
On the Use of Space Filling Curves for Parallel
Anisotropic Mesh Adaptation

Frédéric Alauzet1 and Adrien Loseille2

1 INRIA Paris-Rocquencourt, Projet Gamma, Domaine de Voluceau, BP 105,
78153 Le Chesnay cedex, France
Frederic.Alauzet@inria.fr

2 CFD Center, Dept. of Computational and Data Sciences, College of Science,
MS 6A2, George Mason University, Fairfax, VA 22030-4444, USA
aloseill@gmu.edu

Abstract. Efficiently parallelizing a whole set of meshing tools, as required by
an automated mesh adaptation loop, relies strongly on data localization to avoid
memory access contention. In this regard, renumbering mesh items through a space
filling curve (SFC), like Hilbert or Peano, is of great help and proved to be quite ver-
satile. This paper briefly introduces the Hilbert SFC renumbering technique and
illustrates its use with two different approaches to parallelization: an out-of-core
method and a shared-memory multi-threaded algorithm.

Keywords: Space filling curves, shared-memory multi-threaded parallelization,
out-of-core parallelization, anisotropic mesh adaptation, mesh partition.

1 Introduction

The efficient use of computer hardware is crucial to achieve high performance
computing. No matter how clever an algorithm might be, it has to run effi-
ciently on available computer hardwares. Each type of computer, from com-
mon PCs to fastest massively parallel machines, has its own shortcomings
that must be accounted for when developing both algorithms and simulation
codes. The wish to develop efficient parallel codes is thus driven by several
requirements and practical considerations: the problem at hand that need
to be solved, the required level of accuracy and the available computational
power. The main motivation of this paper is to take advantage of today’s
ubiquitous multi-core computers in mesh adaptive computations.

Indeed, mesh adaptation is a method developed to reduce the complexity
of numerical simulations by exploiting specifically the natural anisotropy of
physical phenomena. Generally, it enables large complex problem to be solved
in serial. However, the present hardware evolution suggests the parallelization
of mesh adaptation platforms. Since 2004, first Moore’s law corollary has
plummeted from the 40% yearly increase in processor frequency, that it has
enjoyed for the last 30 years, to a meager 10%. As for now, speed improvement

338 F. Alauzet and A. Loseille

can only be achieved through the multiplication of processors, now called
cores, sharing the same memory within a single chip.

Space filling curves (SFCs) are mathematical objects that enjoy nice prox-
imity in space properties. These properties made then very useful in computer
science and scientific computing. For instance, they have been used for data
reordering [26, 31], dynamic partitioning [29], 2D parallel mesh generation [8]
or all of these in the context of Cartesian adapted meshes [1].

In this paper, we present a straightforward parallelization of all softwares
of a mesh adaptation platform where the pivot of the strategy is the Hilbert
space filling curve. This strategy must be efficient in the context of highly
anisotropic adapted meshes for complex real-life geometries. This platform
is highly heterogeneous as it contains several software components that have
different internal databases and that consider different numerical algorithms.
It generally involves a flow solver, an adaptive mesh generator or an adap-
tive local remesher, an error estimate software and a solution interpolation
(transfer) software. Two classes of parallelization are given.

The first one is an intrusive parallelization of the code using the pthreads
paradigm for shared-memory cache-based parallel computers. One of the
main assets of this strategy resides in a slight impact on the source code
implementation and on the numerical algorithms. This strategy is applied
to the flow solver and to the error estimate software. Parallelization is at
the loop level and requires few modifications of the serial code. However, to
be efficient this approach requires a subtle management of cache misses and
cache-line overwrite to enable correct scaling factor for loop with indirect
addressing. The key point is to utilize a Hilbert space filling curve based
renumbering strategy to minimize them.

The second one is an out-of-core parallelization that considers the soft-
ware as a black box. This approach is applied to a local remesher and the
solution transfer software. It relies on the used of the Hilbert SFC to de-
sign a fast and efficient mesh partitioning. This partitioning method involves
a correction phase to achieve connected partitions which is mandatory for
anisotropic mesh adaptation. The mesh partitioner is coupled with an ade-
quate management of the software on each partition. In this case, the code
can be run in parallel on the same computer or in a distributed manner on
an heterogeneous architecture.

As regards the meshing part, global mesh generation methods, such as
Delaunay or Frontal approaches, are still hard to parallelize even if some so-
lutions have already been proposed [7, 17, 20, 23]. Therefore, a local remesh-
ing approach which is easier to parallelize thanks to its locality properties
has been selected over a global mesher. The key point is how to adapt the
partition borders [4, 10, 11, 18, 25, 27].

We illustrate with numerical examples that this methodology coupling
anisotropic mesh adaptation, cache miss reduction and, out-of-core and
pthreads parallelization can reduce the complexity of the problem by several

On the Use of SFCs for Parallel Anisotropic Mesh Adaptation 339

orders of magnitude providing a kind of “high performance computing” on
nowadays multi-core personal computers.

This paper is outlined as follow. Section 2 recalls our mesh adaptation
platform and Section 3 describes the test cases. Then, in Section 4, we present
the Hilbert space filling curve based mesh renumbering. The shared-memory
and the out-of-core parallelizations with their application to each stage of the
mesh adaptation loop are introduced in Sections 5 and 6, respectively.

2 A Brief Overview of the Mesh Adaptation Platform

In the context of numerical simulation, the accuracy level of the solution
depends on the current mesh used for its computation. And, for mesh adap-
tation, the size prescription, i.e., the metric field, is provided by the current
solution. This points out the non-linearity of the anisotropic mesh adapta-
tion problem. Therefore, an iterative process needs to be set up in order to
converge both the mesh and the solution, or equivalently the metric field and
the solution. For stationary simulations, an adaptive computation is carried
out via a mesh adaptation loop inside which an algorithmic convergence of
the pair mesh-solution is sought. At each iteration, all components of the
mesh adaptation loop are involved successively: the flow solver, the error
estimate, the adaptive mesh generator and the solution interpolation stage.
This procedure is repeated until the convergence of the mesh-solution pair is
reached.

