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Abstract. In this paper, a quadtree-based mesh generation method is described to
create guaranteed-quality, geometry-adapted all-quadrilateral meshes with feature
preservation for arbitrary planar domains. Given point cloud, our method gener-
ates all-quad meshes with these points as vertices and all the angles are within
[45◦, 135◦]. For given planar curves, quadtree-based spatial decomposition is gov-
erned by the curvature of the boundaries and narrow regions. 2-refinement tem-
plates are chosen for local mesh refinement without creating any hanging nodes. A
buffer zone is created by removing elements around the boundary. To guarantee the
mesh quality, the angles facing the boundary are improved via template implemen-
tation, and two buffer layers are inserted in the buffer zone. It is proved that all
the elements of the final mesh are quads with angles between 45◦ ± ε and 135◦ ± ε
(ε ≤ 5◦) with the exception of badly shaped elements that may be required by the
specified geometry. Sharp features and narrow regions are detected and preserved.
Furthermore, boundary layer meshes are generated by splitting elements of the sec-
ond buffer layer. We have applied our algorithm to a set of complicated geometries,
including the Lake Superior map and the air foil with multiple components.

Keywords: Guaranteed quality, all-quadrilateral mesh, quadtree, sharp feature,
narrow region, boundary layer.

1 Introduction

Provably good-quality triangular mesh generation methods were well devel-
oped for planar and curved surfaces. However, quadrilateral elements are
preferred in finite element analysis due to their superior performance. Al-
though it was proved that any planar n-gon can be meshed by O(n) quads
with all the angles bounded between 45◦ − ε and 135◦ + ε [5], fewer algo-
rithms exist in the literature for all-quad mesh generation, and most of these
algorithms are heuristic. Circle-packing techniques have been developed to
construct quads with no angles larger than 120◦ for polygon interiors, but
with no bound on the smallest angle [4]. Later, a balanced quadtree was uti-
lized to generate a quad mesh with bounded minimum angle 18.43◦, but the
� Corresponding author.
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maximum angle bound is 180◦ [1]. In this paper, we present an approach to
generate guaranteed-quality all-quad meshes for given point cloud or planar
curves, in which all the angles of any element are within [45◦ ± ε, 135◦ ± ε],
where ε ≤ 5◦, except badly shaped elements that may be required by the
specified geometry.

Our algorithm generates unstructured adaptive all-quad meshes. For given
point cloud, we firstly define a size function based on the relative location of
these points, and then generate adaptive quadtree using 2-refinement tem-
plates. Three cases are considered to produce all-quad meshes conforming to
the given point cloud, with all the element angles within [45◦, 135◦].

For planar curves, six steps are adopted to construct guaranteed-quality
all-quad meshes. Firstly we decompose each curve into a set of line segments
based on its curvature; Secondly, a strongly balanced quadtree is constructed
and hanging nodes are removed using 2-refinement templates. The element
size is governed by the curvature of the boundary and narrow regions; Thirdly,
elements outside and around the boundary are removed to create the quadtree
core mesh and a buffer zone; Next, we design four categories of templates
to adjust the boundary edges and therefore improve the angles facing the
boundary in the quadtree core mesh; Then the angular bisectors are used
to construct the first buffer layer; Finally the points generated during the
first layer construction are projected to the boundary and form the second
buffer layer. It is proved that all the angles in the constructed mesh are
within [45◦ ± ε, 135◦ ± ε] (ε ≤ 5◦) for any planar smooth curves. A few bad
angles may be required to preserve sharp features such as small angles on the
boundary. Boundary layers are generated by splitting the second buffer layer.

We have applied our algorithm to a set of complicated geometries, includ-
ing the Lake Superior map and the air foil with multiple components. Our
robust algorithm efficiently deals with curves in large-scale size, and generates
meshes with guaranteed quality while minimizing the number of elements.

The reminder of this paper is organized as follows: Section 2 reviews the
related work on quad mesh generation; Section 3 describes the guaranteed-
quality meshing of point cloud; Section 4 explains the detailed algorithm for
guaranteed-quality meshing of smooth curves; Section 5 talks about sharp
feature and boundary layer generation; Section 6 shows two application re-
sults; Section 7 presents our conclusion and future work.

2 Previous Work

There are three main categories for direct unstructured all-quad mesh gener-
ation [13]: domain decomposition, advancing front and grid-based methods.

Domain Decomposition Methods: The domain is divided into simpler
convex or mappable regions, and then template-based, mapping or geometric
algorithms are utilized to generate the mesh for each of these regions. Domain
decomposition can be achieved by various techniques. Tam and Armstrong
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[18] introduced medial axis decomposition. Joe [10] decomposed the domain
based on geometric algorithms. Quadros et al. [14] introduced an algorithm
that couples medial axis decomposition with an advancing front method. In
general, these methods produce high quality meshes but they are not robust
and may require a great deal of user interaction especially if the domain has
non-manifold boundaries.

Advancing Front Methods: This approach starts with the initial place-
ment of nodes on the boundaries of the domain. Quad elements are then
formed by projecting each edge on the front towards the interior and a new
front is formed using edges on the new boundary. This process is repeated
recursively until the domain is completely covered with quads. Zhu [25] is
among the first to propose a quadrilateral advancing front algorithm. In his
approach, two triangles are created using the traditional advancing front
methods then combined to form a single quad. Blacker and Stephenson [6]
introduced the paving algorithm in which they place a complete row of quads
next to the front toward the interior. White and Kinney [19] enhanced the
robustness of the paving algorithm through creating individual quads rather
than a complete row. The advancing front methods generate near-boundary
elements with high quality. However, the closure algorithms for the elements
at the interior are still unstable, especially if the two overlapping elements
have large difference in size. In such instance, heuristic decisions are made
and these usually generate elements with poor quality in this region. More-
over, the detection and resolution of the closure regions can be very time
consuming and sensitive to floating point errors.

