
Mesh Insertion of Hybrid Meshes

Mohamed S. Ebeida1, Eric Mestreau2, Yongjie Zhang1, and Saikat Dey2

1 Department of Mechanical Engineering, Carnegie Mellon University,
Pittsburgh, PA, USA
msebeida@andrew.cmu.edu, jessicaz@andrew.cmu.edu

2 Code 7130, Physical Acoustics Branch, Naval Research Lab,
Washington, DC, USA
eric.mestreau.ctr@nrl.navy.mil, saikat.dey.ctr.in@nrl.navy.mil

Abstract. A mesh insertion method is presented to merge a tool mesh into a tar-
get mesh. All the entities of the tool mesh are preserved in the output mesh while
some of the entities of the target mesh are modified or eliminated in order to obtain
a topologically conforming mesh. The algorithm can handle non-manifold surfaces
formed of quadrilaterals and/or triangles as well as volumetric meshes based on hex-
ahedra, prisms, pyramids and/or tetrahedra. Lower order elements such as beams
can also be taken into consideration. A robust 2-steps advancing front algorithm is
introduced to fill the narrow gap between the two mesh objects to obtain a complete
crack-free connection. An efficient mesh data structure is developed to optimize the
search operations and the intersection tests needed by the algorithm. Several ap-
plication examples are provided to show the strength of the presented algorithm.

Keywords: Hybrid meshes, mesh data structure, advancing front methods, mesh
insertion.

1 Introduction

Many engineering applications require two or more materials interacting with
each other, for example, multiphase flows, fluid-structure interaction, and
structural analysis of complex objects. Mesh generation of sophisticated mod-
els is a time consuming process. For large models, meshes are sometimes gen-
erated in independent pieces. The user may also have to deal with legacy
models for which only discretized parts exist. In order to obtain a connected
mesh appropriate for numerical simulations, it is sometimes needed to im-
print the tool mesh into the target mesh, hence the need for such algorithm
described in this paper. One can consider the case of a piece of equipment
(tool mesh) that needs to be inserted into a large ship model. The equipment
model is provided by its manufacturer as a discretized model. In order to
numerically analyze the equipment connected to the infrastructure, a mesh
insertion procedure is required.

360 M.S. Ebeida et al.

After removing the undesired entities of the target mesh, connecting the
tool mesh to the remaining part of the target mesh can be achieved using
two possible approaches: advancing front methods [1, 2, 3, 4] and Constrained
Delaunay Tetrahedralizations (CDT) [5, 6, 7]. The advancing front approach
starts with a given surface “initial front”. Elements are then created on the
front toward the interior, preserving the domain boundaries. However, the
reliability of many commercial advancing-front mesh generators is still under
investigation. In some cases the algorithm fails and asks the user to modify
the surface mesh without providing adequate reasons. This issue is more
prevalent when the void to be filled has sharp features or contains narrow
regions. Unfortunately the void obtained during the mesh insertion algorithm
is narrow and has many sharp features, even if the involved mesh models
have smooth boundaries. The advancing front method has some additional
limitations: slow computational speed due to geometric search during the
process and the relatively low quality of resulting meshes.

Delaunay tetrahedralizations methods [8, 9, 10, 11, 12] utilize the idea
of an empty sphere for each created tetrahedron and hence generate ele-
ments with optimal quality for a given set of vertices. However, Delaunay
tetrahedralization always generates a convex mesh independent of the mod-
eled domain. In order to solve this problem, CDT are utilized to generate a
mesh that respects the boundaries of the modeled domain. CDT algorithms,
also have drawbacks: more sensitivity to numerical error than most geomet-
ric algorithms, and the connectivity of the input surface cannot be easily
preserved. Hence, CDT algorithms cannot be implemented efficiently for 3D
complex domains, especially if this domain contains narrow regions and sharp
features.