Our implementation of the mesh adaptation platform considers an inde-
pendent dedicated software for each stage of the adaptation loop. As com-
pared to the strategy where only one software contains all the stages of the
mesh adaptation, we can highlight the following disadvantages and advan-
tages. The main drawback is that between two stages, one software writes
the data (e.g. the mesh and the fields) out-of-core and the next software
reads them back and builds its internal database. This results in a larger
part devoted to I/O as compared to the all-in-one approach. But, the CPU
time for the I/O is generally negligible with respect to the global CPU time.
The advantage of the proposed strategy is its flexibility. Each software can
be developed independently with its own programming language and its own
optimal internal database. For instance, the flow solver can keep a static
database, the mesh generator can use specific topological data structures
such as the elements neighbors, etc. Consequently, we may expect a higher
efficiency in memory and in CPU time for each software. Moreover, each soft-
ware is interchangeable with another one, only the I/O between the different
softwares need to be compatible.

The mesh adaptation platform described in this paper involves the flow
solver Wolf [5], Metrix for the error estimate [21], the local remesher
Mmg3d [12] and Interpol for the solution transfer [6].

340 F. Alauzet and A. Loseille

3 The Considered Test Cases

The efficiency of all the presented algorithms will be analyzed independently
on the same list of test cases in their own dedicated sections. The efficiency
is demonstrated thanks to CPU times and speed-ups, the speedup being the
ratio between the CPU time in parallel and the CPU time in serial. The list of
test cases is composed of uniform, adapted isotropic and anisotropic meshes
for a wide range of number of tetrahedra varying from 40 000 to 50 000 000:

• uniform mesh: a transonic flow around the M6 wing [13] and Rayleigh-
Taylor instabilities (IRT) [3]

• adapted isotropic mesh: a blast in a city [3]
• adapted highly anisotropic mesh: supersonic flows around Dassault-

Aviation supersonic business jet (SSBJ) [21] and a NASA spike ge-
ometry, and a transonic flow around Dassault-Aviation Falcon business
jet.

Meshes associated with these test cases are shown in Figure 1 and their
characteristics are summarized in Table 1. Note that the SSBJ and the spike
test cases involve very high size scale factor and highly anisotropic adapted
meshes. For instance, for the SSBJ, the minimal mesh size on the aircraft is
2mm and has to be compared with a domain size of 2.5km.

M6 SSBJ IRT

City Falcon Spike

Fig. 1. View of the considered test cases meshes

On the Use of SFCs for Parallel Anisotropic Mesh Adaptation 341

Table 1. Characteristics of all test cases

Case Mesh kind # of vertices # of tetrahedra # of triangles

M6 uniform 7 815 37 922 5 848
IRT uniform 74 507 400 033 32 286
City adapted isotropic 677 278 3 974 570 67 408
Falcon adapted anisotropic 2 025 231 11 860 697 164 872
SSBJ adapted anisotropic 4 249 176 25 076 962 334 348
Spike adapted anisotropic 8 069 621 48 045 800 182 286

All the runs have been done on a 2.8 GHz dual-chip Intel Core 2 Quad
(eight-processor) Mac Xserve with 32 GB of RAM.

4 The Hilbert Space Filling Curve

The notion of space filling curves (SFCs) has emerged with the development
of the concept of the Cantor set [9]. Explicit descriptions of such curves were
proposed by Peano [28] and Hilbert [15]. SFCs are, in fact, fractal objects [22].
A complete overview is given in [30]. A SFC is a continuous function that,
roughly speaking, maps a higher dimensional space, e.g. R

2 or R
3, into a

one-dimensional space:

h : {1, . . . , n}d �→ {1, . . . , nd} .
These curves enjoy strong local properties making them suitable for many ap-
plications in computer sciences and scientific computing. The Hilbert SFC
is a continuous curve that fills an entire square or cube. For the Hilbert SFC,
we have [26]:

|h(i)− h(j)| <
√

6 |i− j| 12 for i, j ∈ N .

The Hilbert SFC for the square or the cube is generated by recursion as
depicted in Figure 2. Its discrete representation depends on the level of re-
cursion. In our use of the Hilbert SFC, the curve is not explicitly constructed
but its definition is used to calculate an index associated with each mesh en-
tity by means of the recursive algorithm. In other words, in three dimensions,
the SFC provides an ordered numeration of a virtual Cartesian grid of size
23p where p is the depth of recursion in which our computational domain is
embedded. The index of an entity is then obtained by finding in which cube
the entity stands. In the following, we will present how these indices are used
to renumber a mesh or to partition it.

4.1 Mesh Entities Renumbering

The Hilbert SFC can be used to map mesh geometric entities, such as vertices,
edges, triangles and tetrahedra, into a one dimensional interval. In numerical

342 F. Alauzet and A. Loseille

1

2 3

4

1 2

34

5

6 7

8 9

10 11

12

13
14

15 16

Fig. 2. Representation of the Hilbert curve in 2D and 3D after several recursions.
Top, the 2D Hilbert SFC of the square after recursions 1, 2, 3 and 4. Bottom, the
3D Hilbert SFC of the cube after recursions 2, 3, 4 and 5.

Table 2. CPU time in seconds for sorting the vertices of the test cases meshes.

Case M6 IRT City Falcon SSBJ Spike
SFC construction CPU in sec 0.004 0.038 0.338 1.002 1.894 3.632
Quicksort CPU in sec 0.001 0.010 0.104 0.974 0.668 1.518
Global CPU in sec 0.005 0.048 0.442 2.076 2.562 5.150

applications, it can be viewed as a mapping from the computational domain
Ω onto the memory of a computer. The local property of the Hilbert SFC
implies that entities which are neighbors on the memory 1D interval are
also neighbors in the domain Ω. But, the reverse may not be true. Neigh-
bors in the volume may be separated through the mapping. This approach
has been applied to reorder efficiently Cartesian grids [1, 29] and its used
for unstructured tetrahedral meshes has been indicated in [31]. Note that a
large varieties of renumbering strategies exist which are commonly used in
scientific computing [19] or in meshing [32]. Here, we apply and analyze such
renumbering to unstructured, isotropic or anisotropic, adapted meshes.

