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Abstract. Aneurysms are an enlargement of a blood vessel due to a weakened
wall and can pose significant health risks. Abdominal aortic aneurysms alone are
the 13th leading cause of death in the United States, with 15,000 deaths annually.
While there are recommended guidelines for doctors to follow in the treatment of
specific aneurysms, they cannot guarantee a satisfactory outcome. Computer sim-
ulations of an aneurysm may be able to help doctors in their treatment; however,
the results are inaccurate if the vessel wall thickness is poorly measured. In order to
provide more accurate, patient-specific simulations, not only does geometry for the
fluid domain need to be created from medical images for analysis, but the creation
of more accurate models for the wall needs to be accomplished as well. This paper
proposes a solution to the latter by deforming the mesh from a healthy vessel into
one with an aneurysm through parameterization and the use of a spring model.
The thickness of the resulting wall model is empirically valid and fluid-structure
interaction simulations show significant improvements when using a variable versus
a uniform wall thickness.
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1 Introduction

Aneurysms are an enlargement of a blood vessel due to a weakened wall,
and simulating them is an area of significant research and concern. They
can occur anywhere in the vascular system, though are most common along
the abdominal aorta and in the brain. The simulation of aneurysms is of
critical importance because of the large health risk they pose. Rupturing of
an abdominal aortic aneurysm (AAA) occurs in 1–3% of men aged 65 or older
and is 70–95% fatal [7]. This paper presents a method to approximate the
wall thickness of patient-specific geometry, which will increase the accuracy
of simulations.

While there are recommended guidelines for doctors to follow in the treat-
ment of specific aneurysms, they cannot guarantee a satisfactory outcome.
Even with the guidelines for AAAs [7], a lot is left to the best judgment of the
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doctor due to the many variables. Smokers between the ages of 65–75 are en-
couraged to have a screening, while it is elective for non-smokers. An annual
checkup is recommended if the aneurysm is larger than 4 cm in diameter,
otherwise it is not a primary health risk. If open surgery is deemed necessary,
there is a 4–5% chance of mortality with almost 33% of patients developing
other complications. The rupture of cerebral aneurysms are harder to predict
and have a much more varied outcome. Some victims may suffer no compli-
cations while it is fatal to others. Being able to better predict the growth and
failure of the vessel wall or, in the future, the outcome of surgical procedures,
could significantly decrease the mortality rate of patients with aneurysms.

Computer simulations are starting to be used to simulate blood flow
through aneurysms in order to predict and better understand ruptures. This
entails creating geometry of the patient’s aneurysm from medical images and
running a computational fluid dynamic (CFD) or fluid-structure interaction
(FSI) analysis. In addition to all of the other aspects involved in providing
doctors with instantaneous simulations, a major setback is accurately mea-
suring the thickness of blood vessel walls. A doctor will not rely on an analysis
if the results vary by an order-of-magnitude due to poor wall thickness data.
In order to provide increasingly precise, patient-specific simulations, not only
does the geometry for the fluid domain need to be created, but the creation
of a more accurate wall model needs to be accomplished as well.

This paper presents a method to improve the accuracy of FSI simulations
for aneurysms by estimating the wall thickness with the blood vessel geom-
etry. The proposed method maps two geometries onto the same domain in
order to deform one into the other. This deformation is achieved through
two steps. First, parameterization is used to move the mesh from the healthy
blood vessel onto the aneurysm, which provides the initial configuration of
the spring system. Second, the numerical relaxation of a spring system al-
lows the forces between the nodes to balance in a way that approximates the
stretching of the vessel wall. FSI analyses are used to test the results of the
variable wall thickness and compare it against the solution for a uniform wall.

The paper continues in the next section with a discussion of previous work.
Section 3 provides a description of the method to calculate the aneurysm wall
thickness with Section 4 explaining the boundary-layer meshing scheme used
to prepare the models for the analyses. The results found in the FSI analyses
of the aneurysm models are presented in Section 5. The paper is concluded
in Section 6 with a discussion and future work.

2 Previous Work

In computer simulations, the wall thickness plays a key role in determining
the shear stress on the vessel wall. In order to provide a patient-specific sim-
ulation, accurate modeling of the target area is required. A lot of work is
being done to create models from medical images for use in simulations, see
the work of Zhang et al. for an example of creating smooth geometry with
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NURBS (Nonuniform Rational B-Splines) [33]. While there is a push to auto-
mate this part of the process, significant user input is still required for proper
classification and segmentation. In many cases the wall thickness is not mea-
surable from the image data. Even though AAA walls can be seen in medical
images, an exact thickness is hard to determine, especially in the thinnest
regions. This is because the typical CT scan has a resolution of about one
millimeter [15]. Higher doses of X-rays can be used to achieve sub-millimeter
dimensioning, but pose a greater risk to the patient. Additionally, vessel wall-
thickness cannot be seen for smaller vessels, such as those found in the brain.
Intravascular ultrasound (IVUS) can be used to image coronary arteries with
0.2 mm accuracy [5]. However, this is near the limit of successfully captur-
ing the thinnest regions in a AAA and, besides not being usable in narrower
vessels, i.e. cerebral arteries, it cannot resolve a thinner wall thickness.

In order to perform CFD simulations, a mesh of the fluid domain is re-
quired. Two popular methods are the advancing front [10, 16, 22] and octree
[34, 13]. An advancing front approach builds a mesh off the surface, in the
region of the boundary layer, and then fills the remaining space. Garimella
and Shephard give a comprehensive explanation of how to generate an all
tetrahedral mesh with anisotropic elements in the boundary layer [10]. A
variation of this is given by Khawaja, where the boundary-layer elements re-
main wedges, producing a hybrid mesh [16]. Sahni et al. were able to obtain
more accurate wall shear stress (WSS) results by using an adaptive approach
to improve an existing boundary-layer mesh. Using the solution to generate
tensors at the boundary-layer nodes, the anisotropy in the mesh could be
changed to improve the solution [22]. Using an octree mesh provides a signif-
icantly more structured interior mesh, but is typically thought to have poorer
quality near the boundary. Zhang uses pillowing near the boundary to create
higher-quality elements that are also aligned with the flow near the surface
[34]. Isaksen et al. have used these meshes to run FSI analyses on cerebral
aneurysms [13].

CFD and FSI analyses are used to study the blood flow and WSS through
localized regions, e.g. aneurysms, and through significantly larger portions
of the vascular system [12, 26, 6, 22, 31, 19, 25, 29, 1, 34]. Torii showed the
impact of both the cerebral aneurysm shape and the use of FSI on the flow
and stress results [29]. Using an assumed 0.3 mm uniform wall thickness, Torii
et al. found a 20% decrease in WSS when using compliant, instead of rigid,
walls. A similar result was found by Bazilevs through a range of cerebral
aneurysm models [1]. These models again assumed a uniform wall thickness
because patient values are near impossible to obtain. Scotti et al. showed
upwards of a 400% increase in WSS when a variable wall-thickness is used
over its uniform wall-thickness counterparts [26, 25]. The thickness of the
wall used for their aneurysms is a predetermined range that falls within the
measured data from Raghavann [21]. In Raghavan’s work AAAs from four
cadavers were cut into strips and measured to determine a tensile yield stress
for the vessel-wall tissue. It was found that the thickness varied from about
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1.5 mm in the healthy regions of the aorta (approximately 15% of the radius)
to a minimum of 0.23 mm at a rupture site.

Parameterization is used frequently for model texturing and surface deci-
mation [4, 8, 17, 27, 23, 32]. It takes three-dimensional geometry and projects
it onto a planar (or series of planar) domain(s) — this is not completely true
as there are some methods that projects the mesh onto the surface of a sphere.
A proper map should yield a one-to-one relationship between any point on
itself to its parent surface. Sheffer wrote a survey in 2006 describing much of
the work on linear mapping [27]. A lot of the mapping schemes will only fit el-
ements onto convex domains and depending on the parameterization scheme
different guarantees can be made about the quality. For more complex do-
mains, i.e. closed solids or n-manifold surfaces, it is common to partition
the shape into smaller, manifold regions. Kim and Yin showed alternative
methods for mapping multiply connected discs. Kim et al. used Ricci flow to
move a face with holes, for the mouth and eyes, onto an annulus in order to
perform expression recognition [17]. Slit mapping was presented by Yin to
show a linear solution to the same problem with the ability to set arbitrary
boundaries to the inner and outer ring [32].

Model deformation is commonly accomplished through the use of mass-
spring systems [28, 11, 2, 3]. Using elasticity theory, a stiffness matrix could
be created and solved to model and animate the deformation of rigid bodies
[28]. This however can become computationally expensive as the domain in-
creases in complexity. Gudukbay showed solving local spring equations was a
good substitute to the older methods and could still provide time-dependent
deformations [11]. Both Chen and Cui have recent work for haptic feed-
back with surgery simulations that utilizes mass-spring systems to provide
displacement and force information to the user [2, 3]. It should be noted
that the blood-vessel tissue is constantly trying to repair itself and while an
aneurysm is growing the walls are slowly becoming stronger as well. Kroon
and Holzapfel have an finite element simulation that incorporates the growth
and breakdown of collagen in the creation of a cerebral aneurysm [18].

Most of the previous vascular modeling methods have used walls with a
uniform thickness when performing analyses. Some methods are beginning
to use variable thicknesses, but these tend to be coarse approximations with
simple geometry. This paper will present a better approximation to the wall
thickness by deforming a healthy blood vessel into one with an aneurysm.

3 Wall-Thickness Estimation

To determine the aneurysm wall thickness a combination of parameteriza-
tion and spring relaxation is used. The proposed method tries to mimic the
process of aneurysm growth by assuming the amount of tissue remains rela-
tively constant while the vessel wall is stretched. If a single surface-mesh can
be placed on both the healthy and aneurysm geometries then the change in
area of the elements should also represent a local change in wall thickness.
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As outlined in Figure 1, the mapping provides a way to move the surface tri-
angulation from the deforming vessel, S0, onto the surface of the aneurysm,
S1. While the two meshes now lie on the same domain, the deformed sur-
face, S2, is not a physically meaningful solution. A spring system is used to
approximate the elastic nature of the vessel tissue and its relaxation allows
the nodes of the deformed mesh to shift their locations along the aneurysm
surface. This provides a solution, S3, that better reflects how the healthy
vessel was deformed. By comparing the original and deformed mesh, the wall
thickness can be found through a simple volume preserving calculation.

Fig. 1. Deformation of a fusiform aneurysm: S0 and S1 are combined in a map to
create S2. S3 is the spring-relaxed model of S2. S0 and S1 contain 2272 and 1720
triangles respectively.

3.1 Deformation through Parameterization

Moving the mesh from the healthy blood vessel onto the geometry of the
aneurysm is achieved in three steps. First, the meshes for the healthy and
aneurysm models are mapped onto annuli. Second, both maps are overlaid,
which allows nodes from the healthy-surface map to be matched to a unique
location in the map of the aneurysm. Third, using this relationship, nodes
from the healthy mesh can be moved onto the desired geometry.

In order to create the mappings, the surface being deformed, S0, and the
desired surface, S1, will need to be triangulated, t0 and t1 respectively. A
model is required for both the desired, aneurysm shape and the deforming,
healthy, blood vessel. While the aneurysm model can be created from the
segmentation of medical images, unless a model already exists for the healthy
vessel, an approximation will be required. An advancing front method is
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used to create a uniform triangulation on S0 and is recommended to avoid
weighting issues while smoothing with the spring system. The triangle mesh
creates M nodes on the surface, with m nodes, ni, i = 1, ...,m, being interior
to those nodes on the boundary, ni, i = m + 1, ...,M . Every node, ni, has
coordinates on the surface, xi, and a set of valent nodes, Vi.

The nodes from S0 and S1 are mapped onto an annulus using a uniform
parameterization in polar coordinates, see Figures 2(a) and 2(c). The annulus
is chosen as the working domain primarily because it matches the topology
of a cylinder and is still robust for geometries with multiple branches. Each
surface has an inlet and outlet that are forced, respectively, onto the outer
and inner rings of the annulus. This is accomplished through homogeneous
coordinate transformations that translate and rotate each curve onto the
same plane and scales them to the proper radii. The radii of the inner, rin = 1,
and outer, rout = 10, rings can be different values, and does not change the
final results. All the remaining nodes are then projected normally onto the
annulus’ plane so the iterative solution can be calculated in two-dimensions
instead of three, see Figure 2(b).

Many weighting schemes used for parameterization are meant for con-
vex domains, and as a result, solving the system over an annulus produces
triangles that are tangled and fall outside the its bounds. This can be cir-
cumvented by moving the calculations of Equation (1) into the polar space.
Using a uniform parameterization [30],

x́i =
∑

j∈Vi

x́j

vi
, (1)

places each node in the geometric center of its neighbors, where vi is the
valence number of node ni. The initial, strict projection of the nodes directly
onto the plane may create tangled triangles; however, iterating over the in-
terior nodes with Equation (1) will pull them apart, see Figure 2(c). While
most of the triangles will be highly anisotropic, they will also be untangled in
polar coordinates. Unfortunately a few inverted triangles may appear when
moving back to a Cartesian frame. These can be made positive with a couple
iterations of an algorithm presented by Freitag. It is used to maximize the
area of the triangles around every node [9]. At each node, a patch is con-
structed with its neighboring triangles and the minimum area is maximized.
This yields a valid triangulation with the same topology in �2 as the sur-
faces in �3. The maps only need untangled triangles in order to provide the
one-to-one relationship. Higher-quality elements in the maps may improve
the initial deformation, but are not critical to the overall method.

The projected nodes now have coordinates x́i on the annulus and the
projected triangles are t́i. As can be seen in Figure 2, a uniformly meshed
cylinder will appear very regular, with the triangles becoming increasingly
skewed as their radial location increases. This is in contrast to the map of
S1, showing a denser concentration of triangles on the side corresponding to
the offset aneurysm.



Using Parameterization and Springs 403

Fig. 2. Mapping of the nodes from a surface to the annulus; (b) shows the initial
projection of nodes onto the annuli’s plane. (c) shows the final maps after iterating
with Equation (1).

The overlay of the two maps provides the relationship needed between the
nodes from S0 and the triangles from S1, see Figure 3(c). With both maps
overlaid, each non-boundary node, n0,i, can be found to lie in a triangle, t́1,j ,
as shown in Figure 3(c) pullout. As a result of the maps covering the same
domain and having no tangled elements, every node in the map of S0 will
correspond to a unique point within the map of S1. Further, by knowing every
point within t́1,j also lies uniquely in its surface counterpart, t1,j , locating
the barycentric coordinates of x́0,i in t́1,j also defines its location, x2,i, in t1,j

on S1, see Figure 3(d). Finding which triangle each node lies in starts with a
search for the coordinate in the map of S1 that yields the shortest distance
to x́0,i. Any triangle connected to that location is chosen as the initial guess
for t́1,j , with the surrounding triangles being moved through until all the
barycentric coordinates are positive for x́0,i.

Once the barycoordinates of all the nodes, n0,i, have been found, they
create the resultant surface, S2. The healthy, blood vessel now matches the
shape of the vessel with the aneurysm. Unfortunately, this alone does not
provide accurate enough information to calculate the wall thickness. As a
result of the weighting scheme used in the map, the parametric transformation
between two different surfaces is not guaranteed to be the same, i.e. if the
inner and outer radii of the annulus are 1 and 10 respectively, r = 5 may



404 E. Johnson, Y. Zhang, and K. Shimada

Fig. 3. Overview of the deformation following a node from S0 (the red dot). (a) The
original surface. (b) The map of a surface on its annulus resulting in the mapping of
ti into t́i. The dashed line represents the location of r = 5 on both surfaces and the
map. (c) An overlay of the maps allows the barycentric coordinates for x́0,i within
t́1,j to be found. (d) The barycoordinates found in (c) are the same for x2,i in t1,j

and move the nodes from S0 onto S1.

not correspond to the same axial coordinate in the original geometry, see
Figures 3(a) and 3(b). Consequently, using the mapping technique, by itself,
will create a bias as to where the wall is thinnest and not represent the true
deformation. By converting the mesh into a spring system and allowing the
nodes to move, this can easily be corrected.

