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Abstract. A multilevel adaptive refinement technique is presented for unstruc-
tured quadrilateral meshes in which the mesh is kept conformal at all times. This
means that the refined mesh, like the original, is formed of only quadrilateral ele-
ments that intersect strictly along edges or at vertices, i.e., vertices of one quadri-
lateral element do not lie in an edge of another quadrilateral. Elements are refined
using templates based on 1:3 refinement of edges. It is demonstrated that by careful
design of the refinement and coarsening strategy, high quality elements can be main-
tained in the refined mesh. The method is demonstrated on a number of examples
with dynamically changing refinement regions.

1 Introduction

Adaptive mesh refinement is a well-known and widely employed technique for
accurately capturing special features of the solution in steady and unsteady
simulations. In such simulations, adaptive refinement enables the capturing
of complex solution features by focusing refinement in critical areas with-
out having to refine the mesh everywhere. Adaptive mesh refinement is now
standard practice in simplicial meshes (triangular and tetrahedral) in a wide
variety of applications. The unique topological properties of simplices allow
the refinement in such meshes to be confined to fairly local regions while
maintaining a high element quality [10] and keeping the mesh conforming.
Conformity of the mesh implies that the intersection of a pair of elements, if
not null, is strictly a lower dimensional mesh entity such as a face, an edge
or a vertex. Non-conformity of mesh is commonly interpreted to mean that
a lower order boundary entity (e.g. a vertex) of one element lies on a higher
order boundary entity (e.g. an edge) of another element.

For quadrilateral meshes, the most common approach to adaptation is to
refine elements in a non-conformal way. This allows the refinement to remain
local but introduces non-conformal nodes which lie on the edges of neighbor-
ing elements. However, mesh non-conformity necessitates augmentation of
the PDE solution algorithm to deal with the special nodes. Non-conformity is
typically dealt with by constraining the solution at the non-conformal nodes
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to be dependent on the solution at the nodes of the edge it lies on using
constraint equations [15] or Lagrange multipliers [4] or by the use of mortar
elements to link the non-matching elements [1].

In this research, a technique is described to refine an unstructured quadri-
lateral mesh such that the result is also a hierarchically refined, conforming
mesh of only quadrilaterals with high quality albeit a little worse than the
parent mesh quality.

2 Previous Work

There has been considerable research on conformal triangular refinement for
adaptive simulations since termination of refinement for simplices is very easy
(see, for example, [12]). However, for quadrilateral meshes most researchers
choose to use non-conformal quadtree type refinement with specialized code
to handle non-conformal nodes (see, for example, [3]). There have been only
a few articles describing conformal quadrilateral mesh refinement and coars-
ening, and even fewer that deal with the issue in a dynamic setting, i.e.,
conformally refining and coarsening a quadrilateral mesh that has been pre-
viously refined.

One of the best known papers on the issue of conformal quadrilateral refine-
ment is by Schneiders [14]. In the paper, Schneiders discusses 2-refinement
(bisection of edges) and 3-refinement (trisection of edges). He chooses the
trisection of edges because it simplifies the algorithm. The refinement infor-
mation is propagated from elements to nodes and refinement templates are
defined based on the number of marked nodes (See Figure 1). The refine-
ment templates are chosen such that the scheme is stable, i.e., the quality
of elements does not deteriorate with increasing refinement levels. However,
even though in this research, uniformly refined quadrilaterals have trisected
edges and are split into 9 child quadrilaterals, templates used in adjacent el-
ements to terminate the refinement have bisected edges as seen in the figure.
In general, Schneiders scheme is more complicated to implement than the
scheme presented here. Still, it is a valid scheme for conformal quadrilateral
refinement and has been used by other researchers such as Zhang and Bajaj
[18]. Schneiders has extended the work to hexahedral refinement as well but
correctly points out that certain refinement patterns for the faces of hexahe-
dra may not admit a valid decomposition of the parent hexahedron. Ito et al.
have also used Schneiders’ approach for octree based hexahedral refinement
templates [8].

Tchon et al. have proposed a quadrilateral refinement strategy in which
they find layers of elements, shrink the layers of elements and reconnect the
shrunk layer with the surrounding mesh [17]. Clearly this strategy assumes
certain structure to the mesh and specific refinement patterns while ignor-
ing the issues of multiple levels of refinement, mesh quality and dynamic
adaptation. Hence, the approach is of limited utility.
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(d) (e)

Fig. 1. Schneiders’ subdivision templates for quadrilateral refinement (refinement
vertices are marked with circles) (a) unrefined quadrilateral (b) one vertex marked
(c) two adjacent vertices marked (d) two diagonally opposite vertices marked (e)
three vertices marked (f) all vertices marked (uniform refinement of quadrilateral).