First, the index is computed for each entity, this operation has a linear com-
plexity. Then, the mesh entities have to be reordered to obtain the renum-
bering. This sort is done with standard C-library sorting routine such as
quicksort, hence the O(N log(N)) complexity of our method. Table 2 sums-
up the CPU time for sorting all the test cases meshes on the Mac Xserve.
Figure 3 illustrates an unstructured mesh of a scramjet (left) and how the
vertices have been reordered in memory by following the line (right), this is
the Hilbert SFC.

On the Use of SFCs for Parallel Anisotropic Mesh Adaptation 343

Fig. 3. Left, unstructured mesh of a scramjet. Right, the Hilbert SFC (red line)
associated with the vertices. It represents how the vertices are ordered in memory.

Table 3. Number of CPU cycles required for typical operations on Intel Core 2.

Operations mult/add div sqrt cache miss L1 cache miss L2 mutex condwait
Cycles 1 10 10 13 276 6 240 12 480

Renumbering strategies have a significant impact on the efficiency of a code.
This is even more crucial for numerical methods on unstructured meshes. We
can cite the following impact:

• reducing the number of cache misses during indirect addressing loops
• improving matrix preconditioning for linear system resolutions
• reducing cache-line overwrites during indirect addressing loops which is

fundamental for shared memory parallelism, see Section 5.1
• may provide implicit hashing of the data.

Let us focus on the first item : cache misses that are due to indirect ad-
dressing. They occur when data are required for a computation and those
data do not lie within the same cache line. For instance, such situation is
frequent while performing a loop through the tetrahedra list and requesting
for vertices data. It is worth mentioning that the cost of a cache miss is far
more important than typical operations used in numerical applications, see
Table 3.

To effectively reduce cache misses, all the mesh entities must be reordered
and not, for instance, only the vertices. In our approach, the Hilbert SFC
based renumbering is used to sort the vertices as their proximity depends on
their position in space even for anisotropic meshes. As regards the topological
entities, e.g. the edges, the triangles and the tetrahedra, the Hilbert SFC
based renumbering can be applied by using their center of gravity. However, as
they are topological entities, we prefer to consider a topological renumbering
strategy based on vertex balls which also provides an implicit hashing of the
entities. Note that similar wave renumbering strategies are described in [19].
This strategy reduces by 90% the number of cache misses1 of the flow solver
(Section 5.2) as compared to an unsorted mesh generated with a Delaunay-
based algorithm.
1 This statistic has been obtained with the Apple Shark code profiler.

344 F. Alauzet and A. Loseille

For the test cases of Sections 5 and 6, we obtain in serial a speed-up up to
2.68, i.e., up to almost three time faster, when all the entities are reordered
as compared to the unsorted mesh. More precisely, speed-ups of 1.06, 1.62,
2.54 and 2.68 are obtained for the M6, IRT, City and Falcon test cases,
respectively.

5 Exploiting Space Filling Curves for Efficient
Shared-Memory Multi-threaded Parallelization

5.1 A Shared Memory Multi-threaded Parallelization

Our approach is based on posix standard threads (known as pthreads) thus
taking advantage of multi-core chips and shared memory architectures sup-
ported by most platforms. Such an approach presents two main advantages:
data do not need to be explicitly partitioned as with MPI based parallelism
and its implementation requires only slight modifications to a previously de-
veloped serial code.

Symmetric parallelization of loops. In this case, a loop performing the same
operation on each entry of a table is split into many sub-loops. Each sub-loop
will perform the same operation (hence the name symmetric parallelism) on
equally-sized portions of the main table and will be concurrently executed. It
is the scheduler job to make sure that two threads do not write simultaneously
on the same memory location. To allow for a fine load balancing, we split the
main table into a number of blocks equal to 16 times the number of available
processors.

Indirect memory access loops. Using meshes and matrices in scientific com-
puting leads inevitably to complex algorithms where indirect memory ac-
cesses are needed. For example, accessing a vertex structure through a tetra-
hedron leads to the following instruction:

TetTab[i]->VerTab[j];

Such a memory access is very common in C, the compiler will first look for
tetrahedron i, then vertex j, thus accessing the data indirectly. In this case,
after splitting the main tetrahedra table into sub-blocks, tetrahedra from dif-
ferent blocks may point to the same vertices. If two such blocks were to run
concurrently, memory write conflict would arise. To deal with this issue, an
asynchronous parallelization is considered instead of a classic gather/scatter
technique usually developed on distributed memory architectures, i.e., each
thread writes in its own working array to avoid memory conflict and then
the data are merged. Indeed, this asynchronous parallelization has the fol-
lowing benefits: there is no memory overhead and for all the test cases on
8 cores this method was 20 to 30 % faster than the gather/scatter method.
The main difficulty is then to minimize the synchronization costs that are
expensive in CPU cycles, cf. Table 3. To this end, the scheduler will carefully

On the Use of SFCs for Parallel Anisotropic Mesh Adaptation 345

choose the set of concurrently running blocks so that they share no common
tetrahedra and no common vertices. In case no compatible blocks are to be
found, some threads may be left idling, thus reducing the degree of paral-
lelization. This method can even lead to a serial execution in the case of a
total incompatibility between blocks.

The collision probability of any two blocks sets the mesh inherent paral-
lelization factor. Meshes generated by advancing front or Delaunay techniques
feature a very low factor (2 or 3 at best), while octree methods far much bet-
ter. Renumbering the mesh elements and vertices as described in Section 4.1
dramatically enhances the inherent parallelism degree (by orders of magni-
tude). Applying such renumbering is de facto mandatory when dealing with
indirect memory access loops. The block collision statistics for the test cases
of Section 3 on 8 processors without and with the renumbering strategy of
Section 4.1 are reported in Table 4.

