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Summary. We consider the problem of reconstructing a high-order surface from a given sur-
face mesh. This problem is important for many meshing operations, such as generating high-
order finite elements, mesh refinement, mesh smoothing and mesh adaptation. We introduce
two methods, called Weighted Averaging of Local Fittings (WALF) and Continuous Moving
Frames (CMF). These methods are both based on weighted least squares polynomial fittings
and guarantee C0 continuity. Unlike existing methods for reconstructing surfaces, our meth-
ods are applicable to surface meshes composed of triangles and/or quadrilaterals, can achieve
third and even higher order accuracy, and have integrated treatments for sharp features. We
present the theoretical framework of our methods, experimental comparisons against other
methods, and its applications in a number of meshing operations.
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1 Introduction

Surface meshes and their manipulations are critical for meshing, numerical simula-
tions, and many other related problems. Some example problems that involve ma-
nipulating surface meshes include mesh generation and mesh enhancement for finite
element or finite volume computations [5], mesh smoothing in ALE methods [1], and
mesh adaptation in moving boundary problems [11]. In many of these problems, a
continuous CAD model may not be available. Instead, only a surface mesh, typically
with piecewise linear or bilinear faces, is available.

In this paper, we consider the problem of reconstructing a highly accurate, continu-
ous geometric support from a given surface mesh. We refer to this problem as high-
order surface reconstruction (or simply high-order reconstruction). Besides mesh-
ing, this reconstruction problem also arises in computer graphics [2] and geometric
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modeling [17]. In general, the high-order reconstruction should satisfy some (if not
all) of the following requirements:

Continuity: The reconstructed surface should be continuous to some degree (e.g.,
C0, C1, or C2 continuous, depending on applications).

Feature preservation: The reconstruction should preserve sharp features (such as
ridges and corners) in the geometry.

Geometric accuracy: The reconstruction should be accurate and asymptotically con-
vergent to the exact surface to certain order under mesh refinement.

Stability: The reconstruction should be numerically stable and must not be oscilla-
tory under noise.

Note that different applications may have emphasis on different aspects of the prob-
lem. For example, in computer graphics and geometric design, the visual effect may
be the ultimate goal, so smoothness and feature preservation may be most important.
Therefore, methods proposed for such applications tend to focus on the first two is-
sues, and the numerical issues of asymptotic convergence and stability are mostly
ignored. Our focus in this paper is on meshing for finite element or finite volume
computations, for which these numerical issues are very important. Indeed, the low
order of accuracy of the geometry would necessarily limit the accuracy of the solu-
tions of differential equations, and numerical instabilities and excessive oscillations
can have even more devastating effect to numerical simulations.

In this paper, we present two methods, called Weighted Averaging of Local Fit-
tings (WALF) and Continuous Moving Frames (CMF), for reconstructing a feature-
preserving, high-order surface from a given surface mesh. Both methods are based
on the assumptions that the vertices of the mesh accurately sample the surface, and
the faces of the mesh correctly specify the topology of the surface, and utilize the
numerical techniques of weighted least squares approximations and piecewise poly-
nomial fittings. These methods apply to surface meshes composed of triangles and/or
quadrilaterals, and also to curves (such as ridge curves on a surface). Unlike exist-
ing methods, which are typically only first or second order accurate, our methods
can achieve third- and even higher order accuracy, while guaranteeing C0 continu-
ity. For its weighted least squares nature, these methods are also tolerant to noise.
We present the theoretical framework of our methods. We also present experimental
comparisons of our methods against some others, and its applications in a number of
meshing operations.

The remainder of the paper is organized as follows. Section 2 presents some back-
ground knowledge, including local polynomial fittings and weighted least squares
approximations. Section 3 describes the new methods for high-order surface recon-
struction and compares them with some others. Section 4 applies our methods with
a number of meshing operations for triangle and quadrilateral meshes and meshes
with sharp features. Section 5 concludes the paper with a discussion.



2 Preliminaries: Vertex-Based Polynomial Fittings

Our high-order reconstruction is based on local polynomial fittings and weighted
least squares approximations. We have successfully used these techniques previously
to compute differential quantities of discrete surfaces (such as normals and curva-
tures) to high-order accuracy; see e.g. [13, 18]. However, due to their local nature,
those approaches for computing differential quantities do not provide a continuous,
global reconstruction of a surface. We hereafter briefly review these techniques and
then adapt them to high-order reconstruction in the next section. For more details on
the theoretical background, readers are referred to [13] and references therein.

