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Abstract. In this paper, we present a method for generating hex-dominant meshes
with targeted all-hex regions over closed volumes. The method begins by generat-
ing a piecewise-continuous metric tensor field over the volume. This field speci-
fies desired anisotropy and directionality during the subsequent meshing stages.
Meshing begins with field-guided tiling of individual structured hexahedral fronts
wherever suitable and in regions of interest (ROI). Then, the hexahedral fronts
are incorporated into an existing hex-dominant meshing procedure, resulting in a
good quality hex-dominant mesh. Presently, many successful hex meshing methods
require significant preprocessing and have limited control over mesh directional-
ity and anisotropy. In light of this, hex-dominant meshes have gained traction for
industry analyses. In turn, this presents the challenge of increasing the hex-to-tet
ratio in hex-dominant meshes, especially in ROI specified by analysts. Here, a novel
three-part strategy addresses this goal: generation of a guiding tensor field, appli-
cation of topological insertion operators to tile elements and grow fronts towards
the boundary, and incorporation of the fronts into a hex-dominant meshing pro-
cedure. The field directionality is generated from boundary information, which is
then adjusted to specified uniform anisotropy. Carefully placed streamsurfaces of
the metric field are intersected to shape new elements, and the insertion opera-
tors maintain mesh integrity while tiling new elements. Finally, the effectiveness of
the proposed method is demonstrated with a non-linear, large deformation, finite
element analysis.

1 Introduction

In this paper, we present a method for generating hex-dominant meshes with
targeted all-hex regions over closed volumes. A three-part strategy is em-
ployed to achieve this: generation of a guiding metric field, application of
topological insertion operators to insert elements and grow the hex fronts
outward from starting interior points, and indirect incorporation of the fronts
into a final hex-dominant mesh. The field governs element directionality and
anisotropy over the volume for the tiling and final meshing stages. During
the tiling stage, insertion operators maintain mesh integrity and attempt to
prevent the mesh from marching into itself as they place new hexes. New
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elements are formed from the intersections of strategically placed stream-
surfaces of the metric field. The nodes of the fronts are then incorporated
into a rectangular bubble-packing process [24] as fixed bubbles, from which
a tetrahedral and then final hex-dominant mesh are obtained.

The method proposed in this work possesses many salient features. First,
a new method is described for constructing geometry-based tensor fields with
boundary sensitivity and user-input anisotropy. These fields can be applied
to any meshing algorithm which is suitably equipped. Second, both the tiling
and bubble-packing steps produce valid meshes that conform to these fields.
The tiling process is also flexible enough to start on the interior, and with
the help of the field and boundary conformity operations, capture the bound-
ary. Finally, the incorporation of the tiled hex fronts into the hex-dominant
process allows targeting of all-hex regions in ROIs.

Hexahedral meshes are commonly preferred in many types of 3D Finite
Element Analyses. However, robust all-hexahedral mesh generation has not
yet been achieved with the guarantees, quality, and control of arbitrary
anisotropy/directionality provided tetrahedral and hex-dominant meshing
schemes.

Current practical methods for direct hexahedral mesh generation are
at most semi-automatic, requiring model decomposition and application of
topology specific methods such as (sub)mapping and sweeping among others
[1]. Other methods, such as the grid based methods of Schneiders et al. [2] or
Zhang et al. [3], are only subject to topology constraints if boundary features
(for instance curves and vertices) need to be captured. Although they do pro-
vide some degree of anisotropy and size gradation using templates, there is no
mechanism for controlling arbitrary directionality. Furthermore, 3D advanc-
ing front methods such as Plastering [4] start at the boundary while placing
elements. Unfortunately, this leads to unmeshable voids and stitching prob-
lems between fronts. Unconstrained plastering is a promising extension that
aims to avoid these difficulties, but is still under development [5].

In light of this, hexahedral-dominant meshing schemes have gained traction
for semi- and fully automatic mesh generation. Rectangular bubble-packing,
by Yamakawa and Shimada [24], is an indirect hex-dominant method that
is capable of generating high quality hex-dominant meshes. The resulting
meshes conform to a specified tensor field and have good hexahedral volume
ratios. The method begins by packing rectangular solid cells and then gener-
ating a tetrahedral mesh using the cells’ centers. This is followed by merging
groups of tetrahedra into good hexahedral elements. Optionally, tets can
be merged into prisms and possibly pyramids to produce a fully conformal
mesh. That is, hanging edges which are present in a mixed hex-tet mesh will
be eliminated through the use or prisms and pyramids. Alternatively, spe-
cial subdivision templates have been developed to produce conformal meshes
without pyramids [29].
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From the inherent drawbacks and strengths of the methods mentioned
here, the authors have reached the observation that a successful hex-dominant
meshing strategy should include:

1. Using fields to control directionality and anisotropy.
2. Tailoring such fields to be boundary aligned and to incorporate additional

directionality and anisotropic size specifications.
3. Meshing from the inside out by starting at a suitable location(s).
4. Deciding marching directions for meshing ahead of time (via the field).
5. Meshing element by element in such a way that the mesh remains topo-

logically valid and does not march into itself.
6. Complementing difficult regions for all-hex with good quality hex-domi-

nant regions.

Some of these points, such as the need for a boundary sensitive overlay
for grid-based methods, have been noted by Blacker for all-hex meshing [6].
Furthermore, field generation has been performed for application to other
methods such as BubbleMesh [7, 8, 9].

The method presented here attempts to utilize these desired characteristics
through field generation and application of topological insertion operators to
insert elements and grow the mesh outward from a starting interior point.
The metric field incorporates boundary normal information and user-input
uniform anisotropy, and is capable to providing information on element shap-
ing and marching directions for meshing. This allows for a relatively simple
tiling algorithm based on topological insertion operators. The insertion op-
erators maintain mesh integrity while attempting to prevent the mesh from
marching into itself. They also govern the shaping and via specific intersec-
tions of streamsurfaces of the eigenvector fields that are obtained from the
metric field.

Due to the difficulties posed by applying this process to entire volumes,
the proposed method attempts to incorporate the traced hex elements into
a hex-dominant mesh. The resulting mesh is boundary conformal, approx-
imately metric conformal, good quality, and has increased hex-to-tet ratios
in the tiled regions. Therefore, predominantly hex meshes can be created
in ROIs, for instance where boundary conditions are applied or important
stresses/quantities are present.

Presently, the proposed method operates on closed volumes with a facet-
based boundary representation equipped with sufficient guiding feature curves.
It can be applied to analytic-surface based CAD models using the graphics
facets and feature curve extraction. In addition, in this paper only fields of uni-
form anisotropy are considered. The basic approach, however, can be extended
to non-uniform anisotropic fields.

The paper is organized as follows: Section 2 discusses related work that
leads up to and supports the proposed method. Section 3 presents an overview
of the methods used, and also covers preliminaries. Generation of metric
tensor fields is described in Section 4, and meshing via hex tiling and packing
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is covered in Section 5. Section 6 contains results and our discussion, and the
paper is concluded with a brief look at further work in Section 7.

2 Related Work

Riemannian metric tensors have become a popular means of anisotropic mesh
control [7, 8, 10]. In the context of 3D mesh generation, such second-order
tensors can be represented as 3× 3, symmetric, positive-definite matrices in
a local coordinate system. Given a metric tensor M, the dot (inner) product
of two vectors x and y can be written as xTMy [11]. This can be used to
obtain the norm of a vector under the metric via

(
xTMx

)1/2
, as well as the

angle between two vectors. Additionally, the length l of a parametric curve
r(t) where t ∈ [t0, t1], can be expressed as:

l =
∫ t1

t0

[

Mij
dri

dt

drj

dt

]1/2

dt =
∫ t1

t0

[
ṙ(t)TM (r(t)) ṙ(t)

]1/2
dt , (1)

where M can vary spatially and i, j = 1, 2, 3.
A metric tensor represented by a matrix M has a decomposition given by

the spectral theorem [12]:
M = QΛQT . (2)

Here, Q is an orthogonal eigenvector basis and Λ is a diagonal eigenvalue
matrix. Using the ellipsoid interpretation of the metric, the eigenvalues are
the inverse-squares of the ellipsoid’s axis lengths.

These properties have made metrics an appealing method for representing
mesh directionality (eigenvector directions) and anisotropy (corresponding
eigenvalues). Researchers have applied metrics to generate and adapt meshes
[7, 13].

There is a body of work directed toward generating directional fields on
surfaces for the purpose of texture synthesis, painterly rendering, and surface
meshing; refer to [14, 15].

Other algorithms relevant to this work include advancing front methods
and grid-based methods, as previously mentioned. In addition to this, our
underlying element-shaping strategy is inspired by the previous work of Alliez
et al. [16] and Tchon et al. [17] on remeshing and pseudo-mesh generation
using tensor fields and streamlines, respectively.