As regards the scheduler cost, the operation of locking/unlocking a thread
needs one mutex and one condwait, see Table 3. As these two operations
are needed when launching and when stopping a thread, the resulting cost is
approximatively 37 000 CPU cycles which is very expensive as compared to
standard floating point operations or cache misses timings.

This approach has been implemented in the LP2 library [24]. The purpose
of this library is to provide programmers of solvers or automated meshers in
the field of scientific computing with an easy, fast and transparent way to
parallelize their codes. Thus, we can implement directly in parallel.

A sketch of the modifications of a serial code parallelized with the LP2 is
given in Figure 4. Left, the dependencies of the tetrahedra array with respect
to the vertices array are set. Right, the modification of the routine Solve
which processes a loop on tetrahedra. This routine is called in parallel with
two additional parameters iBeg and iEnd that are managed by the LP2. This
illustrates the slight modifications that occur for the serial code. For instance,

Table 4. Collision percentage between blocks of entities when the list is not sorted
or sorted.

Cases
Edges List Tetrahedra List Triangles List
Avg Max Avg Max Avg Max

M6
no sort 2.96% 6.10% 7.25% 9.83% 0.35% 0.61%

sort 0.94% 1.57% 0.95% 1.61% 0.37% 0.61%

IRT
no sort 24.06% 35.94% 45.21% 55.36% 1.56% 2.71%

sort 1.00% 2.03% 1.00% 1.79% 0.42% 0.92%

City
no sort 73.90% 98.64% 93.29% 99.51% 1.21% 2.78%

sort 1.09% 3.95% 1.10% 3.60% 0.25% 0.97%

Falcon
no sort 99.55% 100.00% 99.65% 100.00% 0.15% 1.02%

sort 1.81% 4.63% 1.81% 4.24% 0.19% 0.59%

346 F. Alauzet and A. Loseille

BeginDependency(Tetrahedra,Vertices);
for (iTet=1; iTet<=NbrTet; ++iTet) {
for (j=0; j<4; ++j) {
AddDependency(iTet, Tet[iTet].Ver[j]);

}
}
EndDependency(Tetrahedra,Vertices);

Solve(Tetrahedra,iBeg,iEnd) {
for (iTet=iBeg; iTet<=iEnd; ++iTet) {
// same as serial

}
}

Fig. 4. Modification of the serial code for shared-memory parallelization.

for our flow solver (see Section 5.2) most of (98.5 %) the explicit resolution
part has been parallelized in less than one day.

5.2 Parallelizing the Flow Solver

The parallelized flow solver is a vertex-centered finite volume scheme on un-
structured tetrahedral meshes solving the compressible Euler equations. To
give a brief overview, the HLLC approximate Riemann solver is used to com-
pute the numerical flux. The high-order scheme is derived according to a
MUSCL type method using downstream and upstream tetrahedra. A high-
order scheme is deduced by using upwind and downwind gradients leading
to a numerical dissipation of 4th order. To guarantee the TVD property of
the scheme, a generalization of the Superbee limiter with three entries is
considered. The time integration is an explicit algorithm using a 5-stage, 2-
order strong-stability-preserving Runge-Kutta scheme. We refer to [5] for a
complete description.

A shared-memory parallelization of the finite volume code has been im-
plemented with the pthreads paradigm described in Section 5.1. It uses the
entities renumbering strategy proposed in Section 4.1. It took only 1 day to
parallelize most of the resolution part with less than 2% of the resolution
remaining in serial. More precisely, 6 main loops of the resolution have been
parallelized:

• the time step evaluation which is a loop on the vertices without depen-
dencies

• the boundary gradient2 evaluation which is a loop on the tetrahedra con-
nected to the boundary

• the boundary conditions which is a loop on the boundary triangles
• the flux computation which is a loop on the edges
• the source term computation which is a loop on the vertices without

dependencies
• the update (advance) in time of the solution which is a loop on the vertices

without dependencies.

The speed-ups, as compared to the serial version, obtained for each test
case from 2 to 8 processors are summarized in Table 5. These speed-ups
2 For this numerical scheme, the element gradient used for the upwinding can be

computed on the fly during the flux evaluation.

On the Use of SFCs for Parallel Anisotropic Mesh Adaptation 347

Table 5. Speed-ups of the flow solver as compared to the serial version for all the
test cases from 2 to 8 processors.

Cases M6 IRT City Falcon SSBJ Spike

Speed-up

1 Proc 1.000 1.000 1.000 1.000 1.000 1.000
2 Proc 1.814 1.959 1.956 1.961 1.969 1.975
4 Proc 3.265 3.748 3.866 3.840 3.750 3.880
8 Proc 5.059 6.765 7.231 6.861 7.031 7.223

contains the time of I/Os which is negligible for the flow solver. These results
are very satisfactory for the largest cases for which an enjoyable speed-up
around 7 is attained on 8 processors. The slight degradation observed between
4 and 8 processors is in part due to a limitation of the current hardware of
the Intel Core 2 Quad chip. However, the speed-ups are lower for the smallest
case, the M6 wing with only 7 815 vertices. This small test case with a light
amount of work points out the over-cost of the scheduler for pthreads handling
which is a weakness of the proposed approach. More precisely, we recall that
launching and stopping a thread cost approximatively 37 000 CPU cycles. As
the parallelization is at the loop level, obtaining correct speed-ups requires
that the cost of handling each thread must remain negligible compared to
the amount of work they are processing. But, this is not the case for the
M6 test case. Indeed, if we analyze the time step loop, on 8 processors, this
loop deals with 977 vertices each requiring 100 CPU cycles. Consequently,
the management of the thread costs the equivalent of 38% of the total cost
of the operations.

