) and C (green). Then, we connect Sets A and B,
A and C to form two hex layers. Note that Sets B and C have the same vertices on
the red boundary curve, so all the curves are automatically conformal to each other.
Finally Set A is projected to B and C.

For the second pillowing step, patch matching is rather straight-forward. Like
what we did for one single component, when pillowing one surface we shrink the
original nodes inside while keep the new nodes at the boundary. Therefore, the nodes
in other components connecting to the original boundary should be connected to the
new boundary. Therefore, the resulting meshes automatically match at the common
patch shared by multiple components.

Fig. 13 shows an evolution of the two-cylinder assembly. After inserting two
pillowed layers, the resulting meshes for the two components automatically match
with each other. Fig. 14 shows meshes of the cylinder-ring assembly in Fig. 5. Note
that in (b), the mesh is denser around the top and bottom of the cylinder. This
is because the cylinder face is divided into three small patches as discussed earlier,
and all these three patches are pillowed separately resulting in denser meshes over
there.



Sharp Feature Preservation of CAD Assemblies 13

(a) (b) (c)

Fig. 12. The first pillowing step for a common patch. (a) The original two compo-
nents share one common patch A; (b) Sets B and C are created, then Sets A and
B, A and C are connected; and (c) A is projected to B and C.

(a) (b) (c) (d) (e)

Fig. 13. (a-b): A two-cylinder assembly and the resulting mesh; and (c-e): one cross
section of the original mesh, the mesh with the first pillowed layer, and the mesh
with two pillowed layers, respectively.

(a) (b) (c) (d)

Fig. 14. The resulting meshes of a cylinder-ring assembly. (a) The assembly; (b)
The inner cylinder; (c) The outer ring; and (d) One cross section of the assembly.

6 Quality Improvement

After preserving sharp features and inserting two boundary layers, the resulting
hex mesh conforms to the B-Reps and is free of triangle-shaped quads or doublets.
However, the mesh may still have bad aspect ratios along the boundary and neg-
ative Jacobians may exist. Therefore a modified Laplace smoothing is carried out
to improve the overall quality followed by a Jacobian optimization. We use the



14 Jin Qian and Yongjie Zhang

same smoothing techniques as developed in Section 4.3 except that the Jacobian
is integrated to decide the movement for each interior vertex. The interior vertex
is relocated to the weighted volume center of its neighboring elements only when
the movement succeeds in improving the local Jacobian. The optimization method
starts with looping all the vertices to compute their Jacobians, and then the very
vertex with the worst Jacobian is found and improved using a conjugate gradient
method, in which the objective function is the Jacobian of that vertex. Then a new
loop begins and the new worst region in the improved mesh is found and optimized
in the same manner. We keep improving the worst Jacobian until it is greater than
a pre-defined threshold. We choose the traditional definition of the Jacobian matrix
using the finite element basis functions [23]. Generally if the eight corners of one hex
all have positive Jacobians, then the Jacobian inside the hex is usually positive. In
order to guarantee that some numerical analysis works properly, we can check the
Jacobian at each Gaussian integration point and include it in the loop.

7 Results and Discussion

We have applied our algorithms to two single-component CAD models (Figs. 15, 16)
and two multiple-component assembly models (Figs. 1, 17). Our techniques generate
quality meshes with all sharp features preserved. All the computations are performed
on a PC equipped with an Intel Q9600 CPU and 4GB DDR-II memories. The
resulting meshes are valid with conformal boundaries and sharp feature preservation.

Table 1 shows the statistics before and after quality improvement of the meshes.
Note that during optimization, we use the Jacobian defined in the finite element
method as the objective function; while in the statistics, we measure the mesh
quality with the Jacobian defined by three edge vectors [5, 21, 23]. After quality
improvement, all the negative Jacobians are removed, and the worst Jacobian as
well as the worst condition number are improved significantly.

The success of sharp feature detection relies on a good base mesh. Fortunately
the octree-based isocontouring method provides us such meshes. Even though the
base mesh has some bad elements on the boundary, it is improved through the two-
step pillowing. In the pillowing, the number of elements increases sharply, which
leads to large memory and CPU requirements. The mesh generation computing
time is optimized so that generating 10,000 elements (after pillowing) takes about
90 seconds. In the pipeline, sharp feature detection and pillowing are fast, the most
time-consuming part is the overall smoothing, which is linear in complexity. From
Table 1 we can also tell that the computational time is nearly proportional to the
element number (after pillowing).