Several researchers have proposed a quadrilateral refinement strategy
where the end result is a mixture of quadrilaterals and triangles, for example
[5]. Similarly, others have proposed hexahedral refinement strategies which
result in a combination of hexahedra and prisms. However, this conflicts with
the stated goal of achieving a conforming all-quadrilateral or all-hexahedral
mesh.

Benzley et al. have proposed quadrilateral mesh coarsening strategies that
are quite general and do have an advantage over nested refinement strategies
in that they can coarsen beyond the original resolution of the mesh [16].

The research that is closest to the presented is the work by Sandhu et
al. [13] although this work was developed without knowledge of this ear-
lier research. In this work, Sandhu et al. use node marking and trisection of
edges to define templates for refining elements and terminating the refine-
ment. They define one less than the number of templates used in this work.
Similar to this work, they also recommend undoing non-uniform refinement
of quadrilaterals before further refinement to maintain quality. However, all
their examples show only static refinement and aspects of dynamic refinement
such as coarsening, remapping etc. are not explored.

This paper discusses a dynamic mesh adaptation strategy for quadrilat-
eral meshes that results in a conformal all-quadrilateral mesh with nested
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refinement. Moreover, while not proved, it is believed that in piecewise linear
complexes the resulting mesh quality is bounded by the quality of the parent
mesh regardless of the number of levels of refinement at each time step or the
number of time steps in the mesh. The adapted mesh is suitable for use in a
wide range simulations without any special procedures since it is composed of
only conformal quadrilaterals. Finally, the nested refinement allows for easy
remapping of cell based quantities from one time step to another.

3 Description of Mesh Refinement/Coarsening
Algorithm

3.1 Overview

The adaptive mesh modification algorithm starts with tagging elements that
must be refined because they do not adequately represent some geometric
feature or because the solution error in these elements is deemed to be too
high. These elements and their edges are tagged for refinement (or coarsen-
ing), if necessary, to multiple levels below (or above) their current level of
refinement1. When an edge is adjacent to two elements with different refine-
ment levels, it is refined to the higher of the two levels. Once the appropriate
elements have been tagged by the application, the mesh is coarsened wher-
ever the application requests the elements to be larger than they currently
are. After coarsening, the mesh is refined wherever the application requests
elements to be smaller than they currently are. During both coarsening and
refinement, the target refinement levels of elements are adjusted so that they
are consistent with their siblings (children of their parents) and such that
the target refinement levels of two adjacent elements do not differ by more
than one. The one-level difference rule ensures that the number of templates
required to make the mesh conforming is limited to a manageable number
and that the mesh is smoothly graded.

3.2 Subdivision Templates

When some elements in the mesh get uniformly refined, one or more edges
of adjacent quadrilaterals are also refined. To make the mesh strictly con-
forming, these adjacent elements must also be subdivided into quadrilaterals
such that the refinement terminates. To facilitate conformal subdivision of
elements that are not uniformly refined, edges are trisected instead of being
bisected as in triangular meshes. The reason for choosing trisection over bi-
section is that if an odd number of edges of a quadrilateral were bisected, the
resulting polygon would have an odd number of edges and could not be sub-
divided into quadrilaterals in a self contained manner. The templates used
1 Regardless of whether an element is being coarsened or refinement, it will always

be referred to its target level in the heirarchy of meshes below the coarsest mesh
as its target level of refinement.
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Fig. 2. Subdivision templates for quadrilateral refinement (thick edges are refined
edges) (a) unrefined quadrilateral (b) one edge refined (c) two opposite edges refined
(d) two adjacent edges refined (e) three edges refined (f) all edges refined (uniform
refinement of quadrilateral).

for subdividing quadrilaterals with different edges refined are shown below
in Figure 2. Some of these templates have been described in previous works
[13] and some are new.

The quadrilaterals that result from uniform refinement of a parent quadri-
lateral are called regular elements while quadrilaterals resulting from refine-
ment of one, two or three edges of the parent quadrilateral are called irregular
quadrilaterals.

It must be pointed out that the templates described above are different
from the templates in Schneiders’ work. In that work, refinement tags are
transmitted to vertices of elements and templates derived from the combina-
tions of vertices tagged for refinement. Those templates are shown in Figure 1.
As can be seen from the picture, the only template the two approaches have
in common is the uniform refinement template. In the remaining cases, edges
of elements that adjacent to uniformly refined elements are refined using
an irregular 1:2 pattern. Also, even if only one edge of an element adjacent
to a uniformly refined element is refined, the template proposed by Schnei-
ders refines two other edges of the element. This in turn forces refinement
of other elements. Figure 3 shows a simple example of this over-refinement
as a consequence of uniform refinement of the central element in a 3x3 mesh
of quadrilaterals. As can be seen in the picture, Schneiders’ scheme modifies
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(a) (b) (c)

Fig. 3. Comparison of Schneiders’ scheme and the proposed scheme of refine-
ment on a 3x3 grid of quadrilaterals (a) Central element refined uniformly (b)
Surrounding mesh made conforming by Schneiders’ scheme (c) Surrounding mesh
made conforming by proposed scheme.

every element in the 3x3 mesh while the proposed scheme affects only the
edge connected neighbors. This leads us to the conclusion that the Schnei-
ders’ scheme is a little more complex to implement that the current scheme
in which termination requires refinement of only edge neighboring faces. In
terms of numbers of elements, the number of extra elements created by both
schemes seems comparable for large problems.

3.3 Coarsening

In the mesh adaptation method presented here, coarsening of elements is done
first before refinement. In this approach, coarsening is performed strictly us-
ing the knowledge of the hierarchical structure of the adapted mesh, i.e., if
an element is to be deleted then its siblings are also deleted simultaneously
and the parent element is restored. For this reason, the coarsening strategy
of this paper cannot coarsen beyond the original mesh. Coarsening is per-
formed on elements whose current refinement level is higher than the target
refinement level. Before actual deletion of elements, however, the target levels
of elements are adjusted to ensure that there is not more than one level of
difference between two adjacent elements and that the target levels of siblings
are consistent.

Consider an element whose current refinement level is Lc and target re-
finement level is Lt. Assume the maximum refinement level of all of its edge
connected neighbors (and therefore, all of its edges) is La. Then, if the target
refinement level of this element is greater than one level less than the maxi-
mum target level of its edges, then set the target level to be exactly one less
than the maximum target level of its edges. Algorithmically, this can be ex-
pressed more succinctly as: if Lt < La − 1, then Lt = La − 1 (See Figure 4a).
For example, if for a particular element Lc = 5, Lt = 1 and the neighbors
have targets of 1, 3, 1, 2. Then La = 3 and Lt is set to 2.



Conformal Refinement of Unstructured Quadrilateral Meshes 37

For making the refinement levels consistent between siblings, a conservative
approach is taken and the element and its siblings are marked for coarsening
only up to the maximum level (smallest size), Ls, allowed by the element
and all its siblings. So, if Lt <= Ls < Lc then Lt = Ls. For example, if
Lc = 5, Lt = 1 for an element, but Ls = 3, i.e., one of the siblings of the
element has a target level of 3 (Figure 4c). Then the current element cannot
be coarsened to a level lower than Lt = 3. On the other hand if Lt < Lc < Ls,
then Lt = Lc. For example, Lc = 5, Lt = 1 as before, but Ls = 7, i.e., a
sibling wants to be refined from the current level while the element wants to
be coarsened. Then the element cannot be coarsened above the current level,
Lt = Lc (Figure 4d).
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Fig. 4. Level adjustment during coarsening and refinement (a)(b) Refinement level
adjusted due to maximum level of edges (c) Coarsening level adjusted due to target
level of sibling (d) No coarsening allowed above current level because sibling wants
to be further refined.

Next the elements are coarsened one level at a time starting from the
highest level. Every time an element and its siblings are deleted we transmit
the target refinement level to its parent. After coarsening the mesh at a
particular level, the level adjustment is redone before coarsening at the next
lower level.

3.4 Refinement

The most important rule imposed during refinement is that irregular ele-
ments are never refined as their repeated subdivision can lead to unbounded
deterioration of quality. Instead, whenever an irregular element is tagged for
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refinement, the element and its siblings are deleted and its parent element
is tagged for uniform refinement upto the maximum level requested by the
element and its siblings. This rule ensures that the quality of the refined mesh
is always bounded by the quality of the parent mesh. Schneiders defines re-
finement schemes with this property as being stable [14].