Grid-Based Methods: A grid-based method starts with a uniform Carte-
sian background grid or a quadtree structure generated using the local feature
sizes. Quads, conforming to the domain boundaries, are then fitted into that
grid. Baehmann et al. [2] modified a balanced quadtree to generate a quad
mesh for an arbitrary domain. Zhang et al. developed an octree-based iso-
contouring method to generate adaptive quadrilateral and hexahedral meshes
[22, 21, 24]. Schneiders et al. [16] used an isomorphism technique to conform
an adaptive tree structure to the object boundaries. Grid-based algorithms
are robust but often generate poor quality elements at the boundary.

Quality Improvement: In finite element analysis, small angles within the
mesh usually lead to ill-conditioned linear systems. Further problems are
caused due to elements with angles close to 180◦. Therefore, a post-processing
step is crucial to improve the overall quality of the elements. Smoothing
and clean-up methods are the two main categories of mesh improvement.
Smoothing methods relocate vertices without changing the connectivity [7].
These methods are simple and easy to implement. However, they are heuristic
and sometimes invert or degrade the local elements. To solve this problem,
optimization-based smoothing methods were proposed [8]. In this approach,
a node is relocated at the optimum location based on the local gradient of
the surrounding element quality. Optimization-based methods provide much
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better mesh quality but they are not practical due to excessive amount of
computations. For this reason such methods are usually combined with a
Laplacian smoothing technique [9]. Surface feature preservation represents
another challenging problem. Methods based on local curvature and volume
preserving geometric flows are presented in [3, 23] to identify and preserve
the main surface features. Clean-up methods for quad meshes [17, 11] are
utilized to improve the node valence. Pillowing [12] is used to ensure that
any two adjacent quads share at most one edge.

All of these quality improvement techniques do not guarantee any bounds
for the element angles in the final mesh. In this paper, we will present an
approach to generate all-quad meshes with guaranteed quality.

3 Guaranteed-Quality Meshing of Point Cloud

Given N points in a planar domain Ω, we aim to find a quad mesh M that
includes the given points as vertices and all the elements have the minimum
and maximum angle bounds. Let X denote the set of input points, we start by
the spatial decomposition using 2-refinement templates [15] and the strongly
balanced quadtree algorithm [20], which means the quadtree level difference
between any two neighboring cells is ≤ 1. Compared to 3-refinement, 2-
refinement provides a gradual transition and preserves element angles. It is
well-known that any quad mesh has an even number of boundary nodes. This
fact is utilized in eliminating each pair of the hanging nodes in the quadtree
structure using 2-refinement templates. This algorithm considers the vertex
sequence {V1, V2, . . . , V2k} on the boundaries. Half of the vertices in this list
are set to be active and the other half are set to be inactive such that each
active vertex is followed by an inactive vertex. Any element that contains
only one active node is refined using the transition template in Fig. 1(b)
while any element containing two or more active nodes is refined using the
refinement template shown in Fig. 1(c).

During the spatial decomposition, an additional requirement is applied so
that each cell, c, containing a point P ∈ X is surrounded by eight empty
cells of the same size. We then subdivide c into 16 identical regions, Bi

(i = 1, 2, . . . , 16). One region of these will contain the point P . Here we
consider three regions only as shown in Fig. 2(a). The other possibilities can
be obtained by symmetry. If P ∈ B1, we set the grid node V1 = P as shown
in Fig. 2(b). When P ∈ B2 ∪ B3, the local refinement shown in Fig. 2(c)
is carried out first. If P ∈ B2, we set the grid node V2 = P and adjust V3

vertically as shown in Fig. 2(d). Similarly, if P ∈ B3 as shown in Fig. 2(e),
we set V3 = P and adjust V2 correspondingly. As proved in Lemma 1, this
algorithm guarantees all the angles in the final mesh are within [45◦, 135◦],
and the maximum aspect ratio is 1.5 (The aspect ratio of a quad is defined
as the longest edge length over the shortest edge length). Fig. 1(d-e) show
two testing cases.
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Fig. 1. 2-refinement templates and mesh generation conforming to a set of points.
(a) A quadtree cell at Level i; (b) The transition template; (c) The refinement
template; (d) A quad mesh of 32 points distributed uniformly along a circle; and
(e) A quad mesh of 215 points distributed non-uniformly along a curve.

(a) (b) (c) (d) (e)

Fig. 2. All-quad mesh generation conforming to a set of points. (a) The cell con-
taining a point is subdivided into 16 regions, supposing P ∈ B1 ∪ B2 ∪ B3; (b)
When P ∈ B1, V1 = P ; (c) Local refinement for P ∈ B2 ∪ B3; (d) When P ∈ B2,
V2 = P and V3 is adjusted; and (e) When P ∈ B3, V3 = P and V2 is adjusted.

Lemma 1. The method above results in a quad mesh with angles between 45◦

and 135◦ with the maximum aspect ratio of 1.5.