8 Conclusion and Future Work

We have developed an automatic and robust approach to generate unstructured
hex meshes with sharp feature preservation for single-component CAD models and
multiple-component assemblies. The base mesh is generated using the octree-based
isocontouring method. Features such as sharp curves and surface patches are de-
tected first, and then the mesh is smoothed while incorporating these features. Af-
ter this stage, a two-step pillowing technique is used to eliminate triangle-shaped



Sharp Feature Preservation of CAD Assemblies 15

Fig. 15. The resulting mesh for the hook model. (a-b) Snapshots from two view
angles; and (c-d) Zoom-in details of the boundary layer and one corner.

Fig. 16. The resulting mesh for the varco3 model. (a-b) Snapshots from two view
angles; and (c-e) Zoom-in details of three corners.



16 Jin Qian and Yongjie Zhang

Fig. 17. The resulting hex mesh of a three-component bearing assembly. (a) The
bearing assembly; (b-c) Zoom-in details of two corners; and (d-f) Three single com-
ponents.

Table 1. Statistics of meshes before and after quality improvement.

Mesh Size Jacobian Condition ] Inverted Time
Model Mesh

(Vert ], Elem ]) (Worst, Best) (Worst, Best) Elem ] (s)

Original (1755, 1187) (0.014, 1.0) (73.05, 1.0) 0
Multiaxis

Improved (4505, 3707) (0.24, 1.0) (4.10, 1.0) 0 29

Original (2556, 1663) (-0.0003, 1.0) (20553.31, 1.0) 3
Hook

Improved (6327, 5121) (0.029, 1.0) (34.48, 1.0) 0 49

Original (6130, 4658) (-0.0004, 1.0) (25659.53, 1.0) 21
Varco3

Improved (13627, 11448) (0.016, 1.0) (61.23, 1.0) 0 84

Bearing Original (4252, 2979) (-0.0005, 1.0) (8509.72, 1.0) 21
Assembly Improved (12208, 10231) (0.016, 1.0) (63.34, 1.0) 0 92

Gear Original (7434, 4938) (0.0003, 1.0) (3084.63, 1.0) 0
Assembly Improved (23671, 19454) (0.021, 1.0) (46.18, 1.0) 0 152



Sharp Feature Preservation of CAD Assemblies 17

quads along the sharp curves and doublets. Then a modified Laplace smoothing and
Jacobian optimization are used to improve the mesh quality. Several CAD models
are tested and statistics of the resulting meshes are given.

For large datasets, the required memory and CPU time increase significantly.
In the future, we will optimize our data structure and develop parallel meshing
algorithms to construct non-manifold hex mesh efficiently for very large datasets. To
reduce the rapid increase in the element number, we will implement local refinement
algorithms instead of pillowing two whole boundary layers. In the future, we will
also apply the algorithm to more applications, and include material properties into
our mesh generation and quality improvement procedure.

Acknowledgement

We would like to thank Wenyan Wang for useful discussions on NURBS curve and
surface path parametrization, and Matt Staten for providing the multiaxis, hook2,
hook and varco3 models. The research was supported in part by Y. Zhang’s ONR-
YIP award, an ONR grant N00014-08-1-0653 and a NRL contract N00173-08-C-6011
as part of the HPCMP CREATE program.

References

1. T. Blacker and R. Myers. Seams and Wedges in Plastering: A 3D Hexahedral
Mesh Generation Algorithm. Engineering With Computers, 2(9):83–93, 1993.

2. N. Folwell and S. Mitchell. Reliable Whisker Weaving via Curve Contraction.
Engineering With Computers, 15(3):292–302, 1999.

3. Y. Ito, A. Shih, and B. Soni. Octree-based Reasonable-quality Hexahedral Mesh
Generation using a New Set of Refinement Templates. International Journal for
Numerical Methods in Enginnering, 77(13):1809–1833, 2009.

4. P. Knupp. Next-generation Sweep tool: A Method for Generating All-hex
Meshes on Two-and-one-half Dimensional Geometries. Proceedings of 7th Inter-
national Meshing Roundtable, pages 505–513, 1998.