The speed-up of a parallel code is one criteria, but it is also of utmost
importance to specify the real speed of a code. As regards flow solvers, it
is difficult to compare their speed as the total time of resolution depends
on several parameters such as the RK scheme (for explicit solver), the mesh
quality that conditions the time step, the chosen CFL, etc. Therefore, for the
same computation, high variations could appear. To specify the relative speed
of the solver, we choose to provide the CPU time per vertex per iteration:

speed =
CPU time

of vertices×# of iterations
.

For the test cases on the Mac Xserve, the serial speed of the solver varies
between 3.4 and 3.87 microseconds (μs) while a speed between 0.47 μs (for
the spike) and 0.76 μs (for the M6) is obtained on 8 processors. To give an
idea, a speed of 0.5 μs is equivalent to performing one iteration in half a
second for a one million vertices mesh. In conclusion, the faster a routine, the
harder it is to parallelize it with a satisfactory speed-up.

The flow solver has also been run on a 128 processors SGI Altix computer
at the Barcelona Supercomputing Center to make a preliminary analysis on
using a large number of processors. Such a machine uses a ccNUMA architec-
ture suffering from high memory latency. In this context, minimizing main

348 F. Alauzet and A. Loseille

Table 6. Speed-ups of the flow solver on a 128 processors SGI Altix computer.

of proc 1 2 4 8 16 32 64 100
Speed-up 1.000 1.954 3.235 6.078 9.815 17.258 26.649 36.539

Table 7. Speed-ups of the error estimate code as compared to the serial version
for all the test cases from 2 to 8 processors. Upper part, speed-up with respect to
the whole CPU time. Lower part, speed-up of the parallelized part.

Cases M6 IRT City Falcon SSBJ Spike

Total CPU in sec. 1 Proc 0.226 3.365 29.315 101.14 252.76 433.91

Speed-up
2 Proc 1.44 1.58 1.47 1.42 1.53 1.33
4 Proc 1.77 2.19 1.76 1.71 2.10 2.01
8 Proc 1.85 2.69 2.19 2.05 2.66 2.61

Gradation CPU in sec. 1 Proc 0.131 2.417 18.414 59.79 186.47 299.45

Speed-up
2 Proc 1.87 1.89 1.88 1.90 1.92 1.89
4 Proc 3.19 3.55 3.44 3.53 3.62 3.47
8 Proc 3.85 6.00 5.84 6.12 6.59 5.90

memory accesses through Hilbert SFC based renumbering, is all the more
important. The considered test case is a large anisotropic adapted mesh con-
taining almost 400 million tetrahedra. The speed-ups from 1 to 100 processors
are given in Table 6. These first results are very encouraging and we are thus
confident for the obtention of good speed-ups up to 128 processors in a near
future.

5.3 Parallelizing the Error Estimate

The error estimate software will use the same parallelization methodology as
the flow solver. This stage of the mesh adaptation platform is very inexpen-
sive. In our experience, its cost is between 1 and 2 % of the whole CPU time.
For instance, computing the metric with the estimate of [21] coupled with
the mesh gradation algorithm of [2] for the spike test cases cost 7 minutes in
serial (I/O included).

However, if the CPU time is carefully analyzed, we observed that the error
estimate represents 3% of the CPU, the mesh gradation 69%, and the I/O
plus building the database 27%. Consequently, we have only parallelized the
mesh gradation algorithm as the error estimate computation is extremely
inexpensive3. The speed-ups obtained for the whole CPU time (upper part)
and for the mesh gradation phase (lower part) are given in Table 7. Concern-
ing, the mesh gradation phase nice speed-ups are obtained for all the test
cases. The impact on the whole CPU time is a speed-up between 2 and 2.6
on 8 processors.
3 Its parallelization is not expected before running on 100 processors.

On the Use of SFCs for Parallel Anisotropic Mesh Adaptation 349

6 Exploiting Space Filling Curves for Efficient
Out-of-Core Parallelization

6.1 A Fast Mesh Partitioning Algorithm

Mesh partitioning is one of the crucial task for distributed-memory paral-
lelism. A critical issue is the minimization of the inter-processors communi-
cations, i.e., the interfaces between partitions, while keeping well-balanced
partitions. Indeed, these communications represent the main over-head of the
parallel code. This problem is generally solved using graph connectivity or
geometric properties to represent the topology of the mesh. These methods
have now attained a good level of maturity, see ParMETIS [16].

However, in our context of anisotropic parallel mesh adaptation, the goal
is different. The mesh partitioning is considered for purely distributed tasks
without any communication, but for meshing or local remeshing purposes each
partition must be connected. This requirement is not taken into account by
classical partitioner. Therefore, we aim at designing the fastest possible algo-
rithm that provides well-balanced connected partitions. We choose a Hilbert
SFC based mesh-partitioning strategy applied to unstructured meshes, such
as the ones proposed in [1, 29] which have been applied to Cartesian grids. This
strategy is then improved to handle highly anisotropic unstructured meshes.

A Hilbert SFC based mesh partitioning. As the Hilbert SFC provides a one-
dimensional ordering of the considered three-dimensional mesh, partitioning
the mesh is simply equivalent to partitioning a segment. Given a 3D input
mesh, the algorithm to create k subdomains is threefold:

1. get the index on the Hilbert SFC of each vertex/tetrahedron gravity
center as stated in Section 4.1. An implicit Hilbert SFC is built

2. sort the vertices/tetrahedra list to get a new ordered list of elements
3. subdivide uniformly the sorted list of elements, i.e., the Hilbert SFC, into
k sublists. The sublists are the subdomains.

This algorithm is extremely fast and consumes little memory. The partition-
ing is equivalent to a renumbering plus a sort.