In an attempt to avoid the limitations of both methods, a combination of
the Delaunay and the advancing front approaches is commonly used [13, 14].
This algorithm starts with a Delaunay triangulation of a set of boundary
nodes, which is used as a background mesh. New nodes are then added us-
ing the advancing front approach. This combined approach can increase the
efficiency of the algorithm and produce high quality meshes. However, the
surface recovery in 3D is often the weakest point.

In addition to the limitations mentioned above for both approaches, each
of them is designed to handle tetrahedral meshes only. Owen and Saigal [15]
proposed an advancing front algorithm that generates all-hex meshes but it
starts with an initial tetrahedral mesh that respects the boundaries of the do-
main. Staten et al. [16] developed another advancing front algorithm to handle
all-quad initial front, however this method is limited to simple domains. Un-
fortunately the void between the tool and the target meshes during a mesh
insertion algorithm is narrow and might be surrounded by hybrid surfaces
with sharp features. Recently, Ito et al. [17] presented an interesting method
to accommodate small devices into a baseline mesh. However, this method
preserves only the geometry of these devices and hence it is not suitable for
some applications such as fluid-structure interaction.

Mesh Insertion of Hybrid Meshes 361

In this paper, a new algorithm is presented, which converts two overlapping
hybrid meshes into a conforming connected crack-free mesh. This method-
ology locally modifies the entities of one of the input meshes (Target Mesh)
so that the two meshes can be merged into a conforming mesh across the
interface. The algorithm utilizes an efficient, hybrid advancing front method
to fill the void between the two meshes in a countable number of operations.
In order to increase the efficiency of this algorithm, an optimal data struc-
ture is introduced and utilized in the query operations required during the
advancing front procedure.

The remaining of this paper is organized as follows: In section 2, an op-
timal non-manifold hybrid mesh data structure (NHMD) is presented. The
mesh insertion algorithm is then described in Section 3. In Section 4, several
examples of mesh insertion are presented. Finally, Section 5 provides some
concluding remarks along with current and future efforts.

2 An Optimal Non-manifold Hybrid Mesh Data
Structure (NHMD)

In this section we present an optimal data structure for handling hybrid
unstructured mesh models that might contain non-manifold entities. The
requirements in choosing a data structure for the implementation of the mesh
insertion algorithm are:

1. It should be able to handle hybrid mesh models with or without non-
manifold surfaces;

2. It must occupy the least possible amount of storage; and
3. The query operations corresponding to any mesh entity (node, edge, face,

element) should be executed in a constant time independent of the mesh
size.

Mesh models contain a finite number of element types: lines, triangles,
quadrilaterals, tetrahedra, pyramids, prisms and hexahedra. Each element is
specified using its list of nodes. Figure 1 shows the local indices of the nodes
associated with various types of elements in the mesh data structure. This list
can be used to determine faces and edges of that element. For example the
tetrahedron in Figure 1(d) is defined using the node sequence {1, 2, 3, 4} and
contains four faces given by {1, 2, 3}, {1, 3, 4}, {2, 1, 4}, and {3, 2, 4}. Each
of these faces can be uniquely identified based on the index of their parent
element and an additional local index for each one of them. The associated
edges can be similarly identified. The developed data structure utilizes this
information to optimize the required storage.

In a hybrid unstructured mesh model, the minimum amount of information
to be stored is the connectivity matrix C. This matrix is sparse and a non-
zero entry cij is one if the element i contains the node j. Sparse matrices are
usually stored using three arrays. However, the connectivity matrix needs
only two arrays (or STL vectors) since the value of all the non-zero entries

362 M.S. Ebeida et al.

(a) Hexahedron (b) Prism (c) Pyramid (d) Tetrahedron

(e) Quadrilateral (f) Triangle (g) Line

Fig. 1. The connectivity information associated with the main element types de-
fined in the current implementation of the mesh data structure.

are always one. The number of non-zero entries is denoted nnz. Moreover, if
the rows of this matrix are sorted based on the element type, and the number
of elements in each type is stored, the entries of this matrix can be stored
using one array with nnz entries. This array, CI , together with numbers of
elements in each type, represent the minimum storage size that can be used
to hold the associated connectivity information of a hybrid mesh.