Refinement of the mesh and adjustment of levels before refinement is bit
more complex than coarsening because regular and irregular elements have
to be dealt with separately. On the other hand, level adjustment has to be
done only once before multilevel refinement as opposed to the doing it at
each level for coarsening.

To do level adjustment for refinement, the algorithm looks at each element
whose target refinement level Lt is higher than its current refinement level,
Lc. Then it gets the maximum refinement level, La of all its edge connected
neighbors. As before, if its target refinement level is greater than one level
lower than the maximum target level of its edges, i.e. Lt < La − 1, then the
target level of this element is adjusted as Lt = La − 1. Also, if the element is
irregular and one of its edges is to be refined, then the element and its siblings
are marked for deletion and its parent is marked for refinement to Lt. Finally,
if two adjacent elements are to be subdivided irregularly, it is ensured that
the common edge of the two is also to be subdivided. This ensures better
element quality as shown in Figure 5.

Then the algorithm deletes the irregular faces and subdivides the remain-
ing faces according to the templates based on the number of edges that are

(a) (b)

(c) (d)

Fig. 5. Refining the common edge between two irregularly refined elements (a)
Two adjacent elements with one edge refined (b) same elements with their common
edge refined (c) One element with two edges refined next to an element with one
edge refined (d) same elements with their common edge refined
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refined. Every time an element is refined, all its children are marked with
the target refinement level. The procedure continues to iterate over the mesh
elements until all elements have reached their target level of refinement.

4 Remapping or Solution Transfer

Unlike mesh adaptation for capturing geometry, adaptation to reduce solution
error for solving a PDE is tightly coupled with the issue of remapping or
transfer of quantities from the base mesh to the adapted mesh. There are two
types of solution quantities that must be remapped between meshes - integral
quantities such as mass or energy and pointwise quantities such as diffusivity.
The remapping of both quantities must be done accurately and remapping
of integral quantities must be done in a conservative manner (for example,
the densities of the child elements must be assigned such that the total mass
of the parent element is conserved). When a group of elements is coarsened,
one can just sum up integral quantities such as mass (or energy) over the
child elements and assign it to the parent. For pointwise quantities, one can
take an average of the values for the children weighted by their areas. On the
other hand, when an element is refined uniformly, then one can equidistribute
the mass over the children (less accurate) or do a linear reconstruction of the
density function over the parent element and integrate over each child to get
its mass (more accurate) [2]. Likewise pointwise properties such as diffusivity
can also be linearly reconstructed over the parent’s neighborhood and an
accurate value derived for the child. Field variables (such as velocity) can be
obtained by either evaluating an interpolant over the parent at nodes of the
child or by solving a local problem over the refined elements using the solution
over the base mesh to impose boundary conditions for the local problem. Also,
in the proposed algorithm, special care must be taken for remapping when
irregular elements are targeted for refinement since the mesh is coarsened
back to the parent element and refined down uniformly. Using a summation
of masses of the irregular children to get a mass for the parent element and
then redistributing it to the regular children can be a poor choice and will lead
to lower order accuracy remapping. Rather, it is better to use an intersection
based remapping routine locally to get second order accuracy [6].

5 Results

First a static example of refinement is presented of a structured mesh mesh
adapted to a superimposed line in the mesh. Any element that is intersected
by the line is refined up to level 3 (level 0 is the original mesh). The super-
imposed line goes from (−0.308207, 1.106007) to (1.106007− 0.308207). The
quality of the mesh before and after the refinement is also compared in terms
of the average condition number of the element, κ̄, defined as the mean of the
condition numbers [9, 7] at all corners of the element. One can see from the
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κ̄ Original Refined
1.0 – 1.5 400 12412
1.5 – 2.0 0 1396
2.0 – 3.0 0 0
4.0 – 5.0 0 0
5.0 – 0 0

Fig. 6. A 20x20 structured mesh refined using distance from center as the refine-
ment criterion

histogram of the refined mesh that it is not shifted dramatically from the ideal
case and that the worst quality element has an average condition number of
only 1.69. In fact, in simulations where a line is moved diagonally across the
domain and the mesh refined around it, the worst element condition number
stays at 1.69. Also, the worst element quality stays at 1.69 regardless of what
refinement level is applied to elements intersected by the line.