If this algorithm works perfectly for structured grids or uniform meshes, it
needs, as standard partitioner, to be corrected when dealing with anisotropic
meshes to obtain connected partitions. Indeed, two consecutive elements on
the Hilbert SFC are close in the domain but they may be linked by a single
vertex or edge, see Figure 5, and not by a face. In this case, the result-
ing subdomains are non-connected. A correction phase is then mandatory
to ensure that each partition is connected. This is done in two steps. The
first step consists in detecting each connected component of each subdomain
thanks to a coloring algorithm [14]. A first non-colored tetrahedron initializes
a list. Then, the first tetrahedron of the list is colored with the connected
component index and removed from the list, and its non-colored neighbors
(tetrahedra adjacent by a face) are added to the list. The process is repeated

350 F. Alauzet and A. Loseille

Fig. 5. Case where two consecutive elements in Hilbert SFC based numbering are
linked by a vertex leading to the creation of a non-connected partition.

Fig. 6. Some partitions of a complex anisotropic adapted mesh.

until the list is empty. This algorithm requires as supplementary data struc-
ture the neighbors tetrahedra table. If each subdomain is composed of only
one connected component then no correction is needed. Otherwise, in the
second step, elements are reattributed to neighboring partitions in order to
ensure that all partitions are connected. Figures 6 shows some partitions of
a complex anisotropic adapted mesh.

Domain gathering. Domain gathering is done on the fly by reading each
partition one after another and by updating a global table of vertices lying on
interfaces. Consequently, only all the interface meshes are loaded in memory
and no partition elements need to be kept in memory. The partition meshes
are read and written element by element on the fly. Therefore, the whole mesh
is never allocated. It results that this operation can gather a large number
of partitions while requiring little memory. The key point is the algorithm to
recover the one-to-one mapping between two interfaces. It consists in using
a wave front approach based on the topology of the interface meshes to map

On the Use of SFCs for Parallel Anisotropic Mesh Adaptation 351

Table 8. Number of tetrahedra per partition for the spike test case.

1 2 3 4 5 6 7 8
6 005 604 6 006 014 6 006 041 6 005 838 6 005 737 6 005 026 6 005 757 6 005 783

Table 9. Statistics for partitioning into 8 blocks. CPU times is in seconds and
memory is in MB.

Case I/O CPU Partition CPU Total CPU Max memory Size variation

M6 0.10 0.09 0.191 5 7.68%
IRT 0.86 1.25 2.114 47 3.17%
City 10.89 12.05 22.94 469 0.04%
Falcon 50.47 41.68 92.15 1396 0.22%
SSBJ 98.43 89.35 187.78 2947 0.04%
Spike 120.22 168.35 288.57 5608 0.02%

one after another each vertex [19]. This algorithm is purely topologic. It is
thus exact and not subjected to any floating point precision.

Numerical experiments. Let us analyze the spike test case for 8 partitions.
The time to create the 8 connected partitions and to write the corresponding
meshes is about 288s. The maximal memory allocated in this case is 5.6GB.
The partitions are well-balanced, indeed the size in balance between parti-
tions is no more than 0.02% as summarized by Table 8. We now give the
detailed CPU time for each phase of the domain decomposition algorithm:

• Reading input data: 69s
• Create an initial Hilbert SFC based partition: 91s
• Create neighboring structure: 24s
• Correct partitions: 52.2s
• Writing output data: 50s.

As regards the partitions gathering, the algorithm consumes very low amount
of memory as only the interfaces of the meshes are stored. For this example,
the complete gathering step requires 42s and the maximal allocated memory
is 156MB.

Results obtained for all the test cases are summarized in Table 9. All the
CPU times are in seconds and the maximum allocated memory is in MB.
An excellent load balancing is obtained for all the cases, except for the two
smallest ones.

6.2 Parallelizing the Local Adaptive Remesher

The strategy to parallelize the meshing part is a out-of-core parallelization
that uses the adaptive mesh generator as a black box. This method is com-
pletely distributed without any communications, thus it can be applied to

352 F. Alauzet and A. Loseille

shared-memory or heterogeneous architectures. The advantage of this method
is its simplicity and its flexibility, as any adaptive mesh generators can be
used. Here, the local remesher of [12] is utilized. The drawback is an I/O and
build database over-cost.

In the context of parallel anisotropic mesh adaptation, the objectives are
different from the solver ones. Apart from the traditional scaling of the paral-
lel algorithm, the interest is in the possibility of improving the serial remesh-
ing algorithm by:

• reducing the cache misses for efficiency
• reducing the scale factors for robustness purposes
• improving the local quadratic search algorithms that could occur in

Delaunay-based mesh generators.

Previous points are necessary to foresee the generation of highly anisotropic
meshes with dozens of million of elements.

The main difference between different parallelizations of local remeshing
algorithms resides in how the partitions interfaces are handled. In some par-
allel adaptation implementations connectivity changes are performed in the
interior of the partition and migration is used to make border regions inte-
rior [4, 10, 11, 18, 25]. In [27], tetrahedron connectivity changes are performed
on purely-local and border tetrahedra in separate operations without migra-
tion. This difficulty generally comes from the use of a all-in-one method. Here,
as each software is independent and a local remeshing strategy is employed,
the necessity of remeshing partitions interfaces is not strictly necessary. In-
deed, the parallel remeshing algorithm can be thought as an iterative proce-
dure. The only constraint is then to ensure that from one step to another the
boundaries of interfaces change to adapt them. Consequently, reducing the
size of the interfaces is no more the most critical issue.

On the contrary, we prefer to generate well-balanced partitions for
anisotropic remeshing. Note that in the context of remeshing, well-balanced
partitions does not mean having the same number of vertices or elements.
Indeed, the estimate time CPU of a mesh generator depends more of the cur-
rent operation: insertions, collapses or optimization. The CPU time of these
operations is not always linear with the number of vertices of the input mesh.
We did not propose yet any improvements to deal with these non linearities.