Proof. In Fig. 2(b), the maximum displacement that V1 can move is the
diagonal of the square region B1,

√
2s. The resulting angles α1, α2, α3 and

α4 due to this displacement have a minimum value of 67◦ and a maximum
value of 127◦. The maximum aspect ratio of the quad around P is 1.3. When
P ∈ B2 ∪ B3, the local refinement in Fig. 2(c) guarantees that both V2 and
V3 are surrounded initially by four angles of 90◦. In Fig. 2(d-e), V2 and V3 are
adjusted. One node is moved to P , and the other node is adjusted to maintain
the slope between V2 and V3. The worst case here is similar to moving a corner
of a square cell of size s a distance of

√
2s. The resulting angles α1, α2, and α3

due to this displacement have a minimum value of 53◦ and a maximum value
of 108◦. The maximum aspect ratio of the quads around P is 1.5. Therefore,
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our algorithm produces all-quad meshes with angles between 45◦ and 135◦

with the maximum aspect ratio of 1.5. �

4 Guaranteed-Quality Meshing of Smooth Curves

Given a planar domain Ω and closed smooth curves C represented by cubic
splines, a set of points or polygons, we aim to generate a guaranteed-quality
all-quad mesh for the regions enclosed by C. Six steps are applied as shown in
Fig. 3, including (1) curve decomposition, (2) adaptive quadtree construction,
(3) buffer zone clearance, (4) template implementation, (5) first buffer layer
construction, and (6) second buffer layer construction.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Flow chart of guaranteed-quality mesh generation. (a) The input curve; (b)
Adaptive quadtree construction; (c) Buffer zone clearance; (d) Template implemen-
tation; (e) First buffer layer construction; and (f) Second buffer layer construction.

4.1 Curve Decomposition

Given closed smooth curves C represented by cubic splines, we first decompose
C into a set of piecewise-linear line segments using three criteria: (1) The angle
between two neighboring line segments is ≤ 5◦; (2) The approximation error
of each line segment is less than a given threshold (i.e., 0.01); and (3) Each
curve in C is represented by line segments in the clockwise direction. As a
result, non-uniform points X are created based on the curve local curvature.

4.2 Adaptive Quadtree Construction

For a set of points X , a size function is first defined. For example, we define the
size function as si = min(dij), where dij is the distance between two points
i and j (i, j ∈ X and i �= j). The basic concept of a spatial representation
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consists of enclosing the points X in a bounding box, denoted as B(Ω), which
is corresponding to the root of the spatial decomposition quadtree. This box
is either a square with one cell or a rectangle with one row of square cells.
Each cell is recursively subdivided based on the size function and the strongly
balanced quadtree algorithm. A cell, c, is crowded if its size is greater than
the size function at any point within c or if the quadtree level difference
around c is more than one. The spatial decomposition is achieved by splitting
any crowded cell recursively until there is no crowded cell, and 2-refinement
templates are used to remove all hanging nodes, see Fig. 3(b).

Narrow region is an important feature of the input curve. A region is
defined as narrow if it contains only none/one/two quadtree cells in one
direction after the domain decomposition. The detected narrow region will
be refined until all directions contain more than two quadtree cells, which
guarantees the topology will be preserved during the mesh generation.

4.3 Buffer Zone Clearance

After generating the adaptive quadtree, we remove elements near the bound-
ary curves so that there is enough space to construct guaranteed-quality quad
elements. Such a process is called buffer zone clearance. Here are definitions
used in the algorithm description:

Buffer zone: Any zonal area that serves the purpose of keeping the quad
mesh distant from boundaries, e.g., the blue region in Fig. 3(c).
Boundary edge: A boundary edge is contained in only one element, e.g.,
the edges AB, BC and CD in Fig. 4(a).
Boundary point: The two vertices of each boundary edge are named bound-
ary points, e.g., the points A, B, C and D in Fig. 4(a).
Boundary angle: The angle formed by two neighboring boundary edges fac-
ing the nearest boundary, e.g., the angles α, β, and γ in Fig. 4(a).
Boundary edge angle: The angle formed from the boundary edge to the
boundary. The angle must be inside the buffer zone, and can not intersect with
the quadtree core mesh. The boundary edge angle has a range of [−180◦, 180◦],
and the counterclockwise direction is positive. For example, the angle ψ in Fig.
4(a) is negative.

(a) (b) (c)

Fig. 4. Definition and criteria in Buffer Zone Clearance. (a) The red curve is the
boundary. A, B, C, and D are boundary points. AB, BC, and CD are boundary
edges. α, β, and γ are boundary angles. ψ is a boundary edge angle; (b) One
exception of Criterion 3; and (c) Single element removal (the blue quad).
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Three criteria are used in the buffer zone clearance: Criterion 1: all ele-
ments outside the regions to be meshed are deleted; Criterion 2: all elements
intersecting with curves C are deleted; and Criterion 3: if the distance of
any vertex to the nearest boundary is less than or equal to a pre-defined
threshold εs, all elements sharing this vertex are deleted. Here we choose
εs = 0.5 ∗max(si), where si is the size of the ith element sharing this ver-
tex. However, there are two exceptions. For example in Fig. 4(b), the two
blue boundary points are very close to the boundary, so they need to be
deleted according to Criterion 3. However, we choose to keep them because
the boundary edge formed by them are almost parallel to the boundary. In
addition, we also need to remove all the single elements. A single element is
an element whose four vertices are all boundary points, and it has only one
edge shared by another element as shown in Fig. 4(c). After the buffer zone
clearance, the quadtree core mesh and a buffer zone are created, see Fig. 3(c).
The buffer zone will be filled with guaranteed-quality quad elements.

4.4 Template Implementation

If all the boundary edges are parallel to the boundary, it is easy to construct
good quality meshes. However, after the buffer zone clearance, the range of
the boundary angles is [45◦, 315◦], and the boundary edge angles are within
[−180◦, 180◦]. In order to generate good quality elements around the bound-
ary, we design templates and use them to improve the boundary angles and
the boundary edge angles, keeping all the element angles in the quadtree core
mesh ∈ [45◦, 135◦].