2.1 Local Polynomial Fitting

Local polynomial fittings, also known as Taylor polynomials in numerical analysis
[8], are based on the well-known Taylor series expansions about a point. We are
primarily concerned with surfaces, so the local fitting is basically an interpolation
or approximation to a neighborhood of a point P under a local parameterization
(say, with parameters u and v), where P corresponds to u = 0 and v = 0. The
polynomial fitting may be defined over the global xyz coordinate system or a local
uvw coordinate system. In the former, the neighborhood of the surface is defined by
the coordinate function f(u, v) = [x(u, v), y(u, v), z(u, v)]. In the latter, assuming
the uv-plane is approximately parallel with the tangent plane of the surface at P , each
point in the neighborhood of the point can be transformed into a point [u, v, f(u, v)]
(by a simple translation and rotation), where f is known as the local height function.

Let u denote [u, v]T . Let ϕ(u) denote a smooth bivariate function, which may be
the local height function or the x, y, or z component of the coordinate function for
a parametric surface. Let cjk be a shorthand for ∂j+k

∂uj∂vkϕ(0). Let d be the desired
degree of the polynomial fitting, and it is typically small, say ≤ 6. If ϕ(u) has d+ 1
continuous derivatives, it can be approximated to (d+ 1)st order accuracy about the
origin u0 = [0, 0]T by

ϕ(u) =
d∑

p=0

j+k=p∑
j,k≥0

cjk
ujvk

j!k!︸ ︷︷ ︸
Taylor polynomial

+
j+k=d+1∑

j,k≥0

∂j+k

∂uj∂vk
ϕ(ũ, ṽ)

ũj ṽk

j!k!︸ ︷︷ ︸
remainder

, (1)

where 0 ≤ ũ ≤ u and 0 ≤ ṽ ≤ v.

Suppose we have a set of data points, say [ui, vi, ϕi]
T for i = 1, . . . ,m−1, sampled

from a neighborhood near P on the surface. Substituting each given point into (1),
we obtain an approximate equation

d∑
p=0

j+k=p∑
j,k≥0

(
uj

iv
k
i

j!k!

)
cjk ≈ ϕi, (2)



which has n = (d + 1)(d + 2)/2 unknowns (i.e., cjk for 0 ≤ j + k ≤ d, j ≥ 0
and k ≥ 0), resulting in an m × n rectangular linear system. Note that one could
force the polynomial to pass through point P by setting c00 = 0 and removing its
corresponding equation, reducing to an (m− 1)× (n− 1) rectangular linear system.
This may be beneficial if the points are known to interpolate a smooth surface.

Let us denote the rectangular linear system obtained from (2) as

V X ≈ F , (3)

where X is an n-vector composed of cjk, and V is m × n, known as a generalized
Vandermonde matrix. For a local height function, F is an m-vector composed of fi;
for a parametric surface, F is an m × 3 matrix, of which each column corresponds
to a component of the coordinate function.

The above formulations can be easily adapted to curves in 2-D or 3-D, by using
the univariable instead of the bivariable version of Taylor series expansions. For a
curve in 3-D, the parameterization has only one parameter (say u), and the local
height function has two components. When applied to a surface mesh, the point P
is typically a vertex, and its neighborhood are typically some k-ring neighborhood.
Following [13], we allow k to have half-ring increments:

• The 1-ring neighbor faces of a vertex v are the faces incident on v, and the 1-ring
neighbor vertices are the vertices of these faces.

• The 1.5-ring neighbor faces are the faces that share an edge with a 1-ring neigh-
bor face, and the 1.5-ring neighbor vertices are the vertices of these faces.

• For an integer k ≥ 1, the (k + 1)-ring neighborhood of a vertex is the union of
the 1-ring neighbors of its k-ring neighbor vertices, and the (k+1.5)-ring neigh-
borhood is the union of the 1.5-ring neighbors of the k-ring neighbor vertices.

Figure 1 illustrates these neighborhood definitions up to 2.5 rings. We typically
choose k to be (d + 1)/2 (for non-noisy surface) or d/2 + 1 (for noisy surface),
but may also enlarge k if there are fewer than 1.5 times of the required number of
points in the k-ring.