The proposed method is a divide and conquer strategy using the mesh
partitioner of Section 6.1 which is given by the following iterative procedure:

1. Split the initial mesh: each partition is renumbered using Hilbert SFC
based strategy

2. Adapt each partition in parallel with only vertex insertion, collapses,
swaps

3. Merge new adapted partitions and split the new adapted mesh with ran-
dom interfaces: each partition is renumbered using Hilbert SFC based
strategy

4. Optimize each partition in parallel with swaps and vertices movement

On the Use of SFCs for Parallel Anisotropic Mesh Adaptation 353

5. Merge new adapted partitions
6. return to 1.

Generally, two iterations are performed. Using this technique makes the
anisotropic remeshing time satisfactory as compared to the flow solver CPU
time in the adaptive loop. However, it is very difficult to quantify the CPU
time of the meshing part as it depends on a large number of parameters, for
instance, do we coarse the mesh, optimize it or insert a lot of vertices, etc.

Our experience on a large number of simulations with dozens million of
elements shows that managing efficiently the cache misses leads to acceler-
ation between 2 and 10 in serial. As regards the out-of-core parallelization,
after adequate renumbering, satisfactory speed-ups are obtained. The speed-
ups for the City and SSBJ test case are given in Table 10. These speed-ups
are coherent as the partitions are balanced with respect to their size and do
not take into account the future work of the mesh generator. Sometimes, the
remeshing of one of the partitions is twice more costly than the remeshing
of any of the other ones. This degrades considerably the speed-up. It can be
improved by increasing the number of partitions for a fixed number of pro-
cessors. For instance, for the SSBJ test case on 8 processors and 32 partitions
the speed-up increases to 6.

Overall, this strategy combining cache miss management and out-of-core
parallelization can provide speed-ups up to 40 on 8 processors (the speed-
up may even be greater than the number of processors) as compared to
the original code alone. But large fluctuations in the obtained speed-ups are
observed and are highly dependent on the considered case.

Table 10. Speed-ups of the local remesher as compared to the serial version.

Cases 1 Proc 2 Proc 4 Proc 8 Proc
City 1.00 1.56 2.43 2.61
SSBJ 1.00 1.36 2.37 4.50

6.3 Parallelizing the Solution Interpolation

After the generation of the new adapted mesh, the solution interpolation
stage consists in transferring the previous solution fields obtained on the
background mesh onto the new mesh. This stage is also very fast if cache
misses are carefully managed thanks to the Hilbert SFC based renumbering.
For instance, the solution fields of the spike test case are interpolated in 107
seconds. Detailed CPU times are 47s for the I/Os and sort, 15s for building
the database and 45s for the interpolation method. We notice that the I/Os
and building the database are taking more than 50% of the CPU time. Thus,
the expected speed-ups for a parallel version are limited.

354 F. Alauzet and A. Loseille

The algorithm to efficiently parallelize the interpolation method of [6] with
the pthreads paradigm is equivalent to partition the domain. But, partition-
ing is slower than the interpolation. This way has thus not been chosen.
Nevertheless, this stage can be parallelized in the context of mesh adaptation
with a distributed out-of-core strategy. The clue point is that the new mesh
has already been partitioned and renumbered for mesh adaptation. There-
fore, before merging all partitions, the interpolation can be applied in parallel
to each new adapted partition separately. The over-cost of partitioning and
gathering the mesh is already included in the mesh adaptation loop. Other-
wise, it will be faster to run in serial. However, the expected speed-ups are
limited by the I/Os and building the database associated with the background
mesh which is not partitioned.

This method has been applied to all the test cases. Each pair mesh-solution
of Section 3 are interpolated on a new (different) mesh of almost the same size,
i.e., a size variation of less than 10%. The CPU time in seconds for each case in
serial is given Table 11. In parallel, no gain is observed for the smallest cases:
the M6 and the IRT. For larger test cases, speed-ups between 1.3 and 2 are
obtained on 2 processors and they are moderately higher with 4 processors.
Unfortunately, CPU time degrades for 8 processors. This is mainly due to the
fact that I/Os degrade because eight process run concurrently on the same
computer while requesting access to the disk at the same time. Fortunately,
this effect diminishes (or cancels) during an adaptive computations as the
interpolation on each partition immediately follows the mesh adaptation.
Indeed, the mesh adaptation of each partition finishes at different time.

Table 11. CPU times in seconds to interpolate the solution fields in serial.

Cases M6 IRT City Falcon SSBJ Spike
CPU time in sec. 0.081 0.88 14.69 48.45 56.51 107.48

7 Conclusion

In this paper, we have presented a first step in the parallelization of the
mesh adaptation platform. It has been demonstrated that the use of the
Hilbert SFC authorizes a cheap and easy parallelization of each stage of the
mesh adaptation platform. The parallelization can be shared-memory multi-
threaded or out-of-core. The Hilbert SFC is the core of the renumbering
strategy and the mesh partitioner. It also importantly reduces the code cache
misses leading to important gain in CPU time. As already mentioned in [31],
many code options that are essential for realistic simulations are not easy
to parallelize on distributed memory architecture, notably local remeshing,
repeated h-refinement, some preconditioners, etc. We think that this strategy
can provide an answer even if it is not the optimal one.

On the Use of SFCs for Parallel Anisotropic Mesh Adaptation 355

The weaknesses of this approach are I/Os and build database over-cost,
especially on the fastest stages as the error estimate or the interpolation. The
I/Os time is incompressible, it depends on the hardware. Indeed, solutions
exist, like fast RAIDs. Improving the building database part require to par-
allelize complex algorithm such as hash table. The other point of paramount
importance for the proposed shared-memory multi-threaded parallelization
is the cost of locking/unlocking thread which can be prohibitive for a loop
with a little amount of work.

In spite of that the proposed parallel adaptive methodology provides a kind
of “high performance computing” on nowadays multi-core personal computers
by reducing the complexity of the problem by several orders of magnitude.

Several improvements of the proposed approach are still in progress.
Regarding the shared-memory parallelization, the scheduler has to be par-

allelized to keep its cost constant whatever the number of processors and, at
the loop level, some algorithm can be enhanced to improve their scalability.
The out-of-core parallelization can be enhanced by parallelizing the mesh
partitioner and by deriving a fine load-balancing that takes into account the
future work on each partition of the local remesher thanks to the metric spec-
ification. And finally, for fast codes, the error estimate and the interpolation,
we will have to tackle the problem of parallelization of database construction
which involves hash tables.