Uniform Grid: If the quadtree core mesh is uniform, there are only three
possible boundary angles after the buffer zone clearance: 90◦, 180◦, and 270◦.
Only 90◦ and 270◦ will possibly introduce bad elements when we fill the buffer
zone. To guarantee the element quality, we use Templates 1(a-b) to modify
these quad elements. In Tab. 1, the left column shows the original config-
urations, and the middle column shows the modified templates. For each
template, the boundary angles are denoted in the figure and the boundary
angle sequence is provided. For example, in Template 1(a), the boundary

angle sequence is ( 180◦

270◦ )-90◦-( 180◦

270◦ ), which indicates ϕ =(180◦

270◦ ), α = 90◦,

ψ =(
180◦

270◦ ), where “(
180◦

270◦ )” means “[180◦, 270◦]”. By using Templates 1(a-

b), the possible boundary angles in the uniform mesh become 112.5◦, 180◦,
202.5◦, and 225◦. It is obvious that the boundary angle range is improved
from [90◦, 270◦] to [112.5◦, 225◦].

The right column of Tab. 1 shows the boundary edge angle for each tem-
plate. For example in Templates 1(a-b), the grey points and dash lines indi-
cate the edges deleted during the buffer zone clearance. We draw two solid-line
circles at the starting point S and the ending point T , and draw a dash-line
circle at one of the deleted points, denoted as B

′′
. The solid-line circle means
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Table 1. Template implementation of Categories 1-4.

Template Original template Modification Boundary edge angles

1(a-b)
Uniform:

Adaptive:

2(a)

2(b)

2(c)

3(a)

3(b)

3(c)

3(d)

4(a)

4(b)

4(c)

Note: The boundary angle sequence below each template starts from left to right. In 1(a), (180
◦

270◦)

-90◦-(180
◦

270◦) indicates ϕ =(180
◦

270◦), α=90◦, ψ =(180
◦

270◦). “ϕ =(180
◦

270◦)” means “ϕ ∈ [180◦, 270◦]”.
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the boundary line must be on or outside the circle since the center is an
existing point, while the dash-line circle means the boundary line must be
inside the circle since the center is a deleted point. The radius of each circle
is half size of the maximum element surrounding its center. By balancing the
three circles, we can determine two boundary lines L1 and L2, which give
the range of possible boundary edge angles for each template. In Templates
1(a-b), the slope of L1 is −90◦, and the slope of L2 is 0◦. Since the boundary
edge SB′ has a slope of 22.5◦ and the boundary edge B′T has a slope of
67.5◦, the boundary edge angle becomes [−67.5◦, 67.5◦]. As a final result, we
obtain that the range of the boundary edge angles in Templates 1(a-b) is
[−67.5◦, 67.5◦].

Adaptive Grid: For the adaptive mesh, the range of boundary angles after
the buffer zone clearance is [45◦, 315◦]. Here Templates 1(a-b) are also used,
but the boundary angles ϕ and ψ have larger ranges. In addition, three other
categories of templates are designed to improve the boundary angles as listed
in Tab. 1: the boundary angle α = 45◦ in Category 2, α = 90◦ in Category 3,
and α = {135◦, 225◦, 270◦, 315◦} in Category 4. All the other possible con-
figurations can be derived from these basic templates. Meanwhile, templates
beginning with α = 180◦ are not listed in Tab. 1, because they are either
categorized in other templates or good enough and therefore need not to be
improved.

Here we use Template 2(a) as an example to explain how to derive these
templates based on the 2-refinement algorithm (Fig. 1(a-c)). Fig. 5(a) shows
a row of three uniform cells, where the black points indicate the boundary
nodes. We then use 2-refinement templates to refine these cells, and Fig. 5(b)
is one possible result. Here we always keep the left element and the corre-
sponding boundary points in Fig. 5(b). The red points are boundary points
which are very close to the boundary. These points and their neighboring cells
(grey cells) are removed during the buffer zone clearance, which results in Fig.
5(c). The cells now have new boundary points and boundary edges. However,
the boundary edges AB, BC and CD form a sharply concave geometry with
the minimum boundary angle of 45◦. To guarantee the mesh quality, we must
eliminate the concaveness by modifying the boundary edges as shown in Fig.
5(d), and finally we obtain Template 2(a) in Tab. 1. Changing the number
of cells in Fig. 5(a) or/and applying 2-refinement templates to these cells
differently, we can obtain the rest templates in Tab. 1 in similar ways. It is
noticed that the same template can be derived from different combinations,
and some combinations are impossible and never appear in the mesh. More-
over, the number of cells in Fig. 5(a) can be restricted to be between 1 and
4. If the number of cells is greater than 4, they can always be split so that
each part contains no more than 4 cells.

From the right column of Tab. 1, we can obtain the range of the boundary
edge angles for each template. We also take Template 2(a) as an example. L1

is horizontal and its slope is 0◦. Since the dash-line circle at the center B
′′

is
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(a) (b) (c) (d)

Fig. 5. An example of deriving a template. (a) Given uniform cells; (b) Cells after
applying 2-refinement templates; (c) Cells after the buffer zone clearance; and (d)
Cells after the template implementation.

double size of the solid-line circle at the center T , and L2 is tangent to both
circles, we can obtain the slope of L2 is 39.5◦. The boundary edge angles
of the two horizontal boundary edges are within [−39.5◦, 0◦]. However, the
boundary edge SC has a slope of 26.5◦, so the boundary edge angle becomes
[−13◦, 26.5◦]. As a final result, the range of the boundary edge angles in
Template 2(a) is [−39.5◦, 26.5◦].

Lemma 2. After the template implementation, all the element angles in the
quadtree core mesh are within [45◦, 135◦], all the boundary angles are within
[112.5◦, 251.5◦], and all the boundary edge angles are within [−90◦, 90◦].

Proof. It is obvious that all the element angles in the quadtree core mesh are
within [45◦, 135◦]. From the modified templates in Tab. 1, we can see that
the boundary angles are within [112.5◦, 251.5◦], noticing that the possible
boundary angle 90◦ in Template 4(c) will be further improved by Template
1(a)/3(a). We check the boundary edge angles of each template in Tab. 1
and list them in Tab. 2. From the table, it is obvious that all the boundary
edge angles are in the range of [−67.5◦, 90◦]. Due to the symmetry of these
templates, we release the range of the boundary edge angle to [−90◦, 90◦]. �
Discussion: During the template implementation, the boundary angles and
the boundary edge angles are improved by filling with new quads, changing
the shape of quads or changing the connectivity of quads. All these improve-
ments will help to guarantee the element quality during the following first
and second buffer layer construction. Moreover, we classify all the templates
into three priorities as shown in Tab. 2: high, medium and low. Templates in
lower priority will not be implemented until all the higher priority templates
are implemented.

4.5 First Buffer Layer Construction

For each boundary point, we use angular bisectors to calculate a correspond-
ing point inside the buffer zone called the first buffer point. Then, each pair
of neighboring boundary points and their first buffer points construct a quad.
All these new quads form the first buffer layer as presented in Fig. 3(d).

Here we develop an algorithm to calculate the first buffer points using
angular bisectors. As shown in Fig. 6(a), the boundary point B is shared by
two boundary edges AB and BC with the boundary edge angles of ϕ and ψ.



56 X. Liang, M.S. Ebeida, and Y. Zhang

Table 2. Boundary edge angles of each template in Tab. 1.

Template Slope of L1 Slope of L2 α Boundary edge angle Priority

1(a) −90◦ 0◦ 22.5◦ [−67.5◦, 67.5◦] Low
1(b) −90◦ 0◦ 22.5◦ [−67.5◦, 67.5◦] Medium
2(a) 0◦ 39.5◦ 26.5◦ [−39.5◦, 26.5◦] High
2(b) 0◦ 28.1◦ 26.5◦ [−28.1◦, 26.5◦] High
2(c) 0◦ 28.1◦ 26.5◦ [−28.1◦, 26.5◦] High
3(a) −63.4◦ 45◦ 45◦ [−63.4◦, 90◦] Low
3(b) 0◦ 26.5◦ 18.5◦ [−26.5◦, 18.5◦] High
3(c) 0◦ 26.5◦ 18.5◦ [−26.5◦, 18.5◦] High
3(d) 0◦ 14◦ 11.3◦ [−14◦, 11.3◦] High
4(a) 0◦ 26.5◦ 26.5◦ [−26.5◦, 26.5◦] High
4(b) −26.5◦ 26.5◦ - [−26.5◦, 26.5◦] High
4(c) −90◦ 0◦ 45◦ [−45◦, 90◦] Medium

Suppose ψ ≥ ϕ, we draw the angular bisectors of the larger angle ψ and the
boundary angle β. Finally, the two angular bisectors intersect at B

′
which is

the corresponding first buffer point of B. By using all the boundary points
and their first buffer points, a set of quad elements are generated to form the
first buffer layer.

There are two special cases for the first buffer point calculation. If both
boundary edges of a boundary point are approximately parallel to the bound-
ary, or the boundary edge angles are less than 10◦, we create the first buffer
point as the middle of each boundary point and its projection on the bound-
ary. For example in Fig. 6(b), since the two boundary edges AB and BC are
almost parallel to the boundary, we project B to the boundary, and take the
middle point of B and its projection as the corresponding first buffer point
B

′
. Similarly, A

′
and C

′
are calculated. These boundary points A, B, C and

the first buffer points A
′
, B

′
, C

′
construct two quads for the first buffer layer.

As shown in Fig. 6(c), the second special case is introduced by Templates
1(a-b) in Tab. 1. The boundary angles at boundary points B and C are
α = 112.5◦ and β = 180◦, and the angular bisectors are l1 and l2. B

′
is the

first buffer point of B. It can be observed that B
′

is close to l2, which may

(a) (b) (c)

Fig. 6. First buffer layer construction. (a) The general case; (b) The parallel case;
and (c) The special case.
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introduce a quad with bad angles or even self-intersection. Suppose l1 and l2
form an angle θ = (β − α)/2 = 33.75◦, l2 is rotated by θ/2 so that it is away
from B

′
. This new angular bisector l

′
2 will be used to calculate C

′
.

With these three cases in Fig. 6, we can get all the corresponding first
buffer points and generate the first buffer layer. After the construction of the
first buffer layer, the original boundary points have now become inner points,
and new boundary points are on the first buffer layer. The following Lemma
3 proves the angle bounds of the first buffer layer.

Lemma 3. All the four angles of any element in the first buffer layer are in
the range of [45◦ ± ε, 135◦ ± ε], where ε ≤ 5◦.

Proof. To simplify the proof, we first assume that the boundary curve around
each boundary edge is a straight line. In Fig. 7(a), B

′
and C

′
are the first

buffer points corresponding to the boundary points B and C, and the bound-
ary edge angle of BC is ψ. Suppose B

′
and C

′
are on the angular bisector

of ψ. There are two possible cases we need to consider in order to prove this
lemma.

(a) (b) (c)

Fig. 7. Guaranteed-quality proof. (a) The first buffer layer (Case 1); (b) The first
buffer layer (Case 2); and (c) The second buffer layer.