3.2 Relaxation Using Springs

To make the deformation physically meaningful the deforming geometry
should not only match the shape of the desired model, but the elements
should stretch in an elastic manner. That is, a blood vessel will have deformed
more significantly near the aneurysm than its ends, and the triangulation of
S2 should represent that properly. In order to accomplish this, a linear spring
system is created from the mesh, i.e. the edges of the triangles become springs
attached at the nodes. Through a series of iterations the springs are relaxed
until their displacement is below some threshold; here it is less than 5% of
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the shortest edge. Additionally, the nodes are projected back onto S1, in a
direction normal to the surface, after every iteration to ensure S2 does not
deviate from the desired shape. Equation (2) calculates the force, Fi, act-
ing on every node by comparing the current length of each attached spring
against its undeformed length,

Fi = k
∑

j∈Vi

li,j − ||x0,j − x0,i|| ˆli,j , (2)

where li,j = (x2,j − x2,i) is the vector of the current spring between nodes
n2,j and n2,i and ˆli,j is the regularized direction. For this work the spring
stiffness, k = 1, is a constant because of the uniform mesh and the isotropic
material properties assumed. Every node is then updated by,

x2,i = x2,i + s
Fi

k
, (3)

a fraction of the distance determined by the force acting on it. The step size
of s = 0.1 prevents the nodes from taking too large a jump and tangling. The
process is outlined in Algorithm 1 and the final surface is S3.

while movement > ε do
for every node n2,i do

calculate force at n2,i using Equation (2)
move n2,i using Equation (3)
project n2,i to S1

end
end

Algorithm 1. Spring Correction

The deformed, blood vessel now matches the shape of the aneurysm and
takes the elasticity of the vessel tissue into account. Even though this spring
model can only provide a linear approximation, it is a first guess at trying to
represent the complex elasticity and anisotropic nature of the tissue. However,
steps can be taken to improve this. If t0 is not a uniformly generated, triangle
mesh, then each spring will need a stiffness relative to its original length in
S0. Additionally, since the axial and circumferential stiffness of the tissue are
different, the material properties of tissue should be incorporated through a
change in the spring constant as well. A non-linear spring system may also
prove to represent the true elastic nature of the tissue more completely.

3.3 Thickness Calculation

The wall thickness at every node in S3 can now be calculated. The deformed
mesh has elements of different sizes than originally and because the topology
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was never altered, the change in area between t0,i and t3,i can be compared
directly. Since the Poisson’s ratio of tissue is near 0.5, the change in wall
thickness will be inversely proportional to the change in an elements area. At
each node n3,i, the wall thickness, d3,i, is related to the average ratio of the
change in area of the neighboring triangles,

d3,i = d0,i

∑
j∈Vi

A0,j

A3,j

vi
, (4)

where A0,j and A3,j are the area of triangles t0,j and t3,j respectively and
d0,i is the initial thickness, which is assumed to be uniform.

Geometry and a mesh for the blood vessel wall could be created directly
from this information. It should be noted that while S3 has the wall thickness
values associated with the location of its nodes, S1 has a significantly higher
quality mesh because it was never stretched. The barycentric coordinates of
n1,i within t3,j should be used to map the wall thicknesses to S1 since the
geometry of S1 and S3 match. Figure 4 shows the final wall thickness, the
outermost layer, and the fluid mesh, which is discussed in Section 4. As can
be seen in the figure, there can be a significant change in the wall thickness
through a very small distance.

Fig. 4. The vessel wall (3440 wedges) with the boundary-layer mesh (17200 wedges)
and interior mesh (6913 tetrahedra) for a fusiform aneurysm.

4 Boundary-Layer Meshing

Once the wall thickness has been found, a mesh of the fluid domain needs
to be generated in order to run FSI simulations. To properly capture the
rapidly changing velocity within the boundary layer, anisotropic wedges are
used along the walls and created in an advancing-front manner [14]. Every
surface node has a direction and size that controls the growth of the wedges to
prevent a collision of fronts and tangling of elements. After a specified number
of layers have been generated, the remaining space is filled with tetrahedra.

The growth of the boundary-layer mesh is dictated by a hair at each node.
A hair is a vector connected to a node. The initial direction of the hair is
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the normal of the surface, while its length is chose to provide near isotropic
elements in the outermost layer. The hairs are then smoothed to make sure
the wedges do not tangle.

Smoothing the direction is accomplished by moving a hair to the average
of its neighbors. If the difference between the hair and the average is larger
than 30◦ the hair is instead moved iteratively to allow its neighbors to move
towards it as well. Though not common in biological models, there is a chance
a hair could point outside the volume. In these rare instances the hair is
marched towards a location where the dot product between it and all the
neighboring surfaces is positive, if it exists.

