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Abstract. Whenever a new mesh smoothing algorithm is introduced in the litera-
ture, initial experimental analysis is often performed on relatively simple geometric
domains where the meshes need little or no element size grading. Here, we present a
comparative study of a large number of well-known smoothing algorithms on trian-
gulations of complex geometric domains. Our study reveals the limitations of some
well-known smoothing methods. Specifically, the optimal Delaunay triangulation
smoothing and weighted centroid of circumcenter smoothing methods are shown to
have difficulty achieving smooth grading and adapting to complex domain bound-
ary. We propose modifications and report significant improvements and behavior
change in the performance of these algorithms. More importantly, we propose three
new smoothing strategies and show their effectiveness in computing premium qual-
ity triangulations for complex geometric domains. While the proposed algorithms
give the practitioners additional tools to chose from, our comparative study of over
a dozen algorithms should guide them selecting the best smoothing method for
their particular application.

1 Introduction

Mesh smoothing is an important research problem for scientific simulation
applications where high quality elements are desired for accurate numeri-
cal calculations. While mesh generation [5, 6, 7, 22] focuses on computing a
subdivision (e.g. triangulation) of a given input domain from scratch, mesh
smoothing [1, 2, 4, 8, 9, 10, 15, 19, 18, 21, 23, 26, 29, 28, 27] aims to improve
an existing subdivision (e.g., for instance by relocating its vertices). Effective-
ness of proposed smoothing methods are often shown on meshes of relatively
simple domains, e.g., points distributed inside a square box. When the input
mesh models a complex geometric domain, the existing smoothing strate-
gies may struggle. For instance, Chen [10] proposed a smoothing method
called optimal Delaunay triangulation (ODT) and showed that it is effec-
tive for smoothing meshes of simple geometric domains. Figure 1 illustrates
� This research is partially supported by NSF CAREER Award CCF-0846872.
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(f)

(e)

(d)

(a) Initial (b) ODT (c) Modified ODT

(9.49◦, 145.95◦) (0.59◦, 177.84◦) (12.25◦, 131.53◦)

Fig. 1. Smoothing on complex geometry. (a) Initial Iraq mesh; (b) ODT smoothing
output with regions depicting suppressed (d) and stretched elements ((e) and (f));
(c) Output of our modified ODT smoothing method. Smallest and largest angles
in each mesh are also shown.

the poor performance ODT smoothing when the input geometry is complex.
The smoothed mesh contains very many bad quality triangles (suppressed
or stretched) near the domain boundary. We later present a modification of
ODT smoothing that can handle complex geometric domains (Figure 1 (c)
illustrates the output of this improved version).

In this paper, we compare the performance of a number of smoothing
methods when the input is a complex geometric domain. We propose modifi-
cations for some of these techniques to handle complex geometry. In addition,
we introduce three new smoothing methods, which are shown to be successful
to obtain high quality triangulations on complex domains.

2 Review of Smoothing Algorithms

In this section, we examine a number of smoothing methods, each of which
has been shown to be easy to implement, fast and/or effective. Here, we review
each approach to better understand their similarities, differences, strengths
and drawbacks regarding complex input domains. Note that, in this study we
mainly focus on smoothing methods which are based on geometric concepts.

First, we define a vertex xi to be free if it is allowed to be relocated. The
star of xi is denoted by Ωi which consists of all triangles incident to xi.
Similarly, the link of xi consists of all surrounding edges of triangles in the
star that are not incident to xi.

In general, smoothing algorithms iteratively relocate free vertices of a tri-
angulation until a threshold value is satisfied or a specified number of iter-
ations are completed. This is also incorporated with potential edge flipping
operations to obtain higher quality triangulations. Now, we describe how to
compute a new location for a given vertex based on given algorithms.
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(a) Initial (b) Laplacian (c) Smart Laplacian

(9.96◦, 141.21◦) (10.81◦, 110.15◦) (18.34◦, 114.47◦)

(d) WCC (e) CVT I (f) CVT II

(1.93◦, 174.00◦) (4.48◦, 161.56◦) (12.87◦, 132.38◦)

(g) ODT (h) Angle-based (i) WCT

(0.76◦, 178.11◦) (8.44◦, 117.37◦) (13.10◦, 133.64◦)

Fig. 2. (a) Initial airfoil mesh. (b)-(i) Output of existing smoothing algorithms.
Smallest and largest angles in each mesh are listed.