2.2 Weighted Least Squares Approximation

Numerically, (3) can be solved using the framework of weighted linear least squares
[7, p. 265], i.e., to minimize a weighted norm (or semi-norm),

min
X
‖V X − F ‖Ω = min

X
‖Ω(V X − F )‖2, (4)

whereΩ is a weighting matrix. Typically,Ω is anm×m diagonal matrix, whose ith
diagonal entry ωi assigns a priority to the ith point [ui, vi]

T by scaling the ith row
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Fig. 1. Examples of 1-, 1.5-, 2-, and 2.5-ring vertices for typical vertex in triangle mesh. Each
image depicts the neighborhood of the center black vertex.

of V . It is desirable to assign lower priorities to points that are farther away from
the origin or whose normals differ substantially from the w direction of the local
coordinate frame, such as that defined in (8).

The formulation (4) is equivalent to the linear least squares problem

Ṽ X ≈ B, where Ṽ = ΩV andB = ΩF . (5)

In general, Ṽ is m × n and m ≥ n. A technical difficulty is that this linear system
may be very ill-conditioned (i.e., the singular values of Ṽ may differ by orders of
magnitude) due to a variety of reasons, such as poor scaling, insufficient number of
points, or degenerate arrangements of points [14]. The conditioning number of Ṽ
can be improved by using a scaling matrix S and changing the problem to

min
Y
‖AY −B‖2, whereA = Ṽ S and Y = S−1X. (6)

We chose S to be a diagonal matrix. Let ṽi denote the ith column of Ṽ . The ith diag-
onal entry of S is chosen to be ‖ṽi‖2, which approximately minimizes the condition
number of Ṽ S [7, p. 265].

2.3 Accuracy and Stability of Least Squares Polynomial Fittings

The local least squares polynomial fitting provides us the theoretical foundation for
high-order reconstruction of surfaces, established by the following proposition [13]:



Proposition 1. Given a set of points [ui, vi, f̃i] that interpolate a smooth height func-
tion f or approximate f with an error ofO(hd+1). Assume the point distribution and
the weighting matrix are independent of the mesh resolution, and the condition num-
ber of the scaled matrix A = ÃS in (6) is bounded by some constant. The degree-d
weighted least squares fitting approximates cjk to O(hd−j−k+1).

Here, h is a local measure of mesh resolution (such as average edge length of the
k-ring neighborhood). We refer to readers to [13] for the proof of the proposition.
Note that a necessary condition for the accuracy is that the condition number of the
scaled matrix A must be bounded, but it is not automatically the case even if the
number of points is greater than the number of unknown coefficients. We achieve
well-conditioning by either expanding the neighborhood or reducing the degree of
fitting if the condition number is determined to be large, and in turn guarantee both
accuracy and stability.

3 Continuous, High-Order Surface Reconstruction

The method described in the previous section applies locally at each individual vertex
of a mesh. There was no coordination among the local fittings at different vertices,
so the method does not reconstruct a continuous surface. To construct a continuous
surface, there are at least three different options:

1. compute multiple local fittings at vertices and then compute a weighted averag-
ing of these fittings;

2. enforce continuity of local coordinate frames and weights for local fittings;

3. introduce additional control points to define continuous/smooth surface patches.

Most methods in the literature use the latter two options. For example, the moving
least squares [15] uses the second option to construct a C∞ surface from a point
cloud. Walton’s method [17] adopted by Yams [4, 3] uses the third option. In this
section, we describe two methods that belong to the first two categories, respectively.
We will first focus on triangle meshes for smooth surfaces in this section, and will
present the extension to quadrilateral meshes and for meshes with sharp features in
the next section when describing their applications in meshing.

3.1 Weighted Averaging of Local Fittings (WALF)

A simple approach to construct a high-order surface is to compute a weighted average
of the local fittings at vertices. We refer to this approach as Weighted Averaging of
Local Fittings (WALF). To achieve continuity of the surface, the weights used by
the weighted averaging must be continuous over the mesh. One such a choice is
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Fig. 2. 2-D illustration of weighted averaging of local fitting. The black curve indicates the
exact curve. The blue and green curves indicate the fittings at vertices x1 and x2, respectively.
q is the WALF approximation of point p and is computed as a weighted average of the points
q1 and q2 on the blue and green curves, respectively.

the barycentric coordinates of the vertices over each triangle. Consider a triangle
composed of vertices xi, i = 1, 2, 3, and any point p in the triangle. For each vertex
xi, we obtain a point qi for p from the local fitting in the local uvw coordinate frame
at xi, by projecting p onto its uv-plane. Let ξi, i = 1, 2, 3 denote the barycentric
coordinates of p within the triangle, with ξi ∈ [0, 1] and

∑3
i=1 ξi = 1. We define

q(u) =
3∑

i=1

ξiqi(u) (7)

as the approximation to point p. Figure 2 shows a 2-D illustration of this approach,
where ξi are the barycentric coordinates of point p within the edge x1x2.