5. P. Knupp. Achieving Finite Element Mesh Quality via Optimization of the
Jacobian Matrix Norm and Associated Quantities. Part II–A Framework for
Volume Mesh Optimization and the Condition Number of the Jacobian Matrix.
International Journal for Numerical Methods in Engineering, 48(8):1165–1185,
2000.

6. L. Marcha. Advances in Octree-Based All-Hexahedral Mesh Generation: Han-
dling Sharp Features. Proceedings of 18th International Meshing Roundtable,
pages 65–84, 2009.

7. S. Mitchell and T. Tautges. Pillowing Doublets: Refining a Mesh to Ensure
That Faces Share at Most One Edge. Proceedings of 4th International Meshing
Roundtable, pages 231–240, 1995.

8. S. Owen. A Survey of Unstructured Mesh Generation Technology. Proceedings
of 7th International Meshing Roundtable, pages 26–28, 1998.

9. S. Owen and J. Shepherd. Embedding Features in a Cartesian Grid. Proceedings
of 18th International Meshing Roundtable, pages 117–138, 2009.

10. M. Price and C. Armstrong. Hexahedral Mesh Generation by Medial Surface
Subdivision: Part I. International Journal for Numerical Methods in Engineer-
ing, 38(19):3335–3359, 1995.



18 Jin Qian and Yongjie Zhang

11. M. Price and C. Armstrong. Hexahedral Mesh Generation by Medial Surface
Subdivision: Part II. International Journal for Numerical Methods in Engineer-
ing, 40(1):111–136, 1997.

12. J. Qian, Y. Zhang, W. Wang, A. Lewis, M. Qidwai, and A.Geltmacher. Qual-
ity Improvement of Non-manifold Hexahedral Meshes for Critical Feature De-
termination of Microstructure Materials. International Journal for Numerical
Methods in Enginnering, 82(11):1406–1423, 2010.

13. R. Schneiders. A Grid-based Algorithm for the Generation of Hexahedral Ele-
ment Meshes. Engineering with Computers, 12(3-4):168–177, 1996.

14. R. Schneiders and F. Weiler. Octree-Based Generation of Hexahedral Element
Meshes. Proceedings of 7th International Meshing Roundtable, pages 205–216,
1996.

15. M. Shephard and M. Georges. Three-Dimensional Mesh Generation by Finite
Octree Technique. International Journal for Numerical Methods in Engineering,
32(4):709–749, 1991.

16. J. Shepherd. Conforming Hexahedral Mesh Generation via Geometric Capture
Methods. Proceedings of 18th International Meshing Roundtable, pages 85–102,
2009.

17. J. Shepherd, Y. Zhang, C. Tuttle, and C. Silva. Quality Improvement and
Boolean-like Cutting Operations in Hexahedral Meshes. The 10th ISGG Con-
ference on Numerical Grid Generation, FORTH, Crete, Greece. Sept. 16-20,
2007.

18. M. Staten, R. Kerr, S. Owen, and T. Blacker. Unconstrained Paving and Plas-
tering: Progress Update. Proceedings of 15th International Meshing Roundtable,
pages 469–486, 2006.

19. M. Staten, J. Shepherd, F. Ledoux, and K. Shimada. Hexahedral Mesh Match-
ing: Converting non-conforming hexahedral-to-hexahedral interfaces into con-
forming interfaces. International Journal for Numerical Methods in Enginner-
ing, 82(12):1475–1509, 2009.

20. T. Tautges, T. Blacker, and S. Mitchell. The Whisker-Weaving Algorithm:
a Connectivity Based Method for Constructing All-hexahedral Finite Ele-
ment Meshes. International Journal for Numerical Methods in Engineering,
39(19):3327–3349, 1996.

21. Y. Zhang and C. Bajaj. Adaptive and Quality Quadrilateral/Hexahedral Mesh-
ing from Volumetric Data. Computer Methods in Applied Mechanics and Engi-
neering, 195(9-12):942–960, 2006.

22. Y. Zhang, C. Bajaj, and B. Sohn. 3D Finite Element Meshing from Imaging
Data. The special issue of Computer Methods in Applied Mechanics and Engi-
neering on Unstructured Mesh Generation, 194(48-49):5083–5106, 2005.

23. Y. Zhang, T. Hughes, and C. Bajaj. An Automatic 3D Mesh Generation Method
for Domains with Multiple Materials. Computer Methods in Applied Mechanics
and Engineering, 199(5-8):405–415, 2010.