In order to have an efficient traverse algorithm we need to store the con-
nectivity matrix C as well as its transpose CT . For this purpose we store two
more arrays, CJ and CK . The size of CJ is the same as CI while the size of
CK is the same as the number of nodes, N , in the associated mesh. Hence
the total storage size for the connectivity information is 2nnz + N + 7. In
order to have a complete representation of a 3-dimensional mesh we store the
coordinates of the associated nodes using three more arrays, each one has
N entries. Note that in the mesh data structure CI lists the nodes of the
different elements within the mesh, while CJ lists the indices of the entries
of CI sorted based on the associated node index. In other words

If
ki = CJ [i] and ki+n = CJ [i+ n] ,

then
CI [ki] ≤ CI [ki+n] for all 0 ≤ i, n ≤ i+ n < nnz.

Following this procedure, one can easily retrieve the neighboring elements
around any given node. In order to optimize this process, CK stores the
minimum index of the entries in CJ associated with a given node. For example
if a node i has two neighboring elements, then i would appear twice in CI ,
the first location is at CJ [CK [i]] and the second location is at CJ [CK [i] + 1].

Mesh Insertion of Hybrid Meshes 363

In this data structure we have seven types of elements and we chose to list
them in the same order presented in Figure 1. For each element type we need
to store the number of nodes, edges, and faces associated with that type, as
well as the local indices of each entity associated with this element type. This
information is used in the traverse algorithm to get the connectivity from an
element to its bounding entities.

This sorting eliminates the need to store the element indices of the con-
nectivity matrix C and hence we can save extra nnz entries. The element
index of any entry k can be found using the following algorithm:

Algorithm 1. Retrieve the element index ie of a given entry k in CI

Set num e = 0 , itype = 1 and num = Num Elements[itype] * Num Nodes[itype];
while k > num do

num e = num e + Num Elements[itype];
itype = itype + 1;
num = num + Num Elements[itype] * Num Nodes[itype];

end while
num = num - Num Elements[itype] * Num Nodes[itype];
ie = num e + size t ((k - num) / Num Nodes[itype]);

Algorithm 1 is very efficient as it loops over a limited number of element
types, currently 1 ≤ itype ≤ 7. Num Elements and Num Nodes stores the
number of elements and the number of nodes associated with each element
type. Using this algorithm allows to retrieve the neighboring elements of any
node in the mesh independent of the mesh topology.

In this mesh data structure, nodes play a vital role in the traverse algo-
rithm. For example, to retrieve the neighboring faces of a given edge E , one
starts by retrieving all the neighboring elements of the two corner nodes of
that edge, using CJ and CK . Then we get the faces of these elements and
collect those faces that contain E . Note that each face (as well as each edge)
is identified by a unique global index, which can be mapped easily to the
index of its parent element. The complexity of this algorithm is a function of
the mesh quality and is independent of the mesh size.

The mesh data structure is demonstrated using a simple mesh in Figure 2.
This mesh contains seven nodes, three elements and eight edges. One of
the nodes, V4, is not associated with any element. this node is an isolated
node. The transpose of of the associated connectivity matrix is presented in
Figure 2(c). The stored arrays of the data structure corresponding to that
mesh are given by:

Num Elements = [0 0 0 0 1 1 1]T , CI = [6 7 3 5 7 2 3 2 1] T ,

CJ = [9 6 8 3 7 4 1 2 5] T , CK = [1 2 4 6 6 7 8]T

364 M.S. Ebeida et al.

Note that CK [4] = CK [5], this means that V4 does not exist in CI , in other
words it is an isolated node. Also CK [4]−CK [3] = 2 indicates that V3 exists
twice in CI , hence this node has two neighboring elements. The indices of
these two locations are given by CJ [CK [3]] = 3 and CJ [CK [3] + 1] = 7.
Algorithm 1 can be utilized to identify the element indices corresponding to
these two locations. In order to retrieve an edge we start with its global index
and retrieve its parent element. For example the edge e6 is in the second edge
of the first triangle listed in CI . This triangle is defined using the node list
(7 2 3), hence the required edge connects the nodes V2 and V3. Note that
duplicated edges (such as e2 and e7) does not represent any storage problem,
since we identify these edges implicitly through their parent elements. The
same thing applies for duplicated faces in volumetric meshes.