2.1 Laplacian Smoothing

In Laplacian smoothing [18], a free vertex is simply relocated to the centroid
of the vertices connected to that vertex (see Equation 1). This technique
is widely used due to its simplicity and effectiveness. However, it does not
guarantee quality improvement where inverted elements might be generated.
Therefore, many studies introduced different versions of Laplacian smoothing
or combined with other methods. An overview of those can be found in [9].

x∗ =
1
k

∑

xj∈Ωi,xj �=xi

xj, (1)

where Ωi is the star of the vertex xi having k points and x∗ is the new
location. Notice that, this formulation can also be interpreted as a torsion
spring system [29], where a central node in a star polygon is located at the
centroid of the polygon balancing out the system to stay in equilibrium (see
also Equation 10).
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2.2 Smart Laplacian Smoothing

One of the variations of the standard Laplacian smoothing algorithm is the
smart Laplacian smoothing [9, 19] which is also called constrained Laplacian
smoothing. The main difference between the original and this variant is relo-
cating points only if there is an improvement in the neighborhood. Briefly, a
vertex is relocated when the new candidate location improves the quality of
the elements in the star. Otherwise, the node remains in its current location.
Note that, the candidate location is the centroid of the surrounding points as
before. Cost of evaluating the quality is also added to overall computation,
however this method is still quite inexpensive and avoids inverted elements.
The quality metric can be chosen based on the application, where we use
minimum angle as our quality criterion.

2.3 Centroidal Voronoi Tessellation (CVT)-Based Smoothing

A Voronoi tessellation is called a centroidal Voronoi tessellation (CVT) when
its generating points are the centroids of the corresponding Voronoi regions
[13]. This special structure has been shown to have applications in many
fields, such as image processing, clustering, cell division, and others. Du et al.
discussed many properties and applications of CVT in [13, 14, 15, 27]. They
also showed that the Lloyd iteration [20] which is a minimizer for the energy
function given in Equation 2, converges to centroidal Voronoi tessellation.

ΨCV T =
N∑

i=1

∫

Vi

ρ(x)‖x− xi‖2dx, (2)

where Vi is the Voronoi region generated by the vertex xi and ρ is the density
function.

Hence, an immediate algorithm is to apply the Lloyd iteration by itera-
tively computing the Voronoi regions for each point and updating their lo-
cations to the centroid of each region until convergence. In general, the new
location can be defined as follows:

x∗ =

∫
Vi

xρ(x)dx
∫

Vi
xdx

(3)

Note that, the Lloyd iteration is not the only technique to determine CVTs.
A discussion on other deterministic and probabilistic methods can be found in
[13]. However, this method is naturally suitable for mesh smoothing, although
the Lloyd iteration converges slow and hard to analyze [12]. Thus, researchers
proposed different smoothing techniques based on centroidal Voronoi tessel-
lation concept [15, 27, 1, 10]. Now, we overview a few which mainly differ in
density function and regions leading to less computation time.

Weighted Centroid of Circumcenters (WCC). In this method, Alliez et
al. [1] proposed to relocate each vertex to a weighted average of correspond-
ing circumcenters, where the weights are based on the physical size of each
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simplex. This is same as computing a weighted centroid of the corresponding
Voronoi region, where density function is represented by the weights. Then,
the new location is represented as follows:

x∗ =
1
|Ωi|

∑

τj∈Ωi

|τj |cj , (4)

where Ωi is the star of the point of interest, cj is the circumcenter of the
simplex τj and |.| denotes area in two-dimensions. The circumcenter can be
defined as the intersection point of the bisectors of a triangle, which is also
the center of the circle that passes through all three vertices of the triangle.

CVT I. In this variant, Chen [10] used the same density function as above,
but instead of circumcenters, he proposed to use the centroid of each simplex.
This allows to compute the surrounding points, i.e., the region, faster. This
smoother can be represented as the following expression:

x∗ =
1
|Ωi|

∑

τj∈Ωi

|τj |xτj , (5)

where xτj denotes the centroid of the simplex τj , which is equal to
∑

xk∈τj
xk

n+1 ,
while n is the dimension.