The length of the hair is then smoothed with regards to both the geome-
try and its neighbors. Concerning the geometry, using a uniform length for
every hair would produce increasingly skewed elements near sharp corners.
To remedy this, the length of a hair is increased relative to the angle of the
corner. This ensures perpendicular corners remain perpendicular. Addition-
ally, a hair’s length should also be smoothed with respect to its neighbors.
Using the average length would cause a ballooning of the boundary-layer
mesh around corners. Instead, the length becomes the average of the normal
component of its neighbors’ hairs.

Even though the boundary-layer mesh can now grow with well-shaped
elements, there is still a chance for fronts from competing surfaces, and even
adjacent hairs in high-curvature regions, to intersect. To avoid these collisions,
a sizing function based on the radius of the medial-ball is used [20]. The radius
of the medial-ball is placed in a background octree-mesh and the values are
smoothed with a quadratic, inverse-distance weighted interpolation. If the
length of a hair is larger than the local sizing-function, it is shortened. This
method for collision avoidance allows a wider range of length scales to be
present in the biological models without having to specify proper sizing for
each part of the boundary-layer mesh.

5 Results

Models for the fluid region of a fusiform and saccular aneurysm were cre-
ated to represent both the healthy blood vessel and one with an aneurysm.
A fusiform aneurysm occurs when the entire circumference of the blood ves-
sel dilates, though it is commonly not axisymmetric. A saccular aneurysm is
where the growth occurs in a small region of the wall and exhibits necking.
With these models, the method presented was used to deform the healthy ves-
sel into the unhealthy one in order to yield geometry with a varying thickness
for the wall. These were compared against measured values for wall thickness
and FSI analyses were performed to validate the method against expected
results.

As shown in Figure 1, the healthy geometry for the fusiform set was a
cylinder with a diameter of 2 cm and a length of 24 cm. The aneurysm, with
a diameter of 6 cm, was placed in the center of the healthy vessel with an
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offset from the axis of 0.75 cm. The initial wall thickness was calculated to
be 1.50 mm. After deformation, the minimum wall thickness was found to
be 0.22 mm, with an average of 1.11 mm. The deformation can be seen in
Figure 1 and the final wall in Figure 4. With 2272 triangles and 1152 nodes
in S0 and 1720 triangles and 876 nodes in S1, it took 200 s to create the
parameterizations, deform the surface, relax the springs, and calculate the
final wall thickness. Surgery would be recommended for an aneurysm of this
size and the wall thickness is near the limit measured by [21]. The saccular
aneurysm had a maximum diameter of about 4 cm and was placed off-center
from the axis of the 2 cm diameter vessel. The minimum thickness of the wall
was 0.41 mm with an average of 1.23 mm, see Figures 5 and 6. With 6588
triangles and 3320 nodes in S0 and 7968 triangles and 4010 nodes in S1 it
took 2771 s to determine the wall thickness. In both cases the majority of
the time was taken to relax the spring system and needs to be looked at for
efficiency. All the surface were meshed using the advancing front algorithm
in CUBIT [24].

The vessel wall and fluid volume of the fusiform geometry were then
meshed in order to perform FSI simulations. The wall was meshed with 2
layers for a total of 3440 wedges. The wedges in the wall had a maximum
dihedral-angle (MDA) range between 90◦–106◦. Due to the dimensions of
the blood vessel, the boundary layer plays a particularly important role in
the development of the flow and the resultant WSS. As a result the mesh in

Fig. 5. Deformation process of the saccular aneurysm. S0 and S1 contain 6588 and
7968 triangles respectively.
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Fig. 6. The vessel wall (15936 wedges) with the boundary-layer mesh (79680
wedges) and interior mesh (57852 tetrahedra) for the saccular aneurysm.

Fig. 7. The cardiac cycle used in the FSI analyses for the inlet, velocity, and outlet,
pressure, boundary conditions.

the region of the boundary layer should be sized appropriately in order to
capture the steep and changing gradient. The fluid-volume mesh was created
using the advancing-front method presented and implemented in CUBIT for
boundary-layer meshing and consisted of 17200 wedges (10 layers along the
wall) and 6913 tetrahedra. There were 20 wedges with a MDA over 150◦ and
an aspect ratio range of 2-63; the aspect ratio is the ratio between the longest
and shortest edge lengths of an element. The fluid-domain tetrahedra had a
MDA between 73◦–135◦.