(a) (b) (c)

Fig. 2. A simple mesh utilized in demonstration of the mesh data structure. The
associated entities are shown in (a) and (b). The transpose of the associated con-
nectivity matrix is presented in (c).

This data structure was tested using a 2.0 GHz processor with a 2.0 GB
RAM and it was capable of handling a mesh size up to 10 million nodes
without using the swap space and up to 20 million nodes using the swap
space. The mesh used for this test is an all-hexahedral model. The number of
nodes is approximately equal to the number of elements. The time required
to generate the mesh and the associated data structure is 45 seconds for the
first case (10 million nodes) and 100 seconds for the second case (20 million
nodes).

3 Mesh Insertion Algorithm

The mesh insertion algorithm starts by the detection, and the removal of
the undesired entities of the tool mesh. These entities might be overlapping
with some of the tool mesh elements or they can be located inside a closed
surface associated with the tool mesh. The remaining elements of the target
mesh are then connected to the tool mesh using a robust advancing front

Mesh Insertion of Hybrid Meshes 365

Fig. 3. Detection of nodes located inside a closed region using its bounding polyno-
mial, P . A (green) line connecting an internal node to the scaled bounding box has
an odd number of intersections with P , while a similar (blue) line for an external
node has an even number of intersections. A case that might cause miscounting is
illustrated using the (dotted green) line.

algorithm. During this step the advancing front algorithm may vary based
on the type of elements of the target mesh. Two different approaches are used,
the first one is used with the one-dimensional and two-dimensional elements
(lines, triangles, and quadrilaterals) and the second one is useful for the three-
dimensional elements (tetrahedra, pyramids, prisms and hexahedra). In the
latter case, a novel advancing front algorithm is introduced to handle the
narrow region between the tool and the target meshes.

3.1 Detection of the Undesired Entities of the Target Mesh

In order to mark the undesired entities of the target mesh, a method is imple-
mented to detect whether a given node is located inside a closed triangular
surface or not. The implemented algorithm starts by constructing a bound-
ing box of S. This bounding box is then scaled around its center with some
factor f > 1.0. A line segment, L, is then constructed by projecting the input
node to one of the sides of that box. In our implementation we work with
a projection in the direction of positive x-axis. Finally we count the number
of intersections that L have with S. If the number is odd, then this node
is inside S, otherwise it is not. The two-dimensional version of this idea is
demonstrated in Figure 3. To count this number, we loop over all the ele-
ments of S and test for the intersection with L. Using a line aligned with
the x-axis simplifies the operations required for this test to a large extent.
However, three special cases has to be handled correctly to have a robust
algorithm:

1. L intersects an element of S at one of its three edges. The intersection
point will be counted twice, since each edge in S is shared by two elements.

366 M.S. Ebeida et al.

2. L intersects an element of S at one of its three nodes. The intersection
point will be counted n times, where n represents the number of neighbor
elements to that node.

3. L is tangent to a given element, E , in S. Three cases can occur in this
situation:
a) L passes through two nodes of E .
b) L passes through one node of E .
c) L does not pass through any node of E .

In the implementation of this method, the number of intersections is ad-
justed to handle all these situations. After splitting the nodes of the target
mesh into internal and external nodes using this method, one can easily elim-
inate the undesired elements from the target mesh. Figure 4 shows the output
of this process using a submarine (triangular tool mesh) inserted in an ocean
(hexahedral target mesh). Another example is presented for a mesh insertion
of a cylinder (hexahedral tool mesh) in a non-manifold surface (triangular
mesh. This example is demonstrated in Figure 5.