References

1. Aftosmis, M., Berger, M., Murman, S.: Applications of space-filling curves to
cartesian methods for CFD. AIAA Paper 2004-1232 (2004)

2. Alauzet, F.: Size gradation control of anisotropic meshes. Finite Elem. Anal.
Des. (2009) doi:10.1016/j.finel.2009.06.028

3. Alauzet, F., Frey, P., George, P.-L., Mohammadi, B.: 3D transient fixed point
mesh adaptation for time-dependent problems: Application to CFD simula-
tions. J. Comp. Phys. 222, 592–623 (2007)

4. Alauzet, F., Li, X., Seol, E.S., Shephard, M.: Parallel anisotropic 3D mesh
adaptation by mesh modification. Eng. w. Comp. 21(3), 247–258 (2006)

5. Alauzet, F., Loseille, A.: High order sonic boom modeling by adaptive methods.
RR-6845, INRIA (February 2009)

6. Alauzet, F., Mehrenberger, M.: P1-conservative solution interpolation on un-
structured triangular meshes. RR-6804, INRIA (January 2009)

7. Alleaume, A., Francez, L., Loriot, M., Maman, N.: Large out-of-core tetrahedral
meshing. In: Proceedings of the 16th International Meshing Roundtable, pp.
461–476 (2007)

8. Behrens, J., Zimmermann, J.: Parallelizing an unstructured grid generator with
a space-filling curve approach. In: Bode, A., Ludwig, T., Karl, W.C., Wismüller,
R. (eds.) Euro-Par 2000. LNCS, vol. 1900, pp. 815–823. Springer, Heidelberg
(2000)

9. Cantor, G.: über unendliche, lineare punktmannigfaltigkeiten 5. Mathematische
Annalen 21, 545–586 (1883)

356 F. Alauzet and A. Loseille

10. Cavallo, P., Sinha, N., Feldman, G.: Parallel unstructured mesh adaptation
method for moving body applications. AIAA Journal 43(9), 1937–1945 (2005)

11. DeCougny, H.L., Shephard, M.: Parallel refinement and coarsening of tetrahe-
dral meshes. Journal for Numerical Methods in Engineering 46(7), 1101–1125
(1999)

12. Dobrzynski, C., Frey, P.J.: Anisotropic Delaunay mesh adaptation for unsteady
simulations. In: Proceedings of the 17th International Meshing Roundtable, pp.
177–194. Springer, Heidelberg (2008)

13. Frey, P.J., Alauzet, F.: Anisotropic mesh adaptation for CFD computations.
Comput. Methods Appl. Mech. Engrg. 194(48-49), 5068–5082 (2005)

14. Frey, P., George, P.-L.: Mesh generation. Application to finite elements, 2nd
edn. ISTE Ltd and John Wiley & Sons, Chichester (2008)

15. Hilbert, D.: über die stetige abbildung einer linie auf ein flächenstück. Mathe-
matische Annalen 38, 459–460 (1891)

16. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM Journal on Scientific Computing 20(1), 359–392
(1998)

17. Larwood, B.G., Weatherill, N.P., Hassan, O., Morgan, K.: Domain decomposi-
tion approach for parallel unstructured mesh generation. Int. J. Numer. Meth.
Engng. 58(2), 177–188 (2003)

18. Lepage, C., Habashi, W.: Parallel unstructured mesh adaptation on distributed-
memory systems. AIAA Paper 2004-2532 (2004)

19. Löhner, R.: Applied CFD techniques. An introduction based on finite element
methods. John Wiley & Sons, Ltd., New York (2001)

20. Löhner, R.: A parallel advancing front grid generation scheme. Int. J. Numer.
Meth. Engng 51, 663–678 (2001)

21. Loseille, A., Dervieux, A., Frey, P., Alauzet, F.: Achievement of global second-
order mesh convergence for discontinuous flows with adapted unstructured
meshes. AIAA paper 2007-4186 (2007)

22. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freedman and Co.,
New York (1982)

23. Marcum, D.: Iterative partitioning for parallel mesh generation. In: Tetrahedron
Workshop, vol. 2 (2007)

24. Marechal, L.: The LP2 library. A parallelization framework for numerical sim-
ulation. Technical Note, INRIA (2009)

25. Mesri, Y., Zerguine, W., Digonnet, H., Silva, L., Coupez, T.: Dynamic parallel
adaption for three dimensional unstructured meshes: Application to interface
tracking. In: Proceedings of the 17th International Meshing Roundtable, pp.
195–212. Springer, Heidelberg (2008)

26. Niedermeier, R., Reinhardt, K., Sanders, P.: Towards optimal locality in mesh-
indexings. Discrete Applied Mathematics 7, 211–237 (2002)

27. Park, M., Darmofal, D.: Parallel anisotropic tetrahedral adaptation. AIAA Pa-
per 2008-0917 (2008)

28. Peano, G.: Sur une courbe, qui remplit toute une aire plane. Mathematische
Annalen 36, 157–160 (1890)

29. Pilkington, J., Baden, S.: Dynamic partitioning of non-uniform structured
workloads with spacefilling curves. IEEE Transactions on Parallel and Dis-
tributed Systems 117(3), 288–300 (1996)

30. Sagan, H.: Space-Filling Curves. Springer, New York (1994)

On the Use of SFCs for Parallel Anisotropic Mesh Adaptation 357

31. Sharov, D., Luo, H., Baum, J., Löhner, R.: Implementation of unstructured grid
GMRES+LU-SGS method on shared-memory, cache-based parallel computers.
AIAA Paper 2000-0927 (2000)

32. Shontz, S., Knupp, P.: The effect of vertex reordering on 2D local mesh
optimization efficiency. In: Proceedings of the 17th International Meshing
Roundtable, pp. 107–124. Springer, Heidelberg (2008)