The FSI analyses were run to compare the WSS and mesh displacement be-
tween simulations with uniform and variable wall thicknesses for the fusiform
model. They were run with ANSYS R© and ANSYS R©, CFX

TM
. The blood flow

was approximated as a Newtonian fluid with a dynamic viscosity of μ = 3.85
cP and solved using a shear stress transport model. A simplified representa-
tion of the cardiac cycle, Figure 7, was used to provide boundary conditions
giving an inlet velocity with a peak of 31 cm/s at 0.3 s and an outlet pres-
sure with a peak of 118 mm Hg at 0.4 s. The vessel wall was treated as an
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Fig. 8. The shear stress at 0.4 s for the (a) uniform and (b) variable wall thickness.

Fig. 9. The velocity with a vector field at 0.4 s for the (a) uniform and (b) variable
wall thickness.

isotropic material with a Young’s modulus of E = 2.7 MPa, a density of
ρ = 2000 kg/m3, and a Poisson’s ratio of ν = 0.45 and the ends were fixed
in place.

The analysis was first performed on the geometry with a uniform wall
thickness (1.5 mm). With a pulsatile flow the maximum WSS was 0.31 MPa
and occurred on the anterior and posterior regions of the aneurysm, Figure
8(a). A second simulation was run using the variable wall-thickness deter-
mined by the proposed method. The results match well with what is ex-
pected. The max WSS for the variable wall thickness was 1.04 MPa at about
0.4 s and can be seen in Figure 8(b). Using a variable wall thickness pro-
duced a 330% increase in the WSS even though the aneurysm geometry was
unchanged. This is similar to what was seen in the work of Scotti and is be-
low the yield stress shown by Raghavan (a mean of 1.27 MPa). The velocity
profiles, Figure 9, are fairly similar between the two runs. Small differences
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Fig. 10. The wall shear stress at 0.4 s for the saccular geometry with a (a) uniform
and (b) variable wall thickness.

Fig. 11. The velocity with a vector field at 0.4 s for the saccular geometry with a
(a) uniform and (b) variable wall thickness.

can be seen between the two though as a result of the variable wall being
capable of more deformation in the thinner regions.

The same analyses was also performed on the saccular aneurysm in order
to show results for a more complex model. There were 15936 wedges in the
wall and 79680 in the blood volume, which also contained 57852 tetrahedra.
The MDA for the tetrahedra ranged between 72◦–140◦ in the fluid region. The
wedges in the wall had a MDA between 90◦–114◦ and in the fluid domain
was between 90◦–140◦ with an aspect ratio of 2.5–110. The analysis again
showed a velocity profile that was very similar between the uniform and
variable walls, a cross-section can be seen in Figure 11. The WSS, in the
variable wall thickness model, had a max value of 1.89 MPa around 0.4 s and
was not where failure would be predicted, see Figure 10(b). This is likely a
result of the geometry created – it was not medical data – producing a stress
concentration and not indicative of the method. The thinnest regions in the
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variable model show a maximum WSS of 1.31 Mpa and is significantly closer
to the expected value and location. There is more than a 250% increase when
compared against the WSS in the same region of the uniform model (0.49
Mpa).

6 Conclusion

The proposed method provides a very good start to improve patient-specific
geometry for simulations of aneurysms. Having shown how significantly the
wall shear stress changes with the addition of variable wall thicknesses, it
can only be argued that better predicting a patient’s unique geometry is
crucial. That being said, the growth of an aneurysm is more complicated
than deforming an isotropic material with a uniform wall thickness. To start,
the blood-vessel wall is not isotropic and repairs itself while being stretched.
Moreover, as the patient ages, calcification and plaquing will locally alter
the material properties and wall thickness in a way that fully predicting how
the wall deforms becomes increasingly difficult. More boundary conditions
should be used to simulate the natural, axial tension in the blood vessel and
external pressure from surrounding organs. Regardless, having a method that
can start to provide patient-specific wall geometry is a needed step.

Future work will start to incorporate some of these ideas through the use
of non-linear, anisotropic springs. In addition to using medical image data
for aneurysm geometry, more robust mappers should be used to accommo-
date increasingly complex geometry. Even though the examples presented
were approximations of AAAs, the proposed method is extendable to any
aneurysm.
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