The proposed work is unique in that it assigns the tasks of element shaping
and choosing marching directions to a field that is generated prior to meshing.
Additionally, insertion operators have been developed that allow systematic
insertion of elements in a valid manner, while meshing from the inside-out.
Finally, by placing tiled fronts throughout the volume, this method is able to
combine with existing methods to produce good quality hex-dominant meshes
with augmented hex-to-tet ratios where desired.
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3 Technical Approach and Preliminaries

The overall strategy is described in this section, which can be decomposed
into three main steps:

1. Metric Field Generation: An iterative technique is used to solve for metric
tensors on the nodes of a background mesh. The technique produces a
boundary-aligned field, which is then adjusted to uniform anisotropy.
With appropriate interpolation, this provides a piecewise-linear field over
the volume.

2. Field-Guided Hex Tiling: The element shaping strategy attempts to form
unit hexes that are aligned with the metric eigenvector streams and ap-
proximately adhere to the lengths encoded in the metric eigenvalues. This
is achieved by creating new hex nodes at the intersections of approxi-
mately unit length streamsurface triplets. The meshing process begins
by inserting a seed hex on the interior of the volume. During tiling, inser-
tion operators determine how new hexes are extended from the current
mesh. This continues until the boundaries are reached, at which point
new elements are locally snapped to boundary surfaces, feature curves,
and feature vertices to enable boundary conformity.

3. Hex-Dominant Mesh Generation: Packing of rectangular solid cells is aug-
mented to incorporate the tiled hex fronts. The hex nodes are packed as
fixed cells, and with some specific pre- and post-processing, the process
is continued to obtain a hex-dominant mesh.

Figure 1 below depicts some of the main steps of the whole process, in the
order described above.

(a) Input
geometry

(b) Streamlines
and streamsurfaces
of the generated

tensor field

(c) Intermediate
stage of hex front

tiling

(d) Final
hex-dominant

result

Fig. 1. Overview of the whole process

Before elaborating on each of these steps, several techniques and constructs
that support field generation and meshing need to be discussed.
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3.1 Metric Field Representation, Support, and Operations

The metrics used in this work are stored as symmetric 3×3 matrices with di-
rectionality and anisotropy encoded through the eigenvectors and eigenvalues.
This is convenient for tasks such as length measurement and interpolation.
However, streamline generation requires the eigen-decomposition in order to
use the eigenvector fields. Therefore, both representations are employed at
different times. The eigen-decomposition is obtained via the Jacobi rotation
method [18], and 2 is used to go back to the matrix form.

During meshing it is often necessary to query eigenvector directions, find
the best eigenvector corresponding to an input direction, and to relate the
eigenvectors of two closely aligned metrics. In this work, eigenvectors are
specified by an index (e = 1, 2, 3) and sign (σ = ±1) with respect to a given
metric. The eigenvector (index-sign pair with respect to a specific metric)
that best corresponds to an input direction is taken to be the one that has
the largest dot product with it. For example, if the input direction is the
normal of a patch of mesh faces, this facilitates finding the best eigenvector
to trace streamlines in the normal direction.

When relating two metrics, one of two methods is used. The first consis-
tently orders eigenvectors based on eigenvalue magnitudes, so associativity
between the eigenvectors of both metrics is determined by eigenvalue mag-
nitude. This is used to define the three eigenvector fields which are traced
during tiling. The second is employed during field generation to snap the
eigenvectors of one tensor to the eigenvectors of another. It compares direc-
tions as mentioned before to determine the associativity.

The generated metric fields are piecewise-linear in component space. That
is, the six independent components of the tensor field vary linearly over space.
As a support, a convex, constrained Delaunay background tet mesh is used.
With known surface normals, a flood fill is used to mark interior and ex-
terior tets. Additionally, the metric tensors are stored on the nodes of the
background mesh.

Point location in the background mesh is performed by walking [19]. The
convexity requirement prevents walks from falsely terminating at non-convex
boundaries. It is a suitable choice, considering that most of the field op-
erations sequentially access face-adjacent tets. Another benefit is that the
barycentric coordinates can be reused during interpolation. Once the target
point is located, point inside/outside can be determined from the status of
its enclosing tetrahedron.

Linear interpolation of the enclosing tet’s nodal tensors (in component
space) yields the local metric components. This is a relatively inexpensive
interpolation kernel, but note that it can lead to undesirable properties such
as swelling [20] and locally isotropic tensors. The latter case leads to umbilics
in the tensor field [21]. The eigenvector directions change very rapidly in
the proximity of umbilics, which is a problem when forming elements there.
Therefore, tiling avoids such regions.
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Streamlines are generated by specifying a starting point, an eigenvector
index-sign pair (σ, e), and a desired length under the metric field. Fourth-
order, fixed step-size Runge-Kutta [22] is used to generate successive points
along a streamline while accumulating the metric-lengths of the new segments
[12]. Due to the sign ambiguity of eigenvectors, the direction that most closely
matches the established marching direction is chosen; similar considerations
are made in [17]. The process is stopped once the measured length meets the
desired length, or if the integrator is stalled. Depending on the use, either
the entire polyline or just the endpoint is stored.

The next step is to generate streamsurfaces along two eigenvector direc-
tions, (σ1, e1) and (σ2, e2), with nominal lengths l1 and l2, respectively (see
Figure 2). Primary streamlines are traced according to these initial directions
and lengths from the initial point, p0. The primary streamlines are then re-
sampled to have n+ 1 points including the original first and last points.

0p

( )2 2,eσ

2l
1l

( )1 1,eσ

(a) Primary streamlines
emanating from the

initial point

(b) Secondary
streamlines emanating

from the primary
streamlines

(c) Final triangulated
quarter-band obtained
from streamline net

Fig. 2. Formation of streamsurfaces (n = 4)

From each resampled point on the (σ1, e1) streamline, a sufficiently long
streamline is generated in the local direction corresponding to (σ2, e2), and
vice-versa. These secondary streamlines should be sufficiently long to account
for rapidly converging/diverging eigenvector directions.

Due to the nature of these fields, it is not necessary for the secondary
streamlines to intersect. Therefore, an optimization process is used to find
the closest points on each pair of streamlines. Let poly1 and poly2 be arrays
of m1 and m2 points, respectively, that contain the points from each stream-
line. Then the following parameterization provides a piecewise-continuous
representation of each (i = 1, 2):

pi(u) = polyi[u0] (1− u′) + polyi[u0 + 1] (u′) , (3)

where u0 = floor(u), u′ = u − u0, and u ∈ [0,mi − 1). One unit interval in
the parameter space spans one line segment. Defining separate parameters
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for each curve, s and t, we can formulate an objective function from the
squared-distance between the two curves:

f = ‖p1(s)− p2(t)‖2 . (4)

A steepest descent scheme with adaptive step-sizing is used to find the pa-
rameters t� and s� that minimize this function. The gradient of f can be
written as:

∇f = 2 ([p1(s)− p2(t)] · ṗ1(s), [p1(s)− p2(t)] · ṗ2(t))
T
. (5)

Central differencing is used to evaluate the tangent vectors of the two curves,
ṗ1(s) and ṗ2(t). The average of the locations evaluated from the optimal
parameters is returned as the closest point.

The net of closest points forms a grid, which is split into triangles to build
the streamsurface. In practice, the portion of the net within some length along
the primary directions is not generated to lower cost. The streamsurfaces
generated in this manner also occupy a single “quadrant,” so they are referred
to as “quarter-bands.”

This concludes discussion of the preliminaries, and in the next sections the
methods for field generation and hexahedral tiling will be addressed.

4 Generating Metric Tensor Fields

The key to the proposed method is to separate the tasks of controlling element
shape, selecting marching directions, and obtaining boundary alignment from
the meshing algorithm. This allows for a simpler meshing algorithm, while
incurring more effort during this stage. The following subsections describe a
“form-fitting” approach to first generate individual surfaces fields, and then
the final boundary-aligned volume field. It is designed to match the intuitive
notion of how directionality should vary over a “principally blocky” volume.

4.1 Boundary Field Form-Fitting

In the first step, “scaffold triads” are placed along feature curves and at
feature vertices. These triads are aligned with the local features as best as is
possible, and specify required directionality but not eigenvector ordering or
anisotropy. Many geometric features can be captured this way, however, the
orthogonality of the triads limits capture of features such as knife edges or a
vertex with more than four incident feature curves.

Then, form-fitting is applied independently to each surface. For a given
surface, one of its bounding curve’s nodes is selected to begin. This node’s
metric tensor is initialized with the directions from its scaffold triad, and the
following procedure is performed:



Tensor-Guided Hex-Dominant Mesh Generation 385

while not all bounding nodes have been visited do
Get the metric tensor of the current node, and snap its directions to the closest directions
on the node’s scaffold.
Mark the node as visited and as a boundary condition (BC) node.
Solve an approximate surface Laplacian over the current surface, with the current set of
tensor BCs.
Move to the next unvisited, adjacent node on the bounding node-loop(s) of the surface.

end while

The stencil for the approximate surface Laplacian is:

Mk+1 =

⎛

⎝
N∑

j=1

wj

⎞

⎠

−1
N∑

j=1

wjTjM
k
j TT

j , (6)

where Mk+1 is the updated tensor at the current node, wj is the Floater’s
mean value coordinate [15] associated with neighbor node j = 1...N , Tj is
the transformation from the surface normal at neighbor node j to the surface
normal at the current node, and Mk

j is the tensor at neighbor node j.

4.2 Interior Form-Fitting

By this point, all surface fields have been established. The fields of adjacent
surfaces may not match up in terms of ordered eigenvectors, but they are
directionally-compatible due to the shared scaffold triads used while gener-
ating them. The tensors on the interior of each surface are snapped to the
local surface normal to ensure alignment, and then all surface tensors are
converted to scaffold triads. A similar procedure is then employed to march
over unvisited boundary nodes and complete the volume field:

Pick a starting node on the boundary and generate a complete metric tensor with directions
from its scaffold.
Set this node as visited.
Push node onto boundary-node queue.
while boundary-node queue not empty do

Set current node to the front node of the queue.
Pop the front of the queue.
Snap the current node’s metric tensor to its scaffold directions.
Set the current node as a BC node.
Solve tensor-component Laplacian over volume with BCs.
for each node adjacent to the current node do

if current adjacent node is on the boundary and is unvisited then
Push onto queue.
Set visited flag.

end if
end for

end while

This concludes the description of the form-fitting procedure. After this,
all surface tensors are set as boundary conditions to solve for the exterior
volume field. This allows streamlines and surfaces to extend slightly past the
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boundary as necessary. The nodal tensors of the completed field are mod-
ified to represent the desired anisotropy, and the umbilics of the field are
extracted using a technique described in [25]. We have modified the second
technique presented in that work to extract connected umbilic structures
(curves, surfaces, and sub-volumes) as well as discrete points for full- and
transverse-isotropy, for the piecewise-linear tensor fields generated here. In
the next stage, the tensor field and umbilic information is passed on to the
tiling and hex-dominant meshing algorithms.

5 Hex-Dominant Mesh Generation

Individual hex fronts are generated in regions that are free of umbilics and
in regions of interest. A hex front is initiated by inserting a seed element
on the interior or just within the boundary of the volume. This exposes six
hex faces on the “skin,” or collection of 2D elements on the boundary of
the current hex mesh. The next elements to be inserted will use some of the
current skin faces and add new ones, after which the skin is updated. As
the skin grows, different combinations of existing skin faces may be used to
form new elements. To avoid combinations that might lead to self-intersection
or topological invalidity, insertion operators are used to plan and execute
insertions that utilize groups of existing skin faces, referred to as insertion face
groups (IFG). The IFGs, in turn, are identified by studying their skin nodes.
When an operator is used to perform an insertion, depending on the IFG
type, quarter-bands are appropriately placed and intersected to obtain the
new nodes that define the target element shape. As appropriate, boundary-
conformity operations may be invoked to associate proximal mesh entities
with boundary features.

Once the fronts have been tiled in ROIs and away from field umbilics, there
are two possible strategies for completing the hex-dominant mesh. The first
is to perform a Boolean subtraction of the fronts from the volume, generate
a hex-dominant mesh in the remaining volume, and then unite the meshes.
This is similar to the Hex-Tet algorithm by Meyers et al. [27]. The second is
to incorporate the front nodes into the rectangular bubble-packing process,
which has been selected for this work. Although it does not guarantee 100%
hex recovery, in practice the distribution of front nodes leads to significant
recovery. Furthermore, it may allow for better overall element quality and
transitions between hex and hex-dominant regions. The potential for non-
conformal configurations with hanging-nodes and other complications noted
in [24] are also avoided by taking this route.

5.1 Topological Insertion Operators and Face Groups

The rules that determine what types of elements to insert are fundamentally
based on the local element-vertex connectivities of the skin vertices and faces.
These vertex types can be enumerated by considering a central vertex in a
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structured hex mesh. The vertex is initially surrounded by eight elements,
and by removing different permutations of elements, a unique set of config-
urations of skin faces using the vertex can be obtained. Figure 3 lists the
types considered in this work. Some configurations have been excluded be-
cause they naturally do not arise due to the way elements are inserted; for
instance, configurations where two hexes only share one edge or where there
is a hexahedral through-hole or void.

All 8 hexes (0) 3-concave (1) 4-concave (2) 5-concave (3) 4-flat (4)

6-star (4) 6-v2 (4) 5-convex (5) 4-convex (6) 3-convex (7)

Fig. 3. Skin vertex types

The number of elements removed from the original eight is indicated in
parentheses next to each vertex type name. In order, these vertex types will
be referred to as: 3c, 4c, 5c, 4f , 6�, 6v2, 5v, 4v, and 3v from here on.

We will now present the topological insertion operators which process
IFGs. The set of insertion operators and their IFGs is given in the figure
below. Each possible insertion (left) is shown with its corresponding IFG
(right) in Figure 4. Sets of required vertex types that are used to identify
IFGs are enumerated in Table 1.

Table 1. Vertex type requirements for IFGs

IFG type Vertex type requirements

Side-1 Type ({v0, v1, v2, v3}) ∈ {4f , 5v, 4c, 3v}
Bracket-2 Type ({v2, v5}) ∈

{
4c, 5c, 6�,
6v2, 5v

}

, Type ({v0, v1, v3, v4}) ∈ {4f, 5v, 4v, 3v}
Corner-3 Type (v6) = 3c, Type ({v0, v2, v4}) ∈ {4c, 5c, 6�, 6v2, 5v},

Type ({v1, v3, v5}) ∈ {3v, 4f , 4v, 4c, 5v}
Cup-3 Type ({v1, v2, v5, v6}) ∈ {4c, 5c, 6�, 6v2, 5v},

Type ({v0, v3, v4, v7}) ∈ {5v, 4v, 3c}
Scoop-4 Type ({v0, v1}) = 3c, Type ({v2, v3, v4, v5}) ∈ {4c, 5v, 5c, 6v2, 6�},

Type ({v6, v7}) ∈ {3v, 4f , 4v, 5v}
Bucket-5 Type ({v0, v1, v2, v3}) = 3c, Type ({v4, v5, v6, v7}) ∈ {4c, 5c, 6�, 6v2, 5v}
Bracket-2*: There is an ambiguous case when both and are of type 5-convex. To resolve this,
an additional requirement is enforced: the edge between them should be used by three hexes
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v0 v1

v2v3

Side-1

v5 v2

v3v4

v0 v1

Bracket-2

v5

v2
v3

v0

v1

v4

v6

Corner-3

v5 v2

v3v4

v6 v1

v7 v0

Cup-3

v5 v1

v3v4

v6 v0

v7 v2

Scoop-4

v2

v1

v5

v6

v3

v0

v7

v4

Bucket-5

Fig. 4. Topological insertion operators

5.2 Planning and Scheduling Insertions

In this section, we discuss the precedence among the operators at a particular
spot and how potential insertions over the entire skin are processed.

Due to the nature of the vertex type requirements, more complex inser-
tions automatically precede simpler ones over an applicable skin region. This
prevents some cases in which the mesh propagates into itself or forms sharp
cracks. If vertices are instead classified by geometric criteria such as dihe-
dral angles between the faces containing a vertex, then insertions should be
searched for starting from the most complex one (one that is not contained
in any other). One possible ordering is: Bucket-5, Scoop-4, Cup-3, Corner-3,
Bracket-2, and finally, Side-1. This has been adopted as the current insertion
precedence.

In order of precedence, IFGs are placed on unclaimed portions of the skin
and also pushed onto an insertion queue. Once again, in order of precedence,
the top IFG in the queue is popped and then used to place an element.
If this fails, the IFG is maintained but marked as failed and pushed back
onto the queue. Additionally, if an IFG has vertices that fall outside the
volume, it is marked as do not insert. When an insertion is successfully made
from an IFG, the skin and vertex types are locally updated and the IFG is
deleted. The affected IFGs (e.g. adjacent ones) are deleted and removed from
the queue, then local re-planning is performed. One benefit is that a failed
insertion (e.g. due to field behavior) may eventually succeed if neighboring
insertions succeed and trigger a reevaluation. Also, this scheme naturally
prefers uniform front growth. As long as umbilics and highly distorted field
regions are avoided, both features lead to avoidance of self-intersection.

Tiling proceeds until no IFGs remaining in the queue can be processed.
The goals of avoiding umbilics, achieving boundary conformity, and staying
within a ROI use the do not insert flag to appropriately terminate tiling in
particular directions.
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5.3 Element Shaping

Consider a single hexahedron: If its faces are aligned with the metric eigen-
vectors, as should approximately be the case, then the faces are discrete ana-
logues to similarly placed, continuous streamsurfaces. Mesh edges are then
analogous to curves of intersections between any two adjacent streamsur-
faces, and mesh nodes are analogous to the intersection of any three adjacent
streamsurfaces. This is the guiding principle behind the formation of elements
in the proposed method. When an element is to be placed, it may use exist-
ing skin faces (IFGs) and add new faces. Streamsurfaces are generated to be
parallel to the new faces. The intersections of triplets of these streamsurfaces
are used to locate newly introduced nodes needed to form a new hex. Figure 5
illustrates the collections of streamsurfaces used to define the insertion types:
Seed, Side-1, Bracket-2, and Corner-3. The remaining types shown in Figure
4 only use existing nodes and do not require this procedure.

Seed – Six hex
faces are formed

using 24
quarter-bands

Side-1 – Fix hex
faces are formed

using twelve
quarter-bands

Bracket-2 – Four
hex faces are

formed using six
quarter-bands

Corner-3 – Three
faces are formed

using three
quarter-bands

Fig. 5. Element shape definition using quarter-bands

To generate a seed element, half unit-length streamlines are integrated
along all six eigenvector sign-direction pairs. From the endpoint of each
streamline along direction (σi, ei), four quarter-band surfaces are generated
from the eigen-directions normal to the local (σi, ei) direction. Triplets of
these quarter-bands intersect at a potential node location of the new seed hex.
The intersection process is accelerated using a uniform lattice and Möller’s
presentation of the separating axis theorem [23] to cull the set of triangle-
triangle intersection tests that are performed.

For Side-1, Bracket-2, and Corner-3 insertions, the eigen-directions for the
quarter-bands are determined by looking at the eigen-directions of the metric
tensors at the local skin nodes. The eigen-directions which align with skin
edges or normals are selected to form the surfaces.

By design, this element formation method primarily aligns newly inserted
skin faces with the metric field. Meeting the size requirement is secondary, and
thus is only approximately satisfied. Otherwise the mesh would progressively
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deviate from local field directions, and local eigen-direction selection could
not be used.

5.4 Boundary Conformity

Because the proposed method is designed to produce a boundary-aligned
field and hence elements that approach boundary-alignment as they reach
the surface, a relatively simple boundary capture method suffices for many
models.

When elements are inserted in proximity to the boundary, a series of lo-
cal and greedy snapping moves are attempted to enable capture of feature
vertices, feature curves, and surfaces. For a newly inserted hex, nodes are
considered for snapping to candidate feature vertices, then edges to candi-
date feature curves, and finally, faces to boundary surfaces. Non-dimensional
fitness scores have been developed for each class to facilitate prioritizing and
qualification of moves. To exclude moves that will result in poor quality ele-
ments, the shape metric is evaluated for the hexes incident on a moved node.
If the minimum metric is below the threshold, then the move is reverted; 0.3
is used in this work. Additionally, to prevent the mesh from spilling out of
the volume, the IFGs containing projected faces are appropriately marked.

5.5 Hex-Dominant Mesh Finalization

The packing approach to hex-dominant mesh conversion from an initial con-
strained Delaunay tet mesh is only slightly modified for the purpose of this
work. The following overview includes the necessary alterations, in bold, for
incorporating the hex fronts into the process:

1. Hex front nodes are packed as fixed bubbles.
2. The rest of curves, surfaces, and interior are then packed.
3. Trimming is performed on regular bubbles that are within one

metric unit of the front node bubbles.
4. After the surface is remeshed using the surface bubbles, edge

swaps are performed to recover hex edges that lie on the bound-
ary.

5. A constrained Delaunay tet mesh is obtained from the bubble centers.
6. Topological and geometric quality improvement is performed on the tet

elements.
7. Tet to hex conversion is attempted and followed by further quality im-

provement.

6 Results

To demonstrate the efficacy of the proposed method, a large deformation,
elasto-plastic analysis of a lower control arm has been performed using
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ABAQUS [26]. Figure 6 shows the control arm model, computed volume
tensor field along with umbilic structures, hexahedral mesh fronts, and the
resulting hex-dominant mesh. The oriented bounding box of the model has
dimensions of 16.77× 4.61 × 17.60 units and pseudo-isotropy is imposed on
the field with a nominal mesh size of 0.2 units. The current implementation
is not yet fully optimized for performance, but the overall time for field gen-
eration, tiling, and generation of the final hex-dominant mesh is under 15
minutes.

(a) Control arm model (b) Tensor field streamlines and
umbilics

(c) Hexahedral fronts (d) Final hex-dominant mesh

Fig. 6. Control arm results

A total of 8,046 hexes with an average length of 0.20 were generated during
tiling. The final hex-dominant mesh consists of 62,300 elements, with an
average edge length of 0.23. By quantity, 20,181 (32%) of the elements are
hexes and 42,119 (67%) are tets. The hex elements constitute 73.52% of
the total volume, whereas only 26.48% is occupied by tets. The minimum
and maximum scaled Jacobian metrics of the hexes are 0.4 and 1.0, and the
average is 0.93. The radius-ratio metric for the tet elements ranges from 3.0
(ideal) to 697.69, with an average value of 4.12. The distributions of hex and
tet element quality according to these metrics are presented in Figure 7.

For the analysis, an elasto-plastic material model based on isotropic hard-
ening was specified with generic parameters for steel: E=210 GPa, ν=0.3,
σy = 480 MPa, ultimate strength σu = 550 MPa, and tangent modulus
Ep,t =349.42 MPa. The interior cylindrical surfaces on the left portion of
the model were displacement constrained, and lateral and vertical loads of
1,080 kN and 540 kN, respectively, were transmitted to the cylindrical surface
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Fig. 7. Hex (Scaled Jacobian) and tet (Radius-Ratio) quality distributions

(a) Von-Mises plot on deformed
configuration along with undeformed

configuration

(b) Deformed configuration
with plastic zones shown in

gray

Fig. 8. Von-Mises stress distribution with fully plastic zones in deformed configu-
ration

at the apex. The deformed configuration is shown in Figure 8, in which the
gray regions denote fully plastic zones.

More examples of this method are shown in Figure 9. Each example shows
the hexahedral fronts followed by the resulting hex-dominant mesh with the
exterior targeted ROIs circled. In all examples, fronts are seeded at interior
positions away from umbilics. Colored faces indicate that a similarly colored
surface has been captured by the mesh.

The data for these models are summarized in Table 2. Inspection of the
resulting hex-dominant meshes reveals that a significant portion of the hex
fronts are recovered at the end of meshing process, and with reasonable qual-
ity overall. However, the results also warrant further work on improvement
of the worst quality elements (primarily tets) and perhaps a more aggressive
strategy for hex recovery.
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(a) Fronts generated for a −5/4 time
square torus [28]

(b) Torus hex-dominant mesh with
ROIs circled

(c) Fronts generated for an
amorphous blob

(d) Blob hex-dominant mesh
with ROIs circled

Fig. 9. Additional examples

Table 2. Statistics for additional examples

Model Square Torus Blob

Oriented bounding box dims: 290.11× 294.90 × 100.00 25.80× 20.51× 20.36
Specified anisotropy: 4.0 pseudo-isotropic 0.5 pseudo-isotropic
# of tiled hexes (avg. edge length): 9,811 (4.11) 5,704 (.46)
# of hex-dom. elements (avg. edge length): 105,052 (4.47) 127,157 (.52)
% hex by volume (by number): 76.90% (36%) 75.32% (33%)
% tet by volume (by number): 23.10% (63%) 24.68% (66%)
(Min / Avg. / Max) Hex Scaled Jacobian: 0.40 / 0.93 / 1.00 0.40 / 0.92 / 1.00
(Min / Avg. / Max) Tet Radius ratio: 3.00 / 3.99 / 87.91 3.00 / 3.82 / 129.26

7 Conclusion

A method for generating quality hex-dominant meshes with targeted all-hex
regions has been presented. This is achieved by tiling fronts of hexahedral
elements throughout the volume and at ROIs, and then incorporating the
front nodes in the rectangular bubble-packing method. To guide element
shaping and marching directions during tiling, and bubble directionality and
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anisotropy during packing, a metric tensor field is required. To this end, a
new approach has been introduced for constructing piecewise-linear metric
tensor fields over volumes. This approach produces boundary-aligned fields
of uniform anisotropy by incrementally “form-fitting” an initially Cartesian
field to the directions specified by boundary curves and surfaces. Provided
with the field, the tiling process is able to generate topologically valid hex
fronts using insertion operators and boundary conformity operations. The
nodes of the fronts are set as fixed bubbles, and through other pre- and post-
processing steps, the method is able to generate good quality hex-dominant
meshes. Finally, the ability of the method to produce meshes of sufficient
quality for difficult, non-linear analyses has been demonstrated.

Plans for future extensions to this work include refining the techniques
for field generation and interpolation as well as improving the robustness
of the tiling process (including boundary conformity), especially with varia-
tions in anisotropy. Furthermore, although this work is motivated by a pri-
ori anisotropy and directionality requirements, the incorporation of solution-
based metrics is currently being investigated.
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