The first case is shown in Fig. 7(a). The boundary angle of B is ≤ 180◦

and the boundary angle of C is ≥ 180◦. From Lemma 2, we can obtain
ψ ∈ [−90◦, 90◦]. Here we choose ψ ∈ [0◦, 90◦] due to the symmetry, therefore
ϕ = ψ/2 ∈ [0◦, 45◦]. After the template implementation, all the boundary
angles are in the range of [112.5◦, 251.5◦]. Therefore, the boundary angle of
B is in the range of [112.5◦, 180◦] and the boundary angle of C is in the range
of [180◦, 251.5◦]. Since BB′ and CC ′ are angular bisectors, β ∈ [56.25◦, 90◦]
and γ ∈ [90◦, 125.75◦]. Likewise, we can get σ = 180◦ − γ ∈ [54.25◦, 90◦],
θ = ϕ + σ ∈ [54.25◦, 135◦], α = 180◦ − β − ϕ ∈ [45◦, 125.75◦]. Therefore, all
the angles of the quad BCC

′
B

′
are within [45◦, 135◦].

As shown in Fig. 7(b), the second case is that both of the boundary angles
are greater than 180◦. This case is introduced by Templates 1(a-b). From
Tabs. 1-2, we can obtain the two boundary angles are 202.5◦ at B and 225◦

at C, and the boundary edge angle ψ ∈ [−67.5◦, 67.5◦]. Here we choose
ψ ∈ [0◦, 67.5◦] due to the symmetry. Therefore, we have β = 202.5◦/2 =
101.2◦, γ = 225◦/2 = 112.5◦, σ = 180◦ − γ = 67.5◦, ϕ = ψ/2 ∈ [0◦, 33.8◦],
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θ = σ+ϕ ∈ [67.5◦, 101.3◦], and α = 180◦− β−ϕ ∈ [45◦, 78.8◦]. It is obvious
that all the four angles of the quad BCC

′
B

′
are within [45◦, 112.5◦].

Following the similar ways, we can easily prove that all the angles in the
two special cases (Fig. 6(b-c)) are also within [45◦, 135◦]. In summary, all
the four angles of any element in the first buffer layer are within [45◦, 135◦].
Considering that the boundary curve has a small perturbation ε ≤ 5◦, we
relax the angle range to [45◦ ± ε, 135◦ ± ε]. �

4.6 Second Buffer Layer Construction

The second buffer layer construction is simple. As shown in Fig. 7(c), we
project the first buffer points to the boundary and obtain the corresponding
second buffer points. Then we construct a quad using these first and second
buffer points, and all these new quads form the second buffer layer, see Fig.
3(f). We use Lemma 4 to prove its angle bounds.

Lemma 4. All the four angles of any element in the second buffer layer are
in the range of [45◦ ± ε, 135◦ ± ε], where ε ≤ 5◦.

Proof. Similar to Lemma 3, we assume that the boundary curve is a straight
line around each boundary edge. In Fig. 7(c), B

′
and C

′
are the first buffer

points of the boundary points B and C. B
′
and C

′
are on the angular bisector

of ψ, which is the boundary edge angle of BC. From Lemma 2, we have
ψ ∈ [−90◦, 90◦]. Here we choose ψ ∈ [0◦, 90◦] due to the symmetry, therefore
ϕ = ψ/2 ∈ [0◦, 45◦]. It is obvious that γ = θ = 90◦. We can derive that
α = σ = 90◦ − ϕ ∈ [45◦, 90◦], and β = 180◦ − σ ∈ [90◦, 135◦]. Therefore, all
the four angles of the quad B

′
C

′
C

′′
B

′′
are within [45◦, 135◦]. Considering

that the boundary curve may have a small perturbation ε ≤ 5◦, the angular
range is relaxed to [45◦ ± ε, 135◦ ± ε]. �
Remark: After applying the designed six steps in Fig. 3, the element angles
in the quadtree core mesh, the first buffer layer and the second buffer layer
are all in the range of [45◦ ± ε, 135◦ ± ε] (ε ≤ 5◦).

5 Sharp Feature and Boundary Layer

To preserve sharp features, we keep the quadtree core mesh nearby each
sharp feature uniform during the adaptive quadtree construction. An addi-
tional template in Fig. 8(a) is implemented, and the boundary angle range is
improved from [90◦, 270◦] to [116.6◦, 206.6◦]. Suppose P is the corner and α
is the sharp angle as shown in Fig. 8(b-d), we develop different meshing algo-
rithms for three various cases: α ∈ (0◦, 135◦], (135◦, 270◦], and (270◦, 360◦).

When α ∈ (0◦, 135◦] as shown in Fig. 8(b), we first draw two lines l
′
1 and

l
′
2, where l

′
1 ⊥ l1 and l

′
2 ⊥ l2. In the green area enclosed by l

′
1 and l

′
2, we

find the closest point M after constructing the first buffer layer, then project
it to the boundary and obtain two corresponding points L and N . The four
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(a) (b) (c) (d)

Fig. 8. A new template and three algorithms for sharp features. (a) An additional
template; (b) α ∈ (0◦, 135◦]; (c) α ∈ (135◦, 270◦); and (d) α ∈ [270◦, 360◦).

points then form a quad PNML. Since L and N are the projections of M , if
α ≥ 45◦, obviously all the four angles will be within [45◦, 135◦]; otherwise if
α < 45◦, we just keep α, and the range of all the four angles is [α, 180◦− α].