WALF constructs a C0 continuous surface, as can be shown using the properties
of finite-element basis functions: The barycentric coordinates at each vertex of a
triangle corresponds to the shape function of the vertex within the triangle, and the
shape function of the vertex in all elements forms a C0 continuous basis function
(i.e., the linear pyramid function for surfaces or the hat function for curves). Let φi

denote the basis function associated with the ith vertex of the mesh, and it is zero
almost everywhere except within the triangles incident on the ith vertex. Therefore,
q can be considered as a weighted average of the polynomials at all the vertices,

q(u) =
n∑

i=1

φi(u)qi(u),

and then it is obvious that q is C∞ within each triangle and C0 over the whole mesh.

The idea of WALF is intuitive, but the analysis of its accuracy is by no means straight-
forward. If the coordinate systems were the same at all vertices, then the analysis
would have been easy, as q would have inherited the accuracy of qi. However in our
case, the local fittings at the three vertices of a triangle are in different coordinate
systems in general, and this discrepancy of coordinate systems can lead to additional



error terms. Under the same assumptions as Proposition 1, we obtain the following
property of WALF.

Proposition 2. Given a mesh whose vertices approximate a smooth surface Γ with
an error of O(hd+1), the distance between each point on the WALF reconstructed
surface and its closest point on Γ is O(hd+1 + h6).

Note that the above proposition gives an upper bound of the error, so the lower bound
of the convergence rate is min(6, d + 1). The bound of h6 is due to the discrepancy
of local coordinate systems at different vertices. The proof is given in the Appendix.

3.2 Continuous Moving Frames (CMF)

WALF is a simple and intuitive method, but its order of accuracy may be limited. We
now present a method that can overcome this limitation by using local coordinate
frames that move continuously from point to point. We refer to such a scheme as
continuous moving frame (CMF). The basic idea is to use the finite-element basis
functions to construct continuous moving frames and weights for local fittings. In
particular, assume each vertex has an approximate normal direction at input. Con-
sider a triangle x1x2x3 and any point p in the triangle. Let n̂i denote the unit vertex
normal at the ith vertex. We compute a normal at p as

n̂ =
3∑

i=1

ξin̂i

/∥∥∥∥∥
3∑

i=1

ξin̂i

∥∥∥∥∥ .
Given n̂, we construct a local uvw coordinate system along axes ŝ, t̂, and n̂, where
ŝ and t̂ form an orthonormal basis of the tangent plane. Within this local coordinate
frame, we formulate the weighted least squares as

‖ΩVX −ΩF ‖2,

where V again is the generalized Vandermonde matrix, andΩ is the weight matrix.

In practice, the Vandermonde matrix for a point p should involve a small stencil in
the neighborhood of the triangle. We use the union of the stencils of the three ver-
tices of the triangle. Conceptually, it is helpful to consider the Vandermonde matrix
involving all the points of the mesh, but the weight matrix Ω assigns a zero weight
for each point that is not in the stencil. For the reconstructed surface to be smooth, it
is important thatΩ is continuous as the point p moves within the geometric support
of the mesh. In addition, it is also important thatΩ is invariant of rotation of tangent
plane (i.e., be independent of the choice of ŝ and t̂).

We define the weight as follows. For p within the triangle x1x2x3, we first define a
weight for each vertex (say jth vertex) in the mesh corresponding to xi as



wij =

{
ξi

(
n̂T

i n̂j

)+

e−‖xj−p‖2/h2
i if vertex j is in stencil of ith vertex

0 otherwise
(8)

where (
n̂T

i n̂j

)+

=
{
n̂T

i n̂j if n̂T
i n̂j ≥ ε

0 otherwise
(9)

for some small ε ≥ 0 and hi is a local mesh-resolution measure at the ith vertex. Then
for the weighting matrix, the weight for jth vertex is then

∑3
i=1 wij . In the actual

implementation, for simplicity we list the jth vertex separately for its appearance in
the stencil of each vertex of the triangle, and include only the vertices whose weights
are nonzeros in V andΩ.

Similar to WALF, CMF constructs a C0 continuous surface, because Ω, V , and F
are all C0 continuous, as long as the resulting linear system is well-conditioned. The
accuracy of CMF follows that for weighted least squares approximation in [13], and
we obtain the following properties of CMF.

Proposition 3. Given a mesh whose vertices approximate a smooth surface Γ with
an error ofO(hd+1), the shortest distance from each point on the CMF reconstructed
surface to Γ is O(hd+1).

Relationship with Moving Least Squares. The idea of using moving frames is not
new, and goes back to Élie Cartan for differential geometry. One of the incarnations
of the idea of using moving frames for discrete surfaces is the so-called moving
least squares (MLS) for point clouds [15]. CMF shares some similarities to MLS. In
particular, they are both based on weighted least squares approximations within some
local frames. However, they also differ in some fundamental ways. First, moving
least squares uses global weighting functions that are exponential in the distance,
and theoretically, MLS is C∞. However, because global weighting functions are too
expensive to compute, practical implementations typically truncate small weights to
zeros, leading to a loss of continuity. In contrast, CMF uses only a local support
by construction. Second, MLS does not guarantee the order of accuracy, because its
weights are global and purely based on Euclidean distance. Although its convergence
was conjectured in [15], we have observed that MLS does not converge even for
simple geometries such as a torus. In contrast, CMF uses the mesh connectivity as
a clue in selecting the stencils, instead of based on Euclidean distance. Third, CMF
can take into account the normals in the weighting function, to filter out points across
sharp features. This allows CMF to handle surfaces with sharp features in a natural
way, which is important for meshing operations. On the other hand, it is difficult to
treat sharp features in the framework of MLS. Because of their local supports, CMF
is more easily adapted to treat sharp features, as we describe in the next section.

3.3 Experimental Results

We report some experimental results of our two proposed methods, and compare
them with some other methods. We first show the mesh convergence study of WALF



and CMF. While it is typically unnecessary to use schemes with higher than third
or fourth order accuracy, to demonstrate the capabilities and limitations of these two
methods, we report results with polynomials of up to degree 6. We performed our ex-
periment using a torus with in-radius of 0.7 and outer-radius of 1.3, with an unstruc-
tured triangular mesh. We considered three levels of mesh refinement. The coarsest
mesh has 329 vertices and 658 triangles, whereas the finest mesh has 21,156 ver-
tices and 42,312 triangles. In this test, we randomly generated 10 points on each face
of the mesh, then project them onto high order surface using WALF or CMF. We
compute the error as the shortest distance from each approximate point to the torus.

Figure 3 shows the L∞ errors of WALF and CMF for the meshes. In the figure, the
horizontal axis corresponds to the level of mesh refinement, and the vertical axis cor-
responds to the L∞ errors. In the legends, the “degree” indicates the degree of poly-
nomial fittings used, and “linear” indicates the error for linear interpolation within
triangles. We show the average convergence rates along the right of the plots for each
curve, which was calculated as log (error3/errorbase) / log (h3/hbase), where errori
denotes the L∞ error of all the randomly inserted points for the ith coarsest mesh,
and hi is the maximum edge length of the corresponding mesh. We chose the base to
be 0 for CMF and 1 for WALF, because the errors for WALF were large for degrees
5 and 6 for the coarsest mesh, leading to artificially too large convergence rates.

From the figures, it is obvious that quadratic and higher-degree fittings produced far
more accurate results than linear interpolation. Both WALF and CMF achieved a
convergence rate of (d + 1) when d is odd and higher than (d + 2) when d is even.
The superconvergence for even-degree fittings is likely due to statistical error can-
cellations of the leading error terms, which are of odd degrees. However, such error
cancellations are not guaranteed when the points are very far from being symmetric,
especially near boundaries or sharp features.

Some conclusions can be drawn from our comparisons between WALF with CMF.
In terms of accuracy, we note that WALF gave smaller errors (up to 50% smaller)
than CMF for finer meshes, although they delivered very similar convergence rates.
The reason for the smaller errors for WALF was probably that WALF uses a smaller
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Fig. 3. L∞ errors of WALF (left) and CMF (right) under mesh convergence for torus. Both
WALF and CMF achieve (d + 1)st or higher order accuracy for degree-d polynomials.
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Fig. 4. Comparison of errors using linear interpolation, Walton’s method (labeled as G1), and
WALF using quadratic and cubic fittings.

stencil for each polynomial fitting. In terms of efficiency, WALF and CMF are com-
parable when approximating a single point. However, when approximating many
points, WALF allows reusing the polynomial fittings computed at the vertices, and
hence it can have smaller amortized cost. Furthermore, WALF is also more versatile,
because one can change the polynomial at each vertex in WALF (such as adapting
its degree of polynomial) without losing C0 continuity, but the same cannot be done
with CMF. Therefore, we favor WALF over CMF, unless some application requires
guaranteed seventh or higher order accuracy.

Besides WALF and CMF, some other methods have been developed for high order
reconstructions and been used in the meshing community. One method that is worth
noting is that proposed by Walton [17] and adopted by Frey for surface meshing [3].
One property of Walton’s method is that it achieves C1 (or G1) continuity for the
reconstructed mesh. However, there does not seem to be any analysis of the accuracy
of Walton’s method in the literature. Figure 4 shows a comparison of the errors of
Walton’s method as well as WALF using quadratic and cubic fittings, with linear in-
terpolation as the baseline of comparison. The two figures show the errors in L∞ and
L2 norms for the torus. From the result, it is evident that Walton’s method converges
only linearly and is actually less accurate than linear interpolation for finer meshes.
Our preliminary theoretical analysis also suggests that Walton’s method can be at
most second order accurate (i.e., no better than linear interpolation), and its practi-
cal accuracy may be worse because its dependence on the tangent directions of the
edges, which are in general unavailable and can be estimated only to low accuracy.
Therefore, it is obvious that C1 (and in fact even C∞) continuity does not imply
accuracy of the reconstruction, although they may produce smooth looking. On the
other hand, as we will show in the next section, high-order methods withC0 continu-
ity typically produce errors that are too small to cause any noticeable discontinuities.



4 Applications to Meshing and Finite Elements

The targeted applications for high-order surface reconstruction for this paper are
meshing for finite element analysis. We hereafter further customize our framework
for meshing and then apply the resulting techniques to meshing operations.

4.1 Quadrilateral Elements and Sharp Features

To be generally applicable to meshing, the reconstruction techniques should work
not only for triangulations of smooth surfaces but also for meshes with quadrilateral
elements (including quadrilateral meshes or quad-dominant meshes) and surfaces
with sharp features.

Generalization to Meshes Containing Quadrilateral. For a quadrilateral element,
we need to use the finite element shape functions Ni. Let ξ and η be the two natural
coordinates within a quadrilateral element, with 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1, then the
shape functions associated with the four vertices are

N1 = (1− ξ)(1− η), N2 = ξ(1− η),
N3 = (1− ξ)η, N4 = ξη.

A key issue is the selection of stencils for a quadrilateral mesh or quad-dominant
mesh. The definition of n-ring neighbors in [13] tends to produce too many points
for quadrilateral meshes. We redefine the neighborhood of a vertex as follows:

• The 0-ring of a vertex is the vertex itself ;

• The k-ring vertices of a vertex (where k = 1, 2, 3, . . .) is the set of vertices that
are share an edge with a vertex in the (k-1)-ring;

• The (k + 0.5)-ring of a vertex (where k = 1, 2, 3, . . .) is the union of k-ring
vertices and the vertices that share elements with an edge between two vertices
in the k-ring.

For a triangle mesh, the above definition is equivalent to that in [13]. However, this
definition is also well-suited to other types of surface meshes. Figure 5 shows the 1-,
1.5-, 2-, and 2.5-rings of a typical vertex in a quadrilateral mesh or a quad-dominant
mesh. In general for degree-d fittings, we find it most effective to use a ring of (d+
1)/2 for a mesh without noise or a ring of d/2 + 1 or larger for meshes with noise.

Treatment of Sharp Features. Sharp features, such as ridges and corners, are chal-
lenging problems in their own right. We have so far implemented a simple treatment
for sharp features. First, we identify feature edges and vertices and connect the fea-
ture edges to form ridge curves using an algorithm such as that in [9, 10]. We treat the
ridge edges as internal boundaries within the mesh and require the k-ring neighbors
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Fig. 5. Examples of 1-, 1.5-, 2-, and 2.5-rings of typical vertex in quadrilateral mesh. Each
image depicts the neighborhood of the center black vertex.

of vertices do not go across ridge curves. This is accomplished by virtually splitting
the mesh along ridge curves in our mesh data structure. For ridge curves themselves,
we separate them into sub-curves that do not have corners in their interior. For each
sub-curve, we perform a high-order reconstruction using either WALF or CMF for
curves. This treatment is sufficient for most meshing operations.

4.2 High-Order Finite Elements

An application of our method is to construct a high order (in particular, quadratic or
cubic) finite element mesh from a given mesh with only linear elements and accurate
vertex coordinates. This problem has practical relevance, because some mesh gener-
ators produce only a mesh with linear elements from an accurate CAD model, and
it may be desirable to reconstruct high-order elements without having to access the
CAD model. We formally stated the problem as follows: Given a mesh with linear
elements, assume the vertices are sufficiently accurate (e.g., they are exact or are at
least third or fourth-order accurate), construct a finite element mesh with quadratic
or cubic elements with third or fourth order accuracy.

When using high-order surface reconstruction, this problem can be solved in the
following procedure:

1. For each element σ, loop through its edges. If there is not an element that is
abutting σ and has an ID smaller than that of σ, assign a new node ID to each



Fig. 6. Illustration of generating high-order finite elements from given mesh. Left: a coarse
torus with linear elements; Middle: same mesh but with quadratic elements, visualized by
decomposing each triangle into four triangles. Right: same mesh but with cubic elements,
visualized by decomposing each triangle into nine triangles.

node on the edge; if a node ID has already been assigned in the adjacent element,
retrieve the node ID from that adjacent element;

2. Loop through all elements to assign new nodes IDs for new nodes on faces;

3. Expand the array for nodal coordinates, and evaluate the position for each new
vertex using high-order surface reconstruction.

We have implemented this procedure for reconstructing quadratic and cubic elements
from linear triangles or bilinear quadrilaterals using WALF and CMF. Figure 6 shows
an example for meshes generated with quadratic and cubic elements for a torus. The
high-order schemes produced notable improvements to the smoothness of the surface
to linear approach, and the overall errors are significantly smaller. Note that in actual
numerical simulations, not only the geometry but also some field variables defined on
the mesh need to be reconstructed to high order. The same high-order reconstruction
we presented can be used for that purpose, but it is beyond the scope of this paper.

4.3 Uniform Mesh Refinement

A problem related to generating a high-order mesh is a uniform refinement of a sur-
face mesh. The problem may be stated as follows: given a coarse surface mesh with
sufficiently accurate vertex coordinates, construct a finer surface mesh by subdivid-
ing the elements. Like the previous problem, uniform mesh refinement introduces
additional nodes to edges and/or faces, but in addition it also introduces new edges
to subdivide the elements. Figure 7 shows an example of refining a quadrilateral
mesh with sharp features, and Figure 8 shows that for a triangular mesh of a dragon
head. Note that if the new points are added onto the linear edges and faces, the re-
fined mesh is not only inaccurate but also nonsmooth, as evident in the left image of
the figures. This problem is resolved by using high order reconstructions. The right
image of Figure 7 and bottom-right image of Figure 8 show a refinement mesh using
WALF and feature treatments. The resulting meshes are much smoother and more
accurate. This procedure can be useful for generating high-quality finer resolution
meshes from a mesh without requiring access to the CAD model.



Fig. 7. Example of refining quadrilateral mesh by subdividing each element into nine quadri-
laterals. In left, dark lines show original coarse mesh, and dashed lines show linear subdivision.
Right images shows refined mesh using cubic fitting with WALF and feature treatments.

Fig. 8. Example of refining triangular mesh by subdividing each element into four triangles.
Upper row shows a dragon mesh and the zoom in near the head. Lower left image shows a
refined mesh using linear interpolation. Lower right image shows refined mesh using WALF
with quadratic fitting and feature treatments.

4.4 Mesh Smoothing and Mesh Adaptivity

More general meshing applications of our techniques are the smoothing and adaptiv-
ity of surface meshes. In these settings, not only new vertices may be added, existing
vertices may also be moved. For these meshing operations, a common approach is
to keep the original mesh during mesh smoothing/adaptation, and project new ver-
tices onto the faceted, piecewise linear geometries (see e.g., [6]). Such an approach
has only second order accuracy. Another approach was taken by Frey [3], who con-
structed a G1 continuous surface using Walton’s method [17]. However, our exper-



Fig. 9. Example of applying high-order reconstruction in meshing smoothing. The left image
shows the original torus mesh, and the right image shows the smoothed mesh.

iments have shown that Walton’s method is only about first order accurate, despite
its G1 continuity. Other methods have been developed (such as [16]), but none could
deliver high order accuracy.

