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Abstract. We present a new technology for generating meshes minimizing the
interpolation and discretization errors or their gradients. The key element of this
methodology is construction of a space metric from edge-based error estimates. For
a mesh with Nh triangles, the error is proportional to N−1

h and the gradient of error

is proportional to N
−1/2
h which are the optimal asymptotics. The methodology is

verified with numerical experiments.

1 Introduction

Unstructured simplicial meshes are ideally suited for adaptive finite element
calculations. The simplexes can be aligned with solution features and cover
the computational domain in an optimal way to equidistribute the error. This
results in a smaller computational mesh and potentially faster calculations.

Generation of optimal adaptive meshes requires error estimates or error
indicators that carry directional information about the solution. In this arti-
cle, we use error estimates that are associated with mesh edges. We consider
edge-based error estimates for the interpolation error and hierarchical er-
ror estimates for the discretization error [12]. In both cases, we employ the
methodology developed in [1, 3, 4] for the interpolation error. This method-
ology results in a metric that captures correctly isotropic and anisotropic
solution features. Here, we continue analysis of this metric, in particular, its
smoothness and anisotropic alignment.

Other methods for generating a space metric are often based on the Hessian
of the discrete solution [18, 15, 14, 13]. For such a metric, optimal error
estimates for the interpolation error have been proved in [2, 8, 14, 17, 18].
The Hessian-based metric has been successfully applied to adaptive solution
of PDEs [7, 13, 15]. However, its theoretical analysis requires to make an
additional assumption that the discrete Hessian approximates the continuous
one in the maximum norm. Despite the fact that this assumption is frequently
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violated in many Hessian recovery methods, the generated adaptive meshes
still result in optimal error reduction.

The technology, which we proposed in [1, 3, 4] does not require the afore-
mentioned approximation assumption. It can be also applied to adaptive solu-
tion of various finite element problems including problems with discontinuous
finite element solutions. The price to pay is that error estimates or error in-
dicators have to be prescribed to mesh edges. The finite element literature
provides a number of ways to obtain these error estimates. For instance, in
CFD literature, edge-based error estimates have appeared occasionally since
mid of 1990’s but have not received adequate theoretical treatment [5, 6].
In this article, we use the hierarchical error estimates from [12] and provide
a numerical analysis of our methodology for the adaptive solution of finite
element problems. The cornerstone of this methodology is construction of a
space metric from edge-based error estimates.

We define a tensor metric M such that the volume and the perimeter of
a simplex measured in this metric control the norm of error or its gradient.
The equidistribution principle, which can be traced back to D’Azevedo [11],
suggests to balance M-volumes and M-perimeters. This leads to meshes that
are quasi-uniform in the piecewise constant metric M. The piecewise constant
metric may produce instabilities in an adaptive process, especially when the
length of a mesh edge, measured in all metrics associated with simplexes
sharing the edge, varies strongly. We show numerically that this variation is
relatively small for our piecewise constant metrics. This allows us to convert
the piecewise constant metric into a continuous one for additional robustness
of the adaptive process.

A piecewise constant tensor metric that controls the error is not unique.
Any such metric results in asymptotically optimal reduction of the error
[1]. In this paper, we show how to build a metric that preserves solution
anisotropy. The resulting quasi-optimal mesh equidistributes both the error
over simplexes and the maximum norm of the error over edges of each simplex.

The paper outline is as follows. In Section 2, we derive metrics optimal for
the interpolation errors. In Section 3, we present the algorithm for generat-
ing adaptive meshes. In Section 4, we apply the methodology for adaptive
solution of finite element problems.

2 Interpolation Error Analysis

2.1 Edge-Based Error Estimates and a Tensor Metric

Let Ω ⊂ �d be a bounded polyhedral domain and Ωh be a conformal simpli-
cial mesh with Nh simplexes. Let M be a piecewise constant tensor metric
on Ωh. The volume of simplex Δ and the length of edge e in this metric are
denoted by |Δ|M and |e|M, respectively [2]. The total length of all edges of
simplex Δ in denoted by |∂Δ|M. We shall refer to |∂Δ|M as the perimeter of
Δ in the metric M.
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Let I1u be the piecewise linear Lagrange interpolant of u, and I1,Δu be its
restