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Abstract. This paper describes the main principles used in the development of
the VECTIS mesher. The mesher produces unstructured 3D meshes suitable for
Finite Volume Methods. It is based on the Cartesian approach. In contrary to the
traditional approaches which use exact shape of boundary faces of cut cells, this
mesher employs Marching Cubes method for generation of majority of boundary
faces. Only in problematic parts of the geometry, when the danger of chamfering
of sharp features occurs or when watertightness of the cell might not be ensured,
the Exact Fit method is used to produce the patches. Because two different meth-
ods are used for generation of patches, additional effort needs to be made to tie
the boundary polygons to prevent gaps. A new algorithm for determining the most
suitable configuration of triangles of Marching Cubes patterns is proposed. In carte-
sian meshers, a problematic situation occurs whenever triangles of the surface lay
exactly on a side of the intersecting box. In order to prevent these collisions, an
approach called Dual Levels has been introduced. The implemented method of cell
refinement is presented. The paper also explains the way how the problem of cells
that are too concave was resolved. The algorithm of the whole meshing task is
described in detail. The new mesher has significantly lower time and memory de-
mands in comparison with its predecessor. The main approaches responsible for
this improvement are discussed.

1 Introduction

For many applications, it is advantageous to use meshing based on the Carte-
sian approach. Although this type of meshing have a drawback in lower qual-
ity of cells near boundary, there are also significant advantages. Cartesian
meshers are robust, so when the input surface geometry is prepared in a rea-
sonable quality (it is closed and there are no self-intersections) the meshing
process does not require further interaction with the user. Because generation
of inner parts of meshes is very easy, Cartesian meshers can quickly produce
millions of cells.

There are two basic ways how Cartesian meshes can be generated. The
first approach uses so called cut cells, which means that the boundary
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polygons have arbitrary shape and size defined by the intersection of the input
geometry and the cutting box. When this approach is used, the solver that
uses these meshes needs to be able to cope with the fact that neighbourhood
of cells with significantly different size is possible. A finite volume scheme like
this has been presented in [5]. Another possibility may be merging of cells
(like in [3]). There is a lot of literature dealing with this kind of Cartesian
meshing, for example [1], [2], [3] or [4]. The basic knowledge necessary to
start working on the development of a Cartesian mesher is well summarised
in [3]. In order to try to increase the quality of surface cells, the second
approach is used by several development groups. In this case, the cartesian
cells are generated only inside and then, the gap between the inner cells and
the boundary is tried to be filled by cells with as high quality as possible.
This approach is sometimes called I2B (interior to boundary). When using
this way of mesh generation, the preservation of sharp features is the most
challenging part of the task. This approach can be represented for example
by these papers: [6], [7] or [8].

The mesher described in this paper uses the first approach (cut cells)
and the generated 3D meshes are used by VECTIS solver, which is based on
principles described in [5]. The mesher uses an unique approach of generation
of patches. The exact shape of patches of cut cells (generated by a method in
further text called Exact Fit) is used only in these boxes which are intersected
by a sharp feature. All the other patches (the majority) are generated by
Marching Cubes method (see [10]), which is very straightforward and quickly
generates simple patches. Usage of Marching Cubes has a great advantage
also in its ability to overcome problems with small flaws in the input geometry.
The real world geometries often contain problems when healthy triangles are
connected by a thin triangle with opposite orientation (this flaw is called
“folded geometry”). When boundary faces are produced by Exact Fit, this
kind of flaw leads to problematic patches and an additional cleaning algorithm
needs to be employed. However, these flaws are invisible for Marching Cubes
method; therefore, the surface is naturally cleaned up. Also, a new method for
choice of the proper pattern of Marching Cubes is proposed (see section 4.7).
Usage of Marching Cubes and the mixture of two different methods of patch
generation creates a new problem which needs to be overcome: watertightness
of the surface polygons need to be ensured. It is described in this paper
how to do it (see section 4.8). There is another unique approach used in the
mesher which ensures that collisions of the input surface with sides of cutting
boxes are avoided. This technique is referred as Dual Levels in this paper.
The approach is based on slight shifting of nodes of the input geometry to
discrete levels and cutting planes are shifted to another discrete levels (shifted
by half step), so as it can never happen that a triangle of input surface lies
exactly on a cutting plane. The step of the discrete levels is far smaller than
the manufacturing tolerance of the real component. However, the step is big
enough to ensure robustness of the routines for generation of faces of cells.
The technique is described in section 4.2. In order to cope with concave cells,
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the mesher uses two techniques to overcome problematic situations. The first
approach uses splitting of cells to convex features (called Cell Splitting in this
text and described in section 4.11). For those situations when Cell Splitting
fails (this can happen if the input surface contains flaws), a less exact but
robust method is used (called IP patches in this paper and described in
section 4.11). This second method is based on the maximal simplification
of the inner parts of patch structure. The algorithm of the whole meshing
task is described in detail in section 6. In comparison with its predecessor
(the main principles on which the previous mesher was based were presented
on 3rdInternational Meshing Roundtable [9]), the new mesher produces cells
with much higher quality. This is caused mainly by better choice of Marching
Cubes patterns, better strategy of decisions which method should be used
(Exact Fit or Marching Cubes) when generating patches in a box and the
new Dual Levels technique. Also, the new mesher has significantly lower time
and memory demands. The main approaches responsible for the improvement
in speed and memory consumption are discussed.

2 Context of the Mesher in VECTIS-MAX System

The mesher described in this paper is part of the new version of VECTIS
program (the new program is called VECTIS-MAX). VECTIS is a three-
dimensional computational fluid dynamics program that has been developed
specifically to address fluid flow simulations in the vehicle and engine indus-
tries. VECTIS allows the simulation of a number of applications: in-cylinder
air motion and mixture preparation, spray dynamics, combustion modelling,
intake system design and optimisation such as exhaust gas re-circulation or
air/fuel ratio distribution, exhaust system development such as catalyst opti-
misation and thermal analysis, coolant jacket design and development, under-
bonnet (under-hood) thermal simulations.

The whole VECTIS system consists of preprocessor, mesher, solver and
postprocessor. In the preprocessor, user can load triangulated geometry in
STL format and ensure (with help of implemented tools) that the triangulated
surfaces are clean (i.e. there are no open edges nor mutual intersections of
the triangles). Additionally, groups of triangles forming different boundary
regions can be identified. In the preprocessor, the user also specifies how
the mesher should create cells (regions with different density of cells can be
specified). When this information is prepared, the mesher can be run. The
meshing process is fully automatic and no further interaction with the user
is required. Then, the graphical user interface of the solver can be used to
define the input file for the solver. Here, boundary conditions are specified
on the previously identified boundaries and parameters of the simulation
can be set. Then, solver can be run and the results are visualised by the
postprocessor.
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3 Requirements for Mesh Quality

VECTIS-MAX solver uses an unstructured mesh. Cells can be formed by any
number of polygons. They can have a nearly arbitrary shape; however, there
are several criteria that each cell needs to fulfil.

Shape of polygons: It must be possible to split each polygon forming the
cell into triangles starting from its centre (so called star triangulation).
The polygon may be slightly concave; however, there must be direct vis-
ibility of each of its nodes from the face centre.

Watertight cells: Each cell needs to be properly enclosed by its faces.
When polygons are split into triangles by the star triangulation (see the
previous condition) and the face surface vector Aj is calculated for each
triangle

Aj =
N∑

i=1

Ai =
1
2

N∑

i=1

[(ri−1 − rc)× (ri − rc)] (1)

(where N is the number of nodes of the polygon, which is equal to number
of triangles used for the star triangulation; ri is the position vector of i-th
node; rc is the position vector of the centre of j-th face), the geometric
conservation law has to be ensured:

∮

A

dA =
Nf∑

j=1

Aj = 0 (2)

(where Nf is the number of faces in the cell)
Angle condition for boundary faces: Angle between the vector cell centre
−→ face centre and the normal vector of the boundary face needs to be less
than 90�(the scalar product of these vectors needs to be positive). In figure
1, there are examples of cells which do and do not meet the criterion. The
cell on the left side satisfies the criterion, even though it is slightly concave.
The cell on the right side does not fulfil the criterion, because the angle α
is greater than 90�.

Angle condition for inner faces: A similar condition as for boundary
faces needs to be fulfilled for inner faces. In this case, the angle of the
two characteristic vectors needs to be less than 75�(the condition is more
strict).

4 General Approach

The approach is based on cutting the whole domain according to a global
mesh (defined by user) into boxes. When a box is intersected by the input
geometry, it can be further refined. For each hexahedral box, input/output
statuses of the eight vertices are remembered. Boundary faces (patches) are
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Fig. 1. A cell which does fulfil the angle criterion (left) and a cell which does not
(right); CC represents the cell centre, FC is the centre of the tested face, v is the
normal vector of the face; α is the tested angle

generated in all boxes intersected by the surface. Then, sides of the box are
tested. If patches were already generated in both adjacent boxes, they are
tied in order to close gaps; also, inner faces are generated on the common
rectangular face of the two boxes. Then, all fully inner rectangular faces
are generated on the rest of common sides of boxes. Finally, the output file
is generated. In the next subsections, this general approach is described in
detail.

4.1 Scaling

In order to eliminate the influence of dimensions of the input geometry (a
fuel injector nozzle in millimetres, a boat in dozens of meters), the input
geometry is proportionally scaled so as the longest dimension fits between
0.0 and 10.0.

4.2 Dual Levels

The problematic situation when the input geometry intersects a box exactly
on one of its sides (the triangle lies exactly on the cutting plane) needs to be
avoided. In order to cope with this situation, the technique Dual Levels has
been proposed. The approach is based on slight shifting of nodes of the input
geometry to discrete levels and cutting planes are shifted to another discrete
levels (shifted by half step), so as it can never happen that a triangle of input
surface lies exactly on a cutting plane. In order to get the discrete levels of
the two grids, the whole working space is confined to a cube that is divided
to 4200000000 levels in each direction (x,y,z), so as the position of each node
can be described by three unsigned integer values. Then, odd levels are used
to find positions of vertices of surface triangles and even levels help to find
new positions of the cutting planes. The technique of describing x,y and z
positions of vertices by three unsigned integers is used also for storage of nodes
and it is described in detail in section 7. Usage of this technique does not
mean that the input geometry is changed. In fact there is no error introduced,
because the step of the discrete levels is far smaller than the manufacturing
tolerance of the real component. However, the step is big enough to ensure
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robustness of the routines for generation of faces of cells. For example, even
if the calculated domain has 10 meters in its longest dimension, the step
defining the fine grid is 2.4× 10−9 m. Then, the odd grid defining positions
of vertices of input triangles has step 4.8× 10−9 m, which is far below any
used manufacturing tolerances. Usage of this technique makes the task of
generation of polygons of cells much easier.

4.3 Shoeboxes

Shoeboxing is a system that helps to quickly limit number of elements that
need to be taken into account when intersection tests are performed. The
3D space is divided to NI x NJ x NK boxes (so called shoeboxes). Then,
for each input triangle all shoeboxes that are intersected by it are found.
The index of the triangle is remembered by all affected shoeboxes. In the
mesher, the shoeboxes are identical to the global boxes (that are defined by
the user). Usually, users define higher density of meshlines in those regions
where fine details in the geometry (modelled by many small triangles) occur,
which naturally makes the searching system sufficiently balanced.

4.4 In/Out Status

In the stage of box generation, it is necessary to find the in/out statuses
of the vertices of all potential boxes. In order to find the in/out status of
a point, a ray-casting method (described for example in [3]) is used. Six
rays are released in directions -x, +x, -y, +y, -z and +z. All intersections
of the rays with the triangles of the surface are found. The in/out status is
then evaluated according to the number of the intersections with the surface
(odd number indicates inside status, even number means outside). Those
rays containing surface intersections that are too close to each other are
not taken into account to avoid further analysing whether the status should
be reversed or not. Two different situations are possible when two very close
intersections are found: the ray just hit edge of two triangles with similar unit
normal vectors (the in/out status needs to be reversed) or it just touched a
sharp feature (the in/out status needs to stay unchanged). If there is not any
reliable ray, new set of rays needs to be released under different angles.

The described algorithm is used when the in/out status of a node needs to
be found after the boxes are generated. However, for determining the in/out
statuses of the initial box vertices, a slightly modified approach also based
on the described principles is used: the released rays are used for whole row
of vertices. This method is described for example in [11].

4.5 Box Generation

First, so called global boxes are constructed according to the given meshlines;
in/out statuses of their vertices are found. Each global box is marked with
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Fig. 2. 2D analogy of refinement of global boxes

one of the three statuses: completely inside, completely outside or intersected.
Then, all completely inside and completely outside global boxes which neigh-
bour to an intersected global box need to be tested for intersections on their
twelve edges and intersections on their six sides. This test is necessary be-
cause it is possible that the surface penetrates the global box through an edge
(there is even number of intersections on the edge) or through a side (there
is a closed polygon forming the intersection on the side). If one of these cases
is detected, the status of the global box needs to be changed to intersected.

Then, all the boxes marked as intersected are processed. For each the pro-
cessed global box, the maximum possible refinement is found. According to
the maximum refinement, a 3D array of the in/out statuses of the vertices of
all the potential boxes is found [dimensions of the array depend on the max-
imum refinement depth Dmax: (2Dmax + 1)× (2Dmax + 1)× (2Dmax + 1)].
Also, a 3D array of statuses of the potential boxes is assembled (dimensions of
the 3D array are 2Dmax × 2Dmax × 2Dmax). The statuses are the same as for
the global boxes: completely inside, completely outside or intersected. Then,
1 × 1 × 1 boxes need to be combined in order to find the minimum number
of boxes which can completely cover the space defined by 1 × 1 × 1 boxes
with inside or intersected status. This task is solved by searching for the
minimum number of splits. The process of box generation is illustrated in
figure 2. The algorithm of box generation does not allow neighbourhood of
boxes with too different levels of refinement. When a big box is touched by
more than one split line on one of its side (when 2D analogy is considered),
it needs to be refined in the same direction. This situation can also be seen
on the figure 2. The big box on the left part of upper-left global box needs
to be split horizontally; otherwise, it would be touched by three horizontal
splits from two different levels of refinement. Also, the box forming the lower
part of upper-right global box needs to be split vertically because of the two
split lines from two different levels of refinement.
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4.6 Types of Refinement

As explained in the previous section (4.5), refinement depth (D) defines the
maximum possible divisions of the global box. The maximal number of 1×1×1
boxes that can be generated can be calculated as

N1×1×1 = 2D × 2D × 2D (3)

For the user, there are three ways how to affect the refinement of global boxes:

1) Global refinement depth defines the default refinement depth valid
for all boxes with no other specification

2) IJK refinement block allows to set a refinement level to a rectangu-
lar block of global boxes. Each global box is defined by its I,J,K integer
coordinates in the system of meshlines; therefore, the block can be spec-
ified by six integer values (IS, IE, JS, JE, KS, KE – where S stands for
start and E stands for end) and values specifying the refinement depth:
allowed refinement level and forced refinement. If the forced refinement
is specified, the global box will be split regardless of whether the input
surface intersects it or not.

3) Boundary refinement specifies the refinement depth which is to be
used in the global boxes that are intersected by a particular boundary.
With this type of refinement, three variables can be set for a boundary:
- Refinement depth at the boundary
- Refinement blending distance (This parameter specifies an integer

value which is used to control how the refinement at the boundary
blends into the refinement level of the surrounding cells. Blending is
achieved by giving the cells at the boundary a forced refinement level
which is less than or equal to the specified refinement depth, and
propagating away from the boundary in layers of successively lower
forced refinement. The blend distance defines how many layers of cells
should be at each forced refinement level.)

- Blend to boundary depth -1 (This is yes/no information specifying
whether the blending should start from “refinement depth–1” instead
from “refinement depth”)

Boundary refinement is applied after IJK refinement blocks. Therefore,
the allowed refinement depth can be changed in global boxes that has pre-
viously been affected by an IJK refinement block. However, the forced re-
finement level and refinement depth are always only increased by bound-
ary refinement specifications - never decreased.

4.7 Generation of Patches

Inside each box intersected by the surface, it is necessary to generate bound-
ary faces (so called patches). First, patches are generated as triangles and
later, triangles with similar unit normal vectors are combined to convex
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polygons. For generation of the triangular patches the concept of combination
of methods Marching Cubes and Exact Fit is used.

Marching Cubes

Marching Cubes is a well known method used in computer graphics (described
in [10]). The method defines 14 basic patterns to create triangles on the
intersections of edges of a cube (box in the terminology of VECTIS-MAX).
The patterns differ according to the in/out statuses of vertices of the cube.
The majority of the patterns have more than one possibility of how to create
triangles (e.g. if there are four intersected edges on the cube in pattern no.
2, two configurations of triangles are possible: “[4,2,9]+[9,2,10]” or “[4,10,9]
+ [4,2,10]”.

During the development of the new mesher, several ways to find the optimal
configuration of triangles have been tried. Based on these experiments, the
method used in the older 3D Cartesian mesher was rejected. The method
was based on the comparison of the in/out statuses of selected nodes in the
box when intersected by the original surface and in the box intersected by
the tested configuration of triangles. There are also some other possibilities
described in [13].

However, during the development of the mesher, a new simple method was
found which seems to be sufficient and much quicker than the other tested
methods. This method is based on evaluation of a criterion calculated from
the scalar product of unit normal vectors of the proposed triangular patch
(np) and the triangle of the surface intersecting the edge of the box (ns).
The criterion C can be calculated as

C =
(Cmax − 1)b1−s + b2 − Cmax

(b2 − 1)
(4)

where b is the base of the used logarithm, s is the scalar product s = np · ns

and Cmax is the chosen maximum value of the criterion (the value for the
worst case when the unit normal vectors are exactly opposite). This criterion
is calculated for each node of each triangle and the average is taken as the
value evaluating the configuration of triangles. The configuration with the
minimum value of the criterion is chosen. The shape of the function of the
criterion is visualised in figure 3. The criterion is designed to strictly refuse
those configurations where unit normal vectors point to opposite half-spaces.
Values b = 7 and Cmax = 4 were found as reasonable for this criterion, so
they are used in the mesher.

Exact Fit

If it is not possible to use the Marching Cubes method, the Exact Fit algo-
rithm is applied. This approach of patch generation is based on the splitting
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Fig. 3. Criterion for evaluation of different possibilities in Marching Cubes patterns

of surface triangles according to the sides of the box; only the triangles lying
inside the box are kept as patches.

Choice of the patching method

Marching Cubes method can be used only when it is sure that the simplifi-
cation would not cause chamfering of sharp features, problems with water-
tightness or damage of the border between different boundaries. When one
of the following conditions is true, the Exact Fit must be used:

- one of the edges of the box is intersected more than once (in this case,
tying of patches may not be feasible)

- the intersection polyline forms a closed polygon on one of the sides of the
box (the geometry would be invisible for Marching Cubes)

- there is a sharp feature detected in the box (Marching Cubes would cham-
fer the feature)

- there is more than one boundary index detected among the triangles in-
tersecting the box (Marching Cubes would damage the border between
two boundaries)

4.8 Tying of Patches

Whenever patches are generated in a box, all rectangular faces of the box
are tested to determine whether boxes on its both sides have already been
processed. When a rectangular side is found, whose both adjacent boxes
have been processed, the patches in the two boxes need to be tested for
watertightness. If there is a gap between patches, they need to be tied so
as the non-conformance is avoided. Two main cases when gaps appear are
illustrated in figure 4. The picture on the left shows the situation when there is
one box neighbouring with two boxes. Different simplifications from using the
Marching Cubes method from both sides gives patches that are not properly
tied. The picture on the right illustrates the situation when the Exact Fit is
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Fig. 4. Gap between patches caused by different refinement on two sides of common
rectangular side of boxes (left side) and gap between patches caused by usage of
different methods of patch generation (right side)

used from one side of the common rectangular side of boxes and Marching
Cubes is used from the other side.

When tying of patches is used in the mesher, the corresponding nodes need
to be found first. This action divides the problem to several simpler parts
when several segments need to be tied to one segment. The single segment
is divided so as the lengths of corresponding segments respect ratio of total
lengths of the polylines:

Lj

L′j
=

(
N∑

i=1

Li

)

/

(
N∑

i=1

L′i

)

(5)

where Lj is length of j-th segment of the polyline before tying of patches and
L′j is its length after movement of the nodes. Then, the nodes from the more
complex side are moved to the new positions.

4.9 Generation of Inner Faces

Each generated inner face is tested to determine whether it can be divided
into triangles by the star triangulation (see section 3). Those faces that are
so concave that correct triangles cannot be formed, need to be split to more
convex parts. The algorithm of searching the optimal cutting edge from the
most concave angle (described in [12]) is used. Boundary faces do not re-
quire this treatment, because their convexity is ensured by the process of
combination of triangular patches to polygons.

4.10 Removal of Small Cells

Volume of each generated cell is tested and compared with the size of its box.
If the ratio Vcell/Vbox is less than a defined constant R, the cell needs to be
deleted. When a cell is removed, its inner faces need to become boundary
faces of its neighbours. The constant R can be chosen by the user for each
boundary region. Defaultly, R = 1.0×10−3 is set; for boundaries representing
input/output or cyclic boundary, the value 1.0× 10−100 is used.
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4.11 Problem of Concave Cells

In order to overcome problems with cells that are so concave that the an-
gle condition for boundary faces mentioned in section 3 is not fulfilled, two
techniques are applied: Cell splitting and IP patches. Cell splitting inheres in
searching for a cutting polygon which would divide the concave cell into two
parts with better properties.

When this method fails (usually due to a flaw in the input surface), IP
patches can be generated instead. This approach inheres in replacing the
patch structure by polygons forming the intersection of the box with the
surface (IP means intersection polygons). When IP patch method is applied,
the shape of the geometry is not covered as well as if Cell splitting were used.
Therefore, IP patches should be used only as a last chance mechanism when
Cell splitting algorithm fails, just to avert failure of the whole meshing task.

Cell Splitting

First, the optimal cutting plane is found. In order to do this, the following
procedure is performed. The edge representing the worst concave feature
needs to be identified. Then, the adjacent edges are tested; if some of them
are also not convex, the concave feature polyline will grow. Then, the cutting
plane angle αc is calculated as half of the average angles αi adjacent to N
edges of the concave feature polyline:

αc =
1
2

[(
N∑

i=1

αili

)

/

(
N∑

i=1

li

)]

(6)

The average is weighted by lengths of the edges (li).
Then, the intersections of edges of the cell with the cutting plane are

found and the cutting polygon (the closed polyline of the intersection) can
be finished. Whenever an edge is intersected very close to one of its end
vertices (the deviation of the two adjacent edges of the cutting polygon from
the cutting plane is less than 5�), the end vertex is used instead.

IP patches

The unit normal vector and the face centre are assigned to each IP patch.
These properties are calculated in the mesher and they are passed to the
solver (in the contrary with other types of faces whose properties are found
during the run of the solver). The normal vector of the IP patch is calculated
from the condition described by equation (2). Sum of face surface vectors
Aj of all other faces determines the face surface vector of the IP patch. A
face centre needs to be found so as the angle criterion (see the section 3) is
fulfilled. The process needs to be done iteratively, since each movement of
the face centre affects the cell centre.
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Fig. 5. Coolant jacket (input geometry, part of the mesh and a slice view of the
gasket hole)

5 Examples of Generated Meshes

In order to show some examples of generated meshes, geometries of two typ-
ical problems often solved by VECTIS were chosen.

1) Exhaust manifold with turbine: The input geometries, and parts of
generated meshes are illustrated in figure 6. The pictures represent ex-
haust manifold with a turbine housing. Images on the left side are linked
to the solid part of the multi-domain simulation. On the right side, there
is the fluid part of the simulation. When both geometries are meshed,
the common interface needs to be made conformal in order to prepare
them for the multi-domain simulation in the solver. Even distribution of
meshlines with size of cells 3 mm and refinement depth 1 were chosen.