CVT II. For non-uniform domains, Chen [10] proposed to incorporate the
mesh density function to the calculations. Hence, the smoother can generate
an appropriate grading for modulation regions. So, in general by the addition
of a density function ρ, Equation 5 becomes

x∗ =

∑
τj∈Ωi

|τj |xτjρτj
∑

τj∈Ωi
|τj |ρτj

. (6)

In two-dimensions, when the density function is chosen as ρτj = |τj |−
n
2 ,

the above expression is equal to

x∗ =
2
3

∑
xj

k
+

1
3
xi. (7)

Chen described this as a “lumped Laplacian Smoothing”, which partially
explains the reason behind the effectiveness of the Laplacian smoothing [10].

2.4 Optimal Delaunay Triangulation (ODT)-Based Smoothing

Chen and Xu [11] studied Delaunay triangulations in terms of linear inter-
polation error for a given function. They showed that when f(x) = ‖x‖2,
the Delaunay triangulation can be referred as optimal in terms of minimizing
the interpolation error among all the triangulations for a given number of
vertices. This helped Chen to design a new mesh smoothing strategy based
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on the optimal Delaunay triangulation (ODT) concept [10], which aims to
equally distribute the edge lengths based on the function to be approximated.
Basically, the energy function from the interpolation error is exactly solvable,
which results in the new location for each query point (see Equation 8).

ΨODT =
1

1 + n

N∑

i=1

∫

Ωi

‖x− xi‖2dx, (8)

where Ωi is the star of the point of interest xi, while n represents the di-
mension. For a regular-shaped uniform mesh generation, the function to be
interpolated can be chosen as f(x) = ‖x‖2. Then, the new location can be
computed as in Equation 9. Note that, convergence rate is slower while the
time for each relocation calculation is increased compared to the others.

x∗ = − 1
2|Ωi|

∑

τj∈Ωi

(∇|τj(x)|
∑

xk∈τj,xk �=xi

‖x‖2). (9)

2.5 Angle-Based Smoothing (AB)

Zhou and Shimada [29] proposed a smoothing method which aims to improve
the geometric quality of a mesh in a computationally easy way. Their method
has been shown to provide better results than Laplacian smoothing in quality
and to avoid creating inverted elements. They formulated local neighborhood
of a vertex as a torsion spring system similar to Laplacian smoothing. (See
Equations 10 and 11.)

ΨLAPLACIAN =
k∑

j=1

1
2
K‖vj‖2, (10)

ΨANGLE =
2k∑

j=1

1
2
Kθj

2, (11)

where k is number of nodes in the star of the vertex xi, K is the spring
constant, vj is the vector from xi to every surrounding node and θj is the
angle formed by each side of the polygon and the central point xi.

However, their spring system is based on angles instead of distances. The
system has its minimum potential energy when the new location for the
central node yields to an optimum angle distribution on the angles formed
by the each side of the star. In order to find the optimum location, following
two approaches have been introduced.

Original Version. Zhou and Shimada [29] introduced a heuristic method
which gives an approximate position for the optimum location. A four-step
procedure, summarized below, is followed to find the new location for each
free vertex. Note that, this method is more expensive than Laplacian smooth-
ing, but easier and faster than optimization techniques.
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Given a vertex xi and its corresponding neighborhood (star) and link, the
vertices of the link is denoted by yj , j = {1, 2, ..., k} in counterclockwise
order.

1. Compute the side angles αj1 = ∠xiyjyj+1 and αj2 = ∠yj−1yjxi.
2. Compute the difference between each adjacent angles: βj = (αj2−αj1)/2.
3. Compute the new location xj

i for the central node xi by a vector rotation
based on βj , yj and xi, while keeping the size of the vector from yj

to xi.
4. Compute the average of the new location suggestions for the final loca-

tion: x∗ = 1
k

∑k
j=1 xj

i

Optimization Version. Xu and Newman [28] approached to the same idea
of angle-based smoothing from an optimization point of view. They sacrificed
computation time to have better quality results. Instead of heuristically cal-
culating an approximate new location, they used optimization techniques to
find a close optimum. The same torsion spring system is formulated as an
optimization problem and the Gauss-Newton approximation has been used
to solve the least-squares formulation of the following objective function:

s =
k∑

j=1

[distance(x∗, lj)], (12)

where x∗ is the optimized location of the query point xi, and lj is the angle
bisector line for each side angle of the star Ωi. This method has been shown
to produce slightly better quality meshes than original angle-based method
and also shown to converge faster. However, overall computation can take
more than the heuristic version, although the number of iterations is less.
Therefore, we will use the original version of this method in our experiments
due to its simplicity, efficiency and availability.