Next refinement induced by the same line in an unstructured quadrilateral
mesh is demonstrated. Figure 7a shows the original mesh with the elements
marked for refinement to level 3 due to intersection with the line (also shown).
Figure 7b shows the refined mesh after the levels have been adjusted to en-
force a one-level difference between adjacent elements. Also included is a table
showing the distribution of condition numbers before and after refinement.
The worst condition number goes from 3.12 to 3.79 after refinement.

In the following example, several snapshots from an dynamic adaptation
procedure are shown where a circle of radius 0.1 is moved along a circular
path in the domain. The center of the circle traces a circle of radius 0.2
centered at (0.5, 0.5). The starting point of the circle center is (0.7, 0.5). The
target size for the elements to be refined is 0.05d where d is the distance
between the centroid of the element and the center of the circle. As the circle
moves, previously refined parts of the mesh are coarsened and new parts are
refined with considerable overlap between the coarsened and refined regions.
As expected, the worst element quality stays at 1.69 throughout the dynamic
adaptation procedure.

Finally, several snapshots of a dynamic adaptation procedure are shown
in which elements intersecting one of two expanding circles are refined to
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(a)
(b)

κ̄ Original Refined

1.0 – 1.5 1007 42491
1.5 – 2.0 15 1776
2.0 – 3.0 1 504
3.0 – 4.0 1 15
4.0 – 5.0 0 0
5.0 – 7.5 0 0

(c)

Fig. 7. Refinement of an unstructured mesh along a line (a) Target refinement
levels (b) Refined mesh (c) Histograms of condition numbers

level 3 and elements intersecting both circles are refined to level 4. One circle
is centered at (0.0, 0.0) and the other circle is centered at (1.0, 0.25). Both
circles start with a radius of 0.11 with their radii increasing in increments of
0.05. As the circles grow, they intersect each other and eventually grow out
of the domain. Elements that intersect one or the other circle are refined to
a level of 3 while elements that intersect both circles are refined to a level of
4. Again the worst quality is stays fixed at 1.69 throughout the adaptation
process.

6 Discussion

This paper presented a comprehensive mesh adaptation procedure for quadri-
laterals that results in conformal meshes with nested refinement. The refine-
ment is based on templates devised from a consistent 1:3 refinement of ele-
ment edges. It also presented algorithms for adjustment of refinement levels
of elements, both for coarsening and for refinement, such that there is never
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Fig. 8. Snapshots of dynamic mesh adaptation of a 20x20 structured mesh with
respect to a circle rotating about the center of the domain

more than a one level difference between the refinement levels of adjacent
elements. The quality of the refined mesh is kept high by never refining irreg-
ular elements used to bridge refined and coarse regions of the mesh. Instead
if irregular elements must be refined, they are deleted and their parent is
uniformly refined instead. Using several dynamic mesh adaptation examples,
it was shown that the procedure effectively refines the mesh where necessary
and coarsens it where it is not.

Although one other paper discussing similar templates and strategy was
found after this algorithm was devised, that paper does not discuss dynamic
mesh adaptation and mesh coarsening explicitly although it too suggests that
irregular elements not be refined.

Compared to the algorithm proposed by Schneiders and the templates in
his papers, this algorithm produces fewer elements and is simpler due to the
consistent use of 1:3 edge refinement. Also, Schneiders does not discuss the is-
sue of mesh quality when forced to refine irregular elements. Finally, the issue
of solution transfer or variable remapping is addressed in the current paper
which is often ignored in most conformal quadrilateral refinement papers.

In 3D, the combinatorial complexity of the current algorithm could be
more complex than that of Schneiders’ algorithm. That is because this al-
gorithm tags edges instead of vertices for refinement, thereby resulting in∑12

i=0
12Ci = 4096 possible combinations. Of course, many of these can be

eliminated due to symmetry of rotation and inversion. Even so, the number is
expected to be higher than in Schneiders’ algorithm. Also, it is possible, just
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Fig. 9. Snapshots of dynamic mesh adaptation of a 20x20 structured mesh with
respect to two expanding circles

like in Schneiders’ algorithm, that some subdivisions of the hexahedron faces
may not admit a subdivision into hexahedra. In such a case, one can refine
additional edges of such hexahedra to be able to mesh them and propagate
the refinement further. In such a case, one can only hope that the refinement
does not consume the entire mesh. Alternatively, one can use the modified
templates proposed by Parrish et al. to terminate the refinement [11]. This
topic will be addressed in future work.
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