Instead of using low-order methods, we propose to use high-order surface recon-
structions. As an example, we integrate high-order surface reconstruction with the
variational mesh smoothing framework described in [12]. To utilize the high-order
surface, we first compute the motion of each point within the tangent plane, and then
project the new point onto the high-order surface. Note that the use of the tangent
plane is useful, because it introduces an error that is high order compared to the tan-
gential displacement, so the projection onto the high-order surface involves only a
high order adjustment. Figure 9 shows an example of a smoothed surface mesh using
WALF method compared to the original mesh generated by the isosurface function
in MATLAB. The maximum angles were 166.1 and 128.8 degrees before and after
smoothing, respectively, and minimum angles were 0.65 and 23.8 degrees, respec-
tively. The smoothing process significantly improved the mesh quality while preserv-
ing the geometry to high order.

5 Conclusions and Discussions

In this paper, we studied the problem of reconstructing a high-order surface from
surface meshes, in the context of meshing for finite element computations. We pre-
sented two methods, namely WALF and CMF, which are based on weighted least
squares approximations with piecewise polynomial fittings. Unlike the traditional
methods used in meshing, these methods can deliver very high order accuracy, inde-
pendent of the order of the element of the mesh. The end results are high-order re-
constructions that are efficient, noise resistant, feature preserving, and well suited for
meshing and finite element computations. We demonstrate the high accuracy of our
method compared to some other methods, and discussed its application in the con-
text of reconstructing high-order finite elements, mesh refinement, mesh smoothing,
and mesh adaptivity. Between WALF and CMF, we favor WALF for its simplicity
and versatility (for example, WALF can be interpolatory, but CMF cannot be with-
out sacrificing numerical stability), unless one requires guaranteed seventh or even
higher order accuracy.



A property of our methods is that it enforces only C0 continuity. Imposing only
C0 continuity allows us more freedom to achieve higher order accuracy. However,
C0 continuity may be deemed as a limitation of our method in some applications in
computer-aided design and geometric modeling, especially when very coarse models
with very few control points are used. In such cases, the loss of C1 or C2 continuity
may lead to noticeable artifacts. We will investigate the reconstruction ofC1 surfaces
with high-order accuracy in our future research.
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Appendix: Proof of Proposition 2

We analyze the accuracy for triangles, but it helps to refer to Figure 2 for a 2-D
illustration. Let q∗i denote the intersection of the exact surface with the direction
ni from a point p (i.e., q∗i is the exact solution for qi in the fitting at vertex xi).
Let q̄ denote the closest point to point q =

∑3
i=1 ξiqi on the exact surface. Let

q∗ =
∑3

i=1 ξiq
∗
i and q̄∗ be its closest point on the surface. Then,

‖q − q̄‖ ≤ ‖q − q̄∗‖ ≤ ‖q − q∗‖+ ‖q∗ − q̄∗‖. (10)

For ‖q− q∗‖, note that‖q− q∗‖ ≤
∑3

i=1 ξi‖qi− q∗i ‖. When dth degree fittings are
used, ‖qi − q∗i ‖ = O(hd+1), so

‖q − q∗‖ = O(hd+1). (11)

For ‖q∗ − q̄∗‖, ‖q∗1 − q∗2‖ = | cos θ1|‖q∗1 − p‖ + | cos θ2|‖q∗2 − p‖, where θi is
the angle between q∗1q

∗
2 and n̂i. Note that cos θi = O(h), since by assumption n̂i

is at least a first order approximation to the normal at xi, and a first order approxi-
mation to the normals at q∗1 and q∗2, whereas the line segment q∗1q

∗
2 is at least a first

order approximation to a tangent direction at q∗1 and q∗2. Because p is a point on
triangle x1x2x3, whose edge length is O(h) by assumption, ‖p − q∗i ‖ = O(h2).
Therefore,‖q∗1−q∗2‖ = O(h3), and similarly for ‖q∗1−q∗3‖ and ‖q∗2−q∗3‖. Because
q∗ is a point on triangle q∗1q

∗
2q
∗
3,

‖q∗ − q̄∗‖ = O(h3)2 = O(h6). (12)

Combining (10-12), we conclude that ‖q−q̄‖ = O(hd+1)+O(h6) = O(hd+1+h6).