2.6 Well-Centered Triangulation (WCT) Smoothing

Another iterative method has been proposed by Vanderzee et al. in [26],
mainly focusing on providing well-centered triangulations (WCT), i.e., acute
triangulations in the plane. They introduced a global energy function, which
aims to minimize the maximum angle of a mesh M . They also claim that
their energy function penalizes small angles as well.

ΨWCT =
∑

θ∈M

|cos(θ)− 1/2|p, (13)

where p is a finite number (it is sufficient to set p ∈ {4, 6, 8}) and θ represents
each angle in the triangulation M . This algorithm is computationally more
expensive, however considering this approach concentrates on maximum an-
gle, it would be interesting to observe its behavior among others. We should
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also note that, this algorithm preserves the topological connections unlike the
above mentioned methods where they incorporate edge flip operations into
smoothing.

3 New Smoothing Algorithms

We first give modifications to two of the methods described in the previous
section, so that they handle complex geometric input domains. Then, we
propose three new smoothing algorithms in Sections 3.2, 3.3 and 3.4.

3.1 Modifying Existing Algorithms for Complex Geometry

As we mentioned, when the input domain has a complex geometry, most of
the known smoothing methods struggle and generate bad quality elements
(see Figure 1 and 2). In particular, although the output triangulation overall
contains good quality elements, the elements which are close to the boundary,
are problematic. We observed this boundary problem especially in ODT and
WCC methods. Here, we propose simple modifications for each algorithm to
handle boundary issues to an extend.

ODT with boundary fix via incenters. ODT smoothing approach [10]
tends to create bad quality elements close to input features (see Figures 1,
2 (g) and 3). The original ODT algorithm relocates a vertex xi, by exactly
solving an optimization problem within the star of xi and trying to achieve
uniformity in the edge lengths of the triangles. Since we consider the boundary
vertices as input features representing the complex domain and chosen not
to be relocated, this approach causes some triangles near the boundary to be
stretched or suppressed (see Figure 3). As a modification, we now perform
the same relocation strategy within the star-shaped polygon formed by the
incenters of the triangles in the star of xi. This way, we aim to make the
distances of the relocated vertex to the star vertices proportional to the length
of the corresponding edges on the star. Experiments indicate that this idea
works fairly well in producing graded and quality triangulations. Therefore,
we suggest to use a patch formed by the incenters of the connected elements
instead of elements themselves (see Figures 1, 3, 5 and 7).

WCC with boundary push. WCC smoothing approach [1] has the similar
boundary issues (see Figure 2 (g)). This is partly because the algorithm tries
to iteratively reach a regular-shaped centroidal Voronoi tessellation, where in
case of complex geometric domains it fails to consider the input features. In
order to alleviate this problem, while calculating the new location, we propose
to use incenters of the triangles whose circumcenters are located outside the
boundary. Note that, by definition an incenter is always located inside of the
triangle. This idea reasonably eliminates suppressed elements and increase
the quality, however stretched elements can remain near the boundary (see
Figures 5 and 7). Therefore, we explore other smoothing ideas as we propose
next.



Mesh Smoothing Algorithms for Complex Geometric Domains 183

(e)

(f)

(d)

(a) (2.96◦, 169.33◦) (b) (1.30◦, 176.87◦) (c) (12.98◦, 143.10◦)

(d) (e) (f)

Fig. 3. (a) Initial Syria mesh and histogram of angles. (b) Output and histogram
of angles after 50 iterations of ODT applied on (a). (c) Output and histogram of
angles after applying 10 iterations of modified ODT on (a). ODT output is zoomed
in for stretched ((d) and (f)) and suppressed (e) elements.

(a) (2.50◦, 166.03◦) (b) (16.25◦, 130.92◦) (c) (16.50◦, 131.04◦)

Fig. 4. (a) Initial crab mesh and histogram of angles. (b) Output and histogram of
angles after 10 iterations of CO smoothing applied on (a). (c) Output and histogram
of angles after applying 10 iterations of WCI on (a).
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3.2 Centroid of Off-Centers (CO)

Off-centers [25] have been introduced to improve Delaunay refinement algo-
rithms as another type of Steiner point alternative to circumcenters. Given a
triangle with the shortest edge pq, the off-center is a point o on the bisector
of pq, which is furthest from p (or q) such that the angle ∠poq is α.