This detection method deals only with a triangular closed surfaces. For a
volumetric mesh, the outer boundaries, B, are extracted and all the quadrilat-
erals on B are split into triangles. In some cases, we might want to eliminate

(a) Input Meshes (b) Section I (c) Section II

Fig. 4. Eliminating the undesired entities from the target mesh during the mesh
insertion of a submarine (triangular tool mesh) in an ocean (hexahedral target
mesh). Two cross-sections are utilized to show the interior of the target mesh.

(a) (b) (c)

Fig. 5. Eliminating the undesired entities from the target mesh during the mesh
insertion of a cylinder (hexahedral tool mesh) in a non-manifold surface (triangular
target mesh). Two views are utilized to show the remaining part of the target mesh
with and without the cylinder.

Mesh Insertion of Hybrid Meshes 367

an extra layer of elements to remove the issues linked to narrow gaps when
dealing with the advancing front method. Upon completion of this step, all
the new boundary entities of the target mesh are marked. These entities will
be connected to the surface of the tool mesh.

3.2 Connecting One-Dimensional and Two-Dimensional Entities
to the Tool Mesh

A simple yet effective advancing front algorithm is now presented to connect
the one-dimensional and two-dimensional marked entities of the target mesh
to the surface of the tool mesh. For one-dimensional elements (Lines), the
associated marked nodes are simply connected to the closest nodes on the
surface of the tool mesh. Figure 6 shows the results of this step using a mesh
insertion of a cylinder(hexahedral tool mesh) in a network of orthogonal lines
(target mesh).

For two-dimensional entities, a watertight surface is introduced to connect
the remaining part of the target mesh, Mt, to the tool mesh MT . The pro-
posed algorithm should handle non-manifold cases. A terminal mesh entity
is an entity lying on the interface between the eliminated and the remain-
ing parts of Mt. A node, N ∗, that exists in more than two terminal edges
is denoted as a non-manifold node. A non-manifold edge is an edge with
one non-manifold node. A watertight triangular mesh is created to connect
each terminal edges to the surface of the tool mesh. This triangular mesh is
constructed in two steps. First, triangular elements are created using each
terminal edge and its closest node Nj on ST . If the terminal edge is a non-
manifold one, Nj is the closest node on ST to the non-manifold node of that
edge. Otherwise,Nj is the closest node on ST to the center of that edge. Then
for each pair of neighbor triangles that meet at a node Ni in Mt and have
two points Nj , Nk on ST , the shortest path, connecting Nj to Nk along the
edges of ST , is extracted. A triangle is then constructed for each edge in that

(a) (b)

Fig. 6. Mesh insertion of a cylinder (hexahedral tool mesh) in a network of line
(beam) elements (target mesh). Two views are utilized to show of the final con-
forming mesh.

368 M.S. Ebeida et al.

(a) (b) (c)

Fig. 7. Three differnet views for the output of the mesh insertion algorithm using a
cylinder (tool mesh) and two perpendicular quadrilateral planes (target mesh with
a non-manifold surface).

path using that edge and Ni. Figure 7 shows the output of this algorithm for
a mesh insertion of a hexahedral cylinder (tool mesh) and two perpendicular
quadrilateral planes (target mesh with a non-manifold surface).

3.3 Connecting Three-Dimensional Entities to the Tool Mesh

Connection of three dimensional entities of the target mesh to the tool mesh
turns out to be a challenging problem for many reasons: First, the three-
dimensional void, V , entrapped between both meshes is narrow and contains
many sharp features even if the two input meshes have smooth surfaces. These
two properties represent a real challenge for any advancing front algorithm.
Figure 8 demonstrates the surfaces surrounding this void during a mesh in-
sertion of a cylinder (Tool Mesh) in a box (Target Mesh). Eliminating the
undesired entities of the target mesh modifies its boundary. The introduced
part of this boundary contains many sharp features. Moreover, the surface
surrounding the void between the two meshes might be hybrid.

(a) (b) (c) (d)

Fig. 8. Mesh insertion of a hexahedral cylinder (Tool Mesh) with a hexahedral
box (Target Mesh). The input meshes are presented in (a). Removal of the desired
entities is shown in (b). A rough surface surrounds the narrow void between the
two meshes is shown in (c) and (d).

Mesh Insertion of Hybrid Meshes 369

To eliminate the sharp features from the surface surrounding V , an offset
copy, S′, of the boundary surface, S, of the tool mesh is generated and then
extracted using the elements of the target mesh. Hence the void between the
tool mesh and the target mesh is trapped between the extracted surface, S′′
and S. Note that these two surfaces are almost parallel, so the advancing
front algorithm should be easier to construct with the required guarantee for
the execution time and it should produce elements with much better quality.

The algorithm used to create S′ is to loop over the nodes of S, calculate
the average normal, nav, of its neighboring faces and the minimum length,
dm, of its neighboring edges. First S′ is created as an identical copy of S
then each node is duplicated in the direction of its normal vector with a
distance of 0.5 dm. In the case of self intersection, this distance is recursively
reduced by 50% till this problem is resolved. In some cases associated with
sharp corners, a node is displaced to the interior of S. This issue is solved by
projecting the displaced point back to the surface of S. Then that projection
is extended until it intersects again with S and place the new node in the
middle of these two intersections. If a second intersection does not exist, the
projection line is extended by 20% and the new node is placed at its free end.
Figure 9 illustrates the output of this process using a triangular mesh of a
submarine model.

The final step before applying the advancing front algorithm is to extract
the the offset surface, S′, using the elements of the target mesh. This is

(a) Section I

(b) Section II

Fig. 9. Generating an offset copy (yellow) of the surface of the tool mesh (blue).
Two sections of the ouput mesh are utilized.

370 M.S. Ebeida et al.

achieved by projecting the terminal nodes to the surface onto S′. The pro-
jection direction is based on the average normal direction of the neighbor
terminal faces of the projected node. Figure 10 illustrates the output of this
process using a triangular mesh of a submarine and a hexahedral mesh of the
surrounding water.

(a) Input Meshes

(b) Output Mesh (c) Cross Section

Fig. 10. Extraction of the surface of a floating submarine (triangular mesh) using
the elements of the surrounding ocean (hexahedral mesh).

An advancing front algorithm to fill a narrow void between two
parallel surfaces

A robust hybrid advancing front algorithm is now presented to fill the narrow
void between the two parallel surfaces S and S′′. This algorithm is demon-
strated using mesh insertion of a sphere (tetrahedral tool mesh) in a box
(hexahedral target mesh) shown in Figure 11. First the boundaries, Γ , of S′′
are projected to the surface, S, of the tool mesh as shown in Figure 12(a).
During this projection each node on Γ is projected to its closest node on
S. Then each edge on Γ is mapped to the closest path on S between the
projection of its two end nodes. Hence, each edge on the boundaries of S′′ is
mapped to either a node, an edge or a sequence of edges on S. The mapped
polyline, P is closed and formed by the edges of S. All the edges in P have the
same direction. This can be used to extract the desired part of S as shown in

Mesh Insertion of Hybrid Meshes 371

(a) (b) (c) (d)

Fig. 11. Mesh insertion of a tetrahedral sphere (Tool Mesh) with a hexahedral box
(Target Mesh). The input meshes are presented in (a). The output crack-free mesh
is shown in (b) and (c) with and without the tool mesh. A section in (d) shows the
interior elements of the final mesh.

(a) (b) (c) (d)

Fig. 12. Connecting the terminal entities of the hexahedral box to the surface of
the tetrahedral sphere. In (a) the boundaries of S ′′ are projected to some edges
forming a closed (blue) polyline in S . The input surfaces of the advancing front
algorithm are presented in (b). Figure (c) shows the internal faces connecting S ′′

and S ′′′. The output of the advancing front algorithm is illustrated in (d).

Figure 12(b). This part is denoted S′′′. At this point we have two hybrid sur-
faces, S′′ and S′′′ that are almost parallel and separated by a narrow region.
These two surfaces are the input of the following advancing front algorithm.

The starting point of the advancing front algorithm is to map each point
on S′′ to the closest nodes on S′′′. Then the edges of S′′ are connected to the
edges and nodes on S′′′ using quadrilaterals and triangles. This is achieved by
looping over the edges in S′′ and extracting the shortest path that connects
the mapping of its end nodes on S′′′. If that path contains a single node,
a triangle is constructed using that node and the edge under consideration.
If that path is an edge on S′′′, a quadrilateral is constructed using the two
edges. Otherwise, a series of triangles are constructed using the two edge
nodes on S′′ and the nodes on that path. The internal faces, connecting
S′′ to S′′′ are illustrated in Figure 12(c). After this step each face on S′′ is
completely surrounded by those internal faces. We loop over the faces on S′′,
and collect the surrounding faces as well as the faces from S′′ that closes
the surface. The collected faces are then checked if they can form one of our

372 M.S. Ebeida et al.

three-dimensional elements. If that is not the case, a point is added to that
local void and used to fill the void with pyramids and tetrahedra. This is
achieved by connecting this point to each one of the faces surrounding that
void. Finally, a similar approach is followed to fill the local voids associated
with the elements of S′′′, if any. Note that these local voids are closed using
the internal faces generated earlier. The output of this algorithm for the mesh
insertion problem of a tetrahedral sphere is shown in Figure 11.

Note that this advancing front algorithm does not require any kind of iter-
ative loops. It is therefore executed after a countable number of operations.
Also if the elements of S′′ and S′′′ were closed in size, the algorithm tends
to fill the voids with one of the primitive elements defined in the mesh data
structure. This results in fewer elements to fill the void and hence better
quality.

4 Examples

This section presents the behaviour of the method on two examples of indus-
trial interest. The first example, illustrated in Figure 13 presents the merging
of two stern tubes to the bare hull of a ship in order to analyse the stiff-
ness and displacements of each part. The stern tubes are represented using
hexahedral elements while the hull is given by a quadrilateral mesh. The sec-
ond example illustrates merging a submarine shell (triangular tool mesh) in
a hexahedral mesh representing the surrounding ocean. The output mesh is

(a) A ship model after the insertion of two stern tubes

(b) (c)

Fig. 13. Mesh insertion of two stern tubes (tool mesh with hexahedral elements)
into the hull of a ship (target mesh with quadrilateral elements), and zoom-in views
for both meshes before (b) and after (c) applying the mesh insertion algorithm.

Mesh Insertion of Hybrid Meshes 373

(a)

(b) (c)

Fig. 14. Mesh insertion of a submarine shell (triangular tool mesh) into the sur-
rounding ocean (target mesh with hexahedral elements). The interior elements are
illustrated in figures (b) and (c) using two cross-sections.

illustrated in Figure 14 and can be used to study the fluid structure interac-
tion between the hydrodynamic forces acting on the floating submarine and
the tension forces generated in its shell.

5 Conclusion and Future Work

A new computational method for merging two hybrid meshes into a conform-
ing mesh that preserves all the entities of one of them has been presented. An
optimal data structure for hybrid meshes that might contain non-manifold
surfaces has been developed. The optimality of this data structure is based
on the storage requirements and the computational efficiency of the various
query operations. We also presented a novel robust advancing front algorithm
to fill the narrow void between the two meshes.

Many meshing algorithms require entire assemblies to be meshed at once
in order to have conforming meshes between components [16, 18]. This re-
quirement is relaxed by creating conforming meshes between assembly com-
ponents after each component is meshed individually using the mesh insertion
algorithm.

374 M.S. Ebeida et al.

The presented mesh insertion algorithm depends in many parts on calcu-
lating the shortest path between two nodes along the edges of a given surface.
The implemented method to perform this step might fail if the two nodes oc-
cur on two different sides of a narrow region. One way to fix this problem is
to refine the target elements associated with this problem. However, we are
currently investigating other solutions as well. We are currently working on
the performance charts required to show the strength of the proposed data
structure.

Acknowledgement

This work is funded by contract N0017308-C-6011 from Naval Research Lab-
oratory as part of the HPCMP CREATE program.

References

1. Lohner, R., Parikh, P.: Generation of three-dimensional unstructured grids by
the advancing front method. Int. J. Numer. Meth. Fluids 8, 1135–1149 (1998)

2. George, P.L., Seveno, E.: The advancing front mesh generation method revis-
ited. Int. J. Numer. Meth. Engng. 37, 3605–3619 (1994)

3. Jin, H., Tanner, R.I.: Generation of unstructured tetrahedral meshes by the
advancing front technique. Int. J. Numer. Meth. Engng. 36, 1805–1823 (1993)

4. Ito, Y., Shih, A., Soni, B.: Reliable isotropic tetrahedral mesh generation based
on an advancing front method. In: 13th International Meshing Roundtable, pp.
95–105 (2004)

5. Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4, 97–108
(1989)

6. Shewchuk, J.R.: Constrained Delaunay tetrahedralizations and provably good
boundary recovery. In: 11th International Meshing Roundtable, pp. 193–204
(2002)

7. Cohen-Steiner, D., Colin, E., Yvinec, M.: Conforming Delaunay triangulations
in 3D. In: 18th Annual Symposium on Computational Geometry, pp. 199–208
(2002)

8. Dey, T.K., Bajaj, C.L., Sugihara, K.: On good triangulations in three dimen-
sions. Int. J. Comput. Geom. & App. 2, 75–95 (1992)

9. Miller, G.L., Talmor, D., Teng, S.-H., Walkington, N.: A Delaunay based nu-
merical method for three dimensions: generation, formulation, and partition.
In: 27th Annual ACM Symposium on the Theory of Computing, Las Vegas,
Nevada, pp. 683–692 (1995)

10. Shewchuk, J.R.: Tetrahedral mesh generation by Delaunay refinement. In: 14th
Annual Symposium on Computational Geometry, Minneapolis, Minnesota, pp.
86–95 (1998)

11. Shewchuk, J.R.: Mesh generation for domains with small angles. In: 16th An-
nual Symposium on Computational Geometry, Hong Kong, pp. 1–10 (2000)

12. Edelsbrunner, H., Li, X.-Y., Miller, G., Stathopoulos, A., Talmor, D., Teng,
S.-H., Ungor, A., Walkington, N.: Smoothing and cleaning up slivers. In: 32nd
Annual Symposium on the Theory of Computing, Portland, Oregon, pp. 273–
278 (2000)

Mesh Insertion of Hybrid Meshes 375

13. Mavriplis, D.J.: An advancing front Delaunay triangulation algorithm designed
for robustness. J. of Comput. Phys. 117, 90–101 (1995)

14. Marcum, D.L., Weatherill, N.P.: Unstructured grid generation using iterative
point insertion and local reconnection. AIAA J. 33, 1619–1625 (1995)

15. Owen, S.J., Saigal, S.: H-Morph: an indirect approach to advancing front hex
meshing. Int. J. Numer. Meth. Engng. 49, 289–312 (2000)

16. Staten, M.L., Owen, S.J., Blacker, T.D.: Unconstrained paving & plastering:
a new idea for all hexahedral mesh generation. In: 14th International Meshing
Roundtable, pp. 399–416 (2005)

17. Ito, Y., Murayama, M., Yamamoto, K., Shih, A.M., Soni, B.K.: Efficient com-
putational fluid dynamics evaluation of small device locations with automatic
local remeshing. AIAA Journal 47, 1270–1276 (2009)

18. Zhang, Y., Bajaj, C., Sohn, B.-S.: 3D finite element meshing from imaging
data. Comput. Meth. in Appl. Mech. Engng. 194, 5083–5106 (2005)