2) Coolant jacket: In figure 5 a typical example of geometry for modelling
of flow of water in cooling channels of the engine is shown. The size of the
global cells was chosen as 3 mm; together with refinement depth 2. The
slice of the mesh in the lower part of the figure shows the critical part
between the head and the block of the engine, called the gasket hole. IJK
refinement block was used here to enforce refinement depth 3 in order to
ensure sufficient number of cells to realistically simulate the flow in this
narrow channel.
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Fig. 6. Exhaust manifold with turbine (input geometries and parts of the meshes)

6 Description of the Meshing Algorithm

When running in the meshing mode, the scheme of the work of the mesher
is this:

1) READ INPUT FILE FOR MESHING TASK: The input ASCII file
(containing information about positions of meshlines and some other spec-
ifications for the meshing task) is read.

2) READ SURFACE TRIANGLES: The input file containing informa-
tion about surface triangles (trifile) is read. Coordinates of the triangles
are scaled (see the subsection 4.1), the geometrical extents of triangles
are found and connectivity information is assembled.

3) APPLY DUAL LEVELS: The x,y and z positions of meshlines (defin-
ing the cutting planes) are shifted to discrete positions on a very fine grid.
At the same time, nodes defining triangles of the input surface are moved
to lay on a different grid (with its levels shifted by half-step). This averts
collisions of cutting planes with with triangles perpendicular to the prin-
cipal axes. (see the subsection 4.2)

4) DETECTION OF OVERLAPPED TRIANGLES: The algorithm
for detection of overlapped triangles is run here. If there are some prob-
lematic triangles, a warning is printed together with the list of indexes
of the triangles. If problematic triangles are detected, the mesher will
continue its work. Usually, the mesher automatically overcomes small
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problems in the input triangulated surfaces. However, if it happens that
the final gridfile contains cells with low quality, the user should try to
improve the flaws in the surface detected in this step and run the mesher
again.

5) PREPARE SHOEBOXES: The system of shoeboxes is established
here (see the subsection 4.3).

6) CONSISTENTLY ORIENT TRIANGLES: Since the orientation of
the input triangulated surfaces is random in the input file, it is necessary
to orient them so as normal vectors of the triangles always point into the
flow domain.

7) PREPARE IN/OUT STATUSES: Here, in/out statuses of the ver-
tices of the global boxes (that are defined by meshlines) are found by
ray-casting method (see the subsection 4.4).

8) GENERATION OF BOXES: The boxes are generated in the global
boxes (see the subsection 4.5) according to the prescribed refinement
specification (see the subsection 4.6).

9) PREPARE COMMON RECTANGULAR SIDES OF BOXES: In
this part of the algorithm, the boxes generated in the previous step are in-
dexed first. Then, the common rectangular sides of the generated boxes are
generated.According towhichdirectiontheyareperpendicular,U,VandW
common sides are distinguished (perpendicular to x, y and z, respectively).
They serve for navigation through boxes and for generation of inner faces
on them.

10) GENERATE CELLS IN BOUNDARY BOXES: For all boxes, it
is determined whether the box is intersected by the surface or fully inner
or fully outer. The optimal order of processing boundary boxes is found
(smaller boxes need to be processed first to be sure that when a box is
processed which has more than one neighbour in a direction, all the adja-
cent boxes are already done). Then, all boxes intersected by the surface
are looped and their faces are generated in these steps:

— POLYGON GENERATION PART —
A1) Generate boundary faces (patches): Marching Cubes or Exact

Fit method is used for the generation of boundary faces (see the sub-
section 4.7).

A2) Polygon Simplification: This technique simplifies the patch struc-
ture where possible. The algorithm preserves sharp features and bor-
ders between different boundaries.

A3) Generate inner faces if neighbours are processed: All rectan-
gular sides common with the adjacent boxes are looped. On those lo-
cations where patches of the two adjacent boxes have already been
generated from both sides, the patches are tied (described in the sub-
section 4.8) and polygons of inner faces are generated. If any generated
inner face is concave, it is split to convex parts here.
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— CELL ASSEMBLING PART —
B1) Find a complete cell: It is found whether there is a cell that has

all its polygons already generated. If there is no such a cell, continue
with the next box (go to A1).

B2) Distinguish separated volumes: The connectivity of faces is
found and the polygons are painted in order to find separated volumes
in the box.

B3) Cell splitting: On each separated volume, it is tested whether
there are concave features. If there are, split the cell to convex parts.

B4) Delete small cell: The volume of the cell is found. If it is too
small, the cell needs to be removed (described in subsection 4.10).

B5) Save faces: The generated boundary and inner faces are saved to
auxiliary files so as they can be retrieved back later when assembling
the final grid (this concept is described below in subsection 7.2). The
algorithm continues with B1.

11) FINISH COMMON FACES: Rectangular faces of those cells that
are fully inner are generated here.

12) PRINT STATISTICS OF GENERATED MESH: The statistics
of the generated grid is printed. The report contains information about
number of generated cells, numbers of boxes processed by Exact Fit and
by Marching Cubes methods, number of cells that needed to be split to
convex parts. If problems occur, number of cells with negative volume,
gaps or angle problems is reported here (see the section 3). Problems like
this are usually linked to topological problems of the input surface.

13) WRITING THE MESH FILE: The polygons stored in the auxil-
iary files (saved in the step B5) are subsequently read while the output
arrays are assembled at the same time. Then, the output gridfile is written
out. Finally, the auxiliary files are deleted.

7 Tools Helping to Decrease Time and Memory
Demands

It is hard to compare the previous VECTIS mesher with the new approach
since both are doing different tasks. The new VECTIS-MAX mesher needs to
perform more actions in order to meet the higher requirements for the mesh
quality. Despite this fact, measurement on several typical cases has shown that
the new program consumes 74 % of memory and 64 % of time in comparison
with the previous system. In the following text, the main features are described
that are believed to be responsible for the significant improvement.

7.1 Features Improving Time Efficiency

Integer storage of coordinates of vertices

In order to ensure the test for existence of a node to be efficient, the ap-
proach recommended in [3] and [12] was used for storage of nodes. The whole
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working space is confined to a cube that is divided to 4200000000 levels in
each direction (x,y,z), so as the position of each node can be described by
three unsigned integer values. The choice of the number of levels is linked to
the capacity of unsigned int type on 32-bit computers, which is 4294967295.
All existing nodes are kept sorted according to their coordinates. When com-
paring two nodes, x determines which node is less; if both nodes have the
same x, the decision is done according y, etc. Whenever a new node needs
to be created, it is very quick to find out whether the node already exists or
not, because of the binary search in the sorted array.

This concept turned out to be very efficient. Of course, it saves certain
amount of memory (unsigned int consumes half the number of bytes than
the double type on 32-bit computers). However, more important is its time
efficiency. It is believed that this concept is mainly responsible for the higher
time efficiency of the new mesher.

This usage of integer values is limited only to storage of coordinates of
vertices. The full integer arithmetic (described in [3]) was not implemented.

7.2 Features Improving Memory Efficiency

Avoidance of STL containers

During the development of the mesher, it was found that when containers
from the Standard Template Library (set, map and list) had been replaced by
simple classes using “malloc” allocation, the time and memory requirements
were significantly lower. A comparison of STL and non-STL approach was
done on storage of one million nodes to a map. Memory requirements fell
down to 16 % when std::map was avoided. Time necessary for storage of the
nodes was decreased to 23 %; time needed to retrieve the nodes decreased
to 56 %. The development team believes that the savings are caused by
allocations and reallocations with a reasonable step. If an STL container is
to be extensively used in a program, its allocator should be changed to avoid
too many allocations by small chunks.

Temporary storage of polygons

Whenever a cell is generated (all its polygons are prepared), those polygons
that are no longer needed can be stored in an auxiliary file. The memory
occupied by the polygons can be reused for polygons of another cell. In order
to make this technique efficient, the optimal order in which boxes are pro-
cessed needs to be found so as neighbours of already done cells are processed
as soon as possible.

Arrays of low-bit information

During the run of the mesher, it is often needed to store long arrays of in-
formation that requires only low number of bits (e.g. in/out status of nodes,
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done status of a box, ...). However, allocation of an array of bool type con-
sumes eight bits for each entry. Therefore, a tool that can store 1D, 2D or
3D array of entries of arbitrary bit-length in a chunk of memory (unsigned
char type is used) has been prepared. For storage or retrieval of each entry
some additional time is consumed. This is caused by necessity to find the
proper unsigned char(s) containing the information and perform appropriate
bit operations in order to find the bits that should be used. However, the
additional time disadvantage seems to be low price for the memory reduction
benefit.
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