Here, we introduce a new method to benefit from off-centers for smoothing.
Given a point to be relocated, similar to WCC method, with an additional
quality constraint, we compute the off-center of each simplex connected to
that point. Then, we calculate the centroid of this region formed by the com-
puted centers and relocate our point to that location. In our experiments,
we chose a reasonably large α value for computing the off-centers and ob-
tained good results (see Figures 4, 5 and 7). Note that, here the uniformity
constraint is lifted, however a weighted version of this method (WCO) is also
explored and observed to have a similar behavior to WCC. WCO is also prone
to boundary problems, but off-centers help to reduce.

3.3 Distance Weighted Centroid of Incenters (WCI)

The incenter of a triangle is the intersection point of the angle bisectors,
which is the center of the largest circle that fits inside the triangle. Hence,
the location of the incenter of a triangle is determined by the angles and
edge lengths of that element, while remaining always inside of the element.
Here, we relocate free vertices to the centroid of the incenters of the elements
in their stars. A weighted version of this idea have been introduced as part
of an hybrid smoothing approach for mixed meshes which classifies elements
based on their local neighborhoods and apply different smoothing algorithms
accordingly [21]. Hence, WCI is used only for specific types of elements. How-
ever, it has not been explored as a sole triangular mesh smoother. As in some
other smoothing methods (see Section 2) a central node and its star is for-
mulated as a torsion spring model, where relocation point is computed based
on energy minimization.

ΨINCENTER =
k∑

j=1

1
2
K‖zj‖2, (14)

where zj denotes the vector from the central node xi to the incenter of each
connected triangle. Then, the new location is calculated as follows:

x∗ =
∑

τj∈Ωi

wτjpτj , (15)

where pτj is the incenter of the simplex τj and weight wτj = ‖zj‖∑
k
t=1‖zj‖ . Note

that, here the weight function is different than the previously mentioned
methods. Our experiments show that this smoothing method achieves good
quality bounds while generating proper grading (see Figure 4, 5 and 7).



Mesh Smoothing Algorithms for Complex Geometric Domains 185

3.4 Sliced-Petal Smoothing

Among many mesh quality criteria [24], minimum angle quality is widely
popular due to its direct influence on applications [3, 24]. Here, we designed
a new smoothing method to obtain large minimum angles for given triangula-
tions. In our method, we guarantee to preserve and improve (if possible) the
initial minimum angle while smoothing the mesh elements. As can be seen
from Figure 2, this is not always true for other smoothing methods. They
potentially reduce the minimum angle, in particular, for complex geometric
domains.

Our method relies on the geometric concepts that have been introduced
in [17, 16], where a similar relocation strategy has been used as part of the
Delaunay refinement process.

Consider a bad quality triangle pqr (where its minimum angle does not
satisfy the angle constraint α) in a triangulation with its shortest edge pq.
Let α-petal(pq) be the disk bounded by the circle that goes through p, q and
a third point y such that y and r are on the same side of pq and ∠pyq = α
[17, 16]. Then, α-slice(pq) is defined as the intersection of the α-petal(pq) and
the region between the two lines one going through p, the other q where both
making an angle α to line segment pq. Note that, the α-slice is the feasible
region, where r needs to be relocated in order to make all the angles of pqr
greater than or equal to α. Here, due to space restriction we omit descriptive
figures, however the reader can refer to the figures in [17, 16].

Given a vertex to be relocated xi and its star, in order to have minimum
angles of all elements inside the star to be at least α, the intersection of
the α-slices of the edges on the link must be non-empty. Based on this ob-
servation, first we search for approximately the best possible α value. We
start our search with an initial α value which is determined according to the
current minimum angle of the star. After the search operation, we construct
the feasible relocation region. In order to find the best location inside this
region for xi which strictly improves the local quality, we check sufficiently
large number of sample points. If such a location could not be found, simply
the point location is kept the same. Thus, every local relocation definitely
improves the overall quality of the mesh.

Compared to the other smoothing methods, our results indicate a consid-
erable amount of improvement in quality (see Figures 5, 6, 7 and 8). Clearly,
this method requires more computation time than many of the algorithms
mentioned, however it successfully handles complex geometric domains with
proper grading and has high convergence rate. Although our method obtains
small maximum angle values, our ultimate goal is to incorporate the maxi-
mum angle constraint (γ) to our relocation strategy as in [16].

4 Results and Discussions

Results of our experiments have been given throughout the paper, however
in this section we compare all smoothing algorithms that are reviewed and
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introduced. We generated several experimental set-ups which include various
input domains in different complexities. We discuss the results mostly based
on the distribution of angles and edge lengths, uniformity, minimum and
maximum angle and time.

4.1 Implementation and Data Sets

The algorithms discussed in this paper are all implemented in the same plat-
form and using the C programming language. The examples and data sets
presented in this limited space are only a small but representative subset of
our extensive experimental study. The output triangulations (Figures 5 and
7) are accompanied by the histogram of angles in each case (Figures 6 and
8) and the time performance is summarized in Table 2.

4.2 Experiments

Our experimental study is conducted on a large number of data sets including
the representative China and Hawaii maps, which have 1158 and 3216 points
and 1876 and 5024 triangles, respectively.

In Table 1, we give an overall qualitative comparison of smoothing methods
experimented in this study. These classifications have been obtained based
on the results of our qualitative visual experiments. In particular, ease of
implementation and speed incorporate our experimental observations and the
main idea of each approach, where the speed levels are determined according
to have almost an order of magnitude difference. Minimum and maximum

Table 1. A qualitative comparison of the known and the proposed smoothing
methods, where we label the performance of each method on a scale of 3, as 1.
Poor, 2. Medium, or 3. Good.

Smoothing Ease of Quality Quality
Method Implementation Speed α γ Grading

Laplacian [18] Good Good Medium Medium Good
Smart Lap. [9, 19] Good Good Medium Good Good
WCC [1] Medium Good Poor Poor Medium
CVT I [10] Good Good Medium Medium Good
CVT II [10] Good Good Medium Medium Good
ODT [10] Medium Medium Poor Poor Poor
AB [29] Medium Good Medium Good Medium
WCT [26] Poor Poor Poor Medium Good
M. ODT Medium Good Medium Medium Good
M. WCC Medium Good Medium Medium Medium
WCO Medium Good Medium Medium Medium
CO Medium Good Medium Medium Good
WCI [21] Medium Good Medium Medium Good
Sliced-petal Medium Medium Good Good Good
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Table 2. Time comparison between the known and the proposed methods.

China Hawaii
Smoothing Quality Total Quality Total
Method (α, γ) Time (msec) (α, γ) Time (msec)

Initial (8.82◦,161.47◦) N/A (5.80◦,164.76◦) N/A
Laplacian [18] (22.02◦,117.83◦) 377 (6.88◦,151.59◦) 1447
Smart Lap. [9, 19] (23.60◦,121.84◦) 420 (13.92◦,148.32◦) 1988
WCC [1] (10.54◦,138.30◦) 382 (0.14◦,179.72◦) 1866
CVT I [10] (12.88◦,138.30◦) 449 (0.70◦,166.35◦) 1872
CVT II [10] (21.13◦,115.58◦) 415 (8.27◦,145.28◦) 1849
ODT [10] (0.72◦,177.96◦) 2073 (0.01◦,179.97◦) 18669
AB [29] (18.54◦,114.92◦) 407 (5.44◦,154.95◦) 2053
WCT [26] (15.24◦,118.58◦) 8129 (1.96◦,168.18◦) 21534
M. ODT (17.15◦,117.00◦) 415 (2.12◦,161.30◦) 1984
M. WCC (10.54◦,138.30◦) 996 (0.58◦,168.71◦) 13112
WCO (10.14◦,144.60◦) 483 (0.40◦,171.51◦) 2225
CO (22.02◦,117.83◦) 443 (6.88◦,151.59◦) 1938
WCI [21] (21.88◦,118.09◦) 421 (7.50◦,148.32◦) 1839
Sliced-petal (30.48◦,113.42◦) 1550 (18.98◦,133.73◦) 5347

angle (α and γ respectively) quality is categorized based on the consistency of
the methods. Average performance has been chosen as medium level while the
others indicate notably better or worse performance. Grading values reflect
the overall appearence of the output triangulations, where three different
classes naturally emerge.

We observed that the complexity of geometric domains plays a significant
role in the performance of the smoothing methods. For complex geometric
domains, methods incorporating input features into their relocation strategy
perform well. On the other hand, algorithms that aim to converge to lattice
structures have trouble computing graded meshes. Our proposed sliced-petal
method is shown to be performing considerably better than others in quality,
while smart Laplacian method obtains good results as well. However, its
behavior is not as stable as our sliced-petal method.

Quality. Figures 5 and 7 together with the histograms in Figures 6 and 8
show the performance of smoothing algorithms on complex geometric domains.
Here, Laplacian and smart Laplacian methods are shown to be performing well
on complex geometric domains, however ODT and WCC methods have clear
boundary problems. Our modified versions alleviate the problem considerably
for ODT and reduce it for WCC. The CO and WCI methods behave simi-
lar to the angle-based smoothing method, whereas our sliced-petal smoothing
method outperforms them all. Both the smallest and the largest angle values
observed in the output of the sliced-petal smoothing method is significantly
better than those of the other methods. Histograms also support our observa-
tions by showing the angle quality of each element.
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(a) Initial (b) Laplacian (c) Smart Laplacian

(d) WCC (e) CVT I (f) CVT II

(g) ODT (h) Angle-based (i) WCT

(k) Modified ODT (l) Modified WCC (m) WCO

(n) CO (o) WCI (p) Sliced-petal

Fig. 5. (a) Initial China mesh. (b)-(j) Output of the existing smoothing methods.
(k)-(p) Output of the proposed smoothing methods.

Time. In Table 2, we report the total execution time for each smoothing
method. As can be seen, WCT and ODT take significantly more time than
the others. In case of WCT, computing the energy function is costly, whereas
for ODT convergence takes time. Mainly, due to the current implementation
of the feasible region calculation, our sliced-petal method is slower than the
remaining. As we expected, the Laplacian smoothing is the fastest, whereas
others perform similar to each other.
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(a) (8.82◦, 161.47◦) (b) (22.00◦, 117.83◦) (c) (23.60◦, 121.84◦)

(d) (10.54◦, 138.30◦) (e) (12.88◦, 138.30◦) (f) (21.13◦, 115.58◦)

(g) (0.72◦, 177.96◦) (h) (18.54◦, 114.92◦) (j) (15.24◦, 118.58◦)

(k) (17.15◦, 117.00◦) (l) (10.54◦, 138.30◦) (m) (10.14◦, 144.60◦)

(n) (22.02◦, 117.83◦) (o) (21.88◦, 118.09◦) (p) (30.48◦, 113.42◦)

Fig. 6. (a) Initial China mesh histogram. (b)-(j) Output histograms of the ex-
isting smoothing methods. (k)-(p) Output histograms of the proposed smoothing
methods.

Grading. Experiments show that smoothing on complex geometric domains
mostly requires proper grading in order to achieve high quality triangulations.
As we pointed out, smoothing methods designed to reach regular meshes
fails to conform to the boundary (see Figures 5 and 7). While others achieve
proper grading as well, our sliced-petal method converges to significantly
higher quality meshes than the existing methods.
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(a) Initial (b) Laplacian (c) Smart Laplacian

(d) WCC (e) CVT I (f) CVT II

(g) ODT (h) Angle-based (i) WCT

(k) Modified ODT (l) Modified WCC (m) WCO

(n) CO (o) WCI (p) Sliced-petal

Fig. 7. (a) Initial Hawaii mesh. (b)-(j) Output of the existing smoothing methods.
(k)-(p) Output of the proposed smoothing methods.

4.3 Future Work

Combining smoothing methods to benefit from their properties remains as
future work. A thorough convergence study on these algorithms and a similar
study on quadrilateral/three-dimensional meshes would be helpful for future
studies. Our sliced-petal smoothing performance can easily be improved by
careful implementation and search strategies. We believe this study will be
useful for applications involving complex geometric domains, especially in
choosing the appropriate smoothing method.
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(a) (5.80◦, 164.76◦) (b) (6.88◦, 151.59◦) (c) (13.92◦, 148.32◦)

(d) (0.14◦, 179.72◦) (e) (0.70◦, 166.35◦) (f) (8.27◦, 145.28◦)

(g) (0.01◦, 179.97◦) (h) (5.44◦, 154.95◦) (j) (1.96◦, 168.18◦)

(k) (2.12◦, 161.30◦) (l) (0.58◦,168.71◦) (m) (0.40◦, 171.51◦)

(n) (6.88◦, 151.59◦) (o) (7.50◦, 148.32◦) (p) (18.98◦, 133.73◦)

Fig. 8. (a) Initial Hawaii mesh histogram. (b)-(j) Output histogram of the existing
smoothing methods. (k)-(p) Output histogram of the proposed smoothing methods.
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