When α ∈ (135◦, 270◦] as shown in Fig. 8(c), after the template implemen-
tation, we use the angular bisector of α to modify the quadtree core mesh
close to the sharp feature. First we find that the angular bisector intersects
the boundary edge LM at M

′
, so we move M to M

′
. Then we create the

first buffer points L
′
and N

′
. Suppose the boundary edge angle of LM ′ is ψ,

the first buffer point P
′
of M

′
is calculated as the intersection of the angular

bisector of ψ with PM ′ . The constructed yellow quads form the first buffer
layer, its quality is guaranteed by Lemma 3. Finally, we obtain the second
buffer layer by projecting L

′
and N

′
to the boundary. To prove the second

buffer layer is also in good quality, we take the quad PP
′
L

′
L

′′
as an example

and check all its four angles. It is obvious that ψ ∈ [0◦, 90◦] and ϕ = 90◦.
If α ∈ [180◦, 270◦], it is straightforward to obtain β = α/2 ∈ [90◦, 135◦],
θ = 90◦ − ψ/2 ∈ [45◦, 90◦], and γ = 180◦ − β + ψ/2 ∈ [45◦, 135◦]. If
α ∈ (135◦, 180◦), ψ can be restricted to be within [0◦, 67.5◦ − (180◦ − α)]
from Templates 1(a-b), then we have β = α/2 ∈ (67.5◦, 90◦), θ = 90◦−ψ/2 ∈
[45◦, 90◦], and γ = 180◦ − β + ψ/2 ∈ [90◦, 123.25◦]. Now all the four angles
of the quad PP

′
L

′
L

′′
are within [45◦, 135◦]. Similarly, we can prove that the

quad P
′
PN

′′
N

′
is of good quality.

When α ∈ (270◦, 360◦) as shown in Fig. 8(d), we also use the angular
bisector of α to modify the local quadtree core mesh. M

′
is the intersection

point of the angular bisector of α with LM . Then we move M to M
′
, and

move N to N
′

so that M
′
N

′
//MN . The angular bisector of ∠M ′

PO
′′

in-
tersects the angular bisector of ∠ON ′

M
′
at point N

′′
; likewise, we create L

′

in the similar way. Later, we use points K
′
, L

′
, P , N

′′
and O

′
to construct

the first buffer layer, and use K
′′
, O

′′
to obtain the second buffer layer. It

is noticed that no second buffer layer is created at the sharp feature. This
method may not always guarantee good angles, therefore in some cases we
have to rotate the bisectors PM ′ , PN ′′ and PL′ so that all the angles near
the sharp feature are of good quality.

In order to apply a mesh to Computer Fluid Dynamics (CFD) simulations,
we must generate one or more boundary layers. In our algorithm, the bound-
ary layer construction is conveniently obtained by splitting the elements of
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Fig. 9. Templates for boundary layer generation and the delta wing with a small
sharp angle of 31◦. (a-c) Templates with one, two and three boundary points; (d)
Final mesh with all angles ∈ [31◦, 135◦]; (e-g) Zoom-in pictures of (d).

the second buffer layer. Only three templates are needed as shown in Fig. 9(a-
c). The black points are boundary points, the red points are new points, and
the blue quads are elements constructed for the boundary layer. It is obvious
that Fig. 9(b-c) preserve all the angles. Fig. 9(a) splits an angle using the
angular bisector, resulting in a change of the angle range to [22.5◦, 157.5◦].
This only happens at the sharp feature with an angle > 270◦. Fig. 9(d-g)
show the delta wing with 6 sharp angles and a boundary layer.

Remark: Our algorithm guarantees all the angles in the final mesh are within
[45◦ ± ε, 135◦± ε] (ε ≤ 5◦), with the exception of bad elements that may be
required by sharp features with an angle < 45◦ or > 270◦.

6 Results

We have applied our algorithm to two complicated models: the Lake Superior
map and the air foil with multiple components. Our results were computed
on a PC equipped with an Intel Q6600 CPU and 4GB DDR-II Memories.
As shown in Fig. 10, the Lake Superior map consists of seven closed smooth
curves, which has narrow regions. The constructed mesh conforms to the
input curves accurately and all the elements are quads with angles within
[43◦, 135◦]. The mesh adaptivity is controlled by a size function based on the
boundary curvature and narrow region. It took 82 seconds to generate the
mesh. The final mesh has 32789 nodes and 30321 quads, the quadtree has 10
levels, and the maximum aspect ratio is 10.

In Fig. 11, the air foil consists of three components, all of them contain
sharp angles. It took 15 seconds to generate the mesh. Before generating a
boundary layer, the mesh has 24514 nodes and 22929 quads, the quadtree
has 14 levels, the angle range in the final mesh is [45◦, 135◦], and the maxi-
mum aspect ratio is 4.7. After generating one boundary layer, the angle range
becomes [27◦, 153◦] due to the template in Fig. 9(a). This result shows that
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Fig. 10. The Lake Superior map. (a) Final guarantee-quality all-quad mesh with
all angles ∈ [43◦, 135◦]; and (b-c) Zoom-in pictures of (a).

(a)

(b) (c) (d) (e)

Fig. 11. The air foil with multiple components. (a) All-quad mesh with all angles
∈ [45◦, 135◦] before boundary layer generation, and [27◦, 153◦] after generating one
boundary layer; (b-e) Zoom-in pictures of (a).
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our algorithm can deal with large-scale inputs while minimizing the number
of elements, which are important for aerodynamics simulations.

7 Conclusion and Future Work

In this paper, we present a quadtree-based meshing method, which creates
guaranteed-quality all-quad meshes with feature preservation for arbitrary
planar domains. It is proved that all the elements of the final mesh are quads
with angles between 45◦ ± ε and 135◦ ± ε (ε ≤ 5◦), except badly shaped
elements required by the specified geometry. Our algorithm can conveniently
generate boundary layers on the final mesh for the CFD simulation. We have
applied our algorithm to a set of complicated geometries, including the Lake
Superior map and the air foil with multiple components.

In the current algorithm, the meshes generated inside and outside the
curves do not conform to each other. In the future, we will improve our
algorithm so that it can be used to generated interior and exterior meshes
at the same time. We are also planning to extend our algorithm to dynamic
re-meshing. All the ideas in the paper can be extended to 3D hexahedral
meshes. As part of our future work, we would like to explore quality proof
for octree-based hexahedral mesh generation.

Acknowledgement

This research was supported in part by ONR grant N00014-08-1-0653, which
is gratefully acknowledged.

References

1. Atalay, F.B., Ramaswami, S.: Quadrilateral meshes with bounded minimum
angle. In: 17th Int. Meshing Roundtable, pp. 73–91 (2008)

2. Baehmann, P.L., Wittchen, S.L., Shephard, M.S., Grice, K.R., Yerry, M.A.:
Robust geometrically based, automatic two-dimensional mesh generation. Int.
J. Numer. Meth. Eng. 24, 1043–1078 (1987)

3. Baker, T.J.: Identification and preservation of surface features. In: 13th Int.
Meshing Roundtable, pp. 299–309 (2004)

4. Bern, M., Eppstein, D.: Quadrilateral meshing by circle packing. Int. J. Comp.
Geom. & Appl. 10(4), 347–360 (2000)

5. Bishop, C.J.: Quadrilateral meshes with no small angles (Manuscript) (1991)
6. Blacker, T.D., Stephenson, M.B.: Paving: A new approach to automated quadri-

lateral mesh generation. Int. J. Numer. Meth. Eng. 32, 811–847 (1991)
7. Canann, S.A., Tristano, J.R., Staten, M.L.: An approach to combined lapla-

cian and optimization-based smoothing for triangular, quadrilateral, and quad-
dominant meshes . In: 7th Int. Meshing Roundtable, pp. 211–224 (1998)

8. Freitag, L., Jones, M., Plassmann, P.: An efficient parallel algorithm for mesh
smoothing. In: 4th Int. Meshing Roundtable, pp. 47–58 (1995)



Guaranteed-Quality All-Quadrilateral Mesh Generation 63

9. Freitag, L.A.: On combining Laplacian and optimization-based mesh smoothing
techniques. Trends in Unstructured Mesh Generation, ASME 220, 37–43 (1997)

10. Joe, B.: Quadrilateral mesh generation in polygonal regions. Comput. Aid.
Des. 27(3), 209–222 (1991)

11. Kinney, P.: CleanUp: Improving quadrilateral finite element meshes. In: 6th
Int. Meshing Roundtable, pp. 437–447 (1997)

12. Mitchell, S.A., Tautges, T.J.: Pillowing doublets: Refining a mesh to ensure that
faces share at most one edge. In: 4th Int. Meshing Roundtable, pp. 231–240
(1995)

13. Owen, S.: A survey of unstructured mesh generation technology. In: 7th Int.
Meshing Roundtable, pp. 26–28 (1998)

14. Quadros, W.R., Ramaswami, K., Prinz, F.B., Gurumoorthy, B.: LayTracks: A
new approach to automated geometry adaptive quadrilateral mesh generaton
using medial axis transform. Int. J. Numer. Meth. Eng. 61, 209–237 (2004)

15. Schneiders, R.: Refining quadrilateral and hexahedral element Meshes. In: 5th
Int. Meshing Roundtable, pp. 383–398 (1996)

16. Schneiders, R., Schindler, R., Weiler, F.: Octree-based generation of hexahedral
element meshes. In: 5th Int. Meshing Roundtable, pp. 205–216 (1996)

17. Staten, M.L., Canann, S.A.: Post refinement element shape improvement for
quadrilateral meshes. Trends in Unstructured Mesh Generation, ASME 220,
9–16 (1997)

18. Tam, T., Armstrong, C.G.: 2D finite element mesh generation by medial axis
subdivision. Adv. Eng. Software 13, 313–324 (1991)

19. White, D.R., Kinney, P.: Redesign of the paving algorithm: Robustness
enhancements through element by element meshing. In: 6th Int. Meshing
Roundtable, pp. 323–335 (1997)

20. Yerry, M.A., Shephard, M.S.: A modified quadtree approach to finite element
mesh generation. IEEE Computer Graphics Appl. 3(1), 39–46 (1983)

21. Zhang, Y., Bajaj, C.: Adaptive and quality quadrilateral/hexahedral meshing
from volumetric Data. Comput. Meth. Appl. Mech. Eng. 195, 942–960 (2006)

22. Zhang, Y., Bajaj, C., Sohn, B.-S.: 3D finite element meshing from imaging
data. Comput. Meth. Appl. Mech. Eng. 194, 5083–5106 (2005)

23. Zhang, Y., Bajaj, C., Xu, G.: Surface smoothing and quality improvement of
quadrilateral/hexahedral meshes with geometric flow. Commun. Numer. Meth.
Eng. 25, 1–18 (2009)

24. Zhang, Y., Hughes, T., Bajaj, C.: An automatic 3D mesh generation method for
domains with multiple materials. Comput. Meth. Appl. Mech. Eng. (in press,
2009)

25. Zhu, J.Z., Zienkiewicz, O.C., Hinton, E., Wu, J.: A new approach to the de-
velopment of automatic quadrilateral mesh generation . Int. J. Numer. Meth.
Eng. 32, 849–866 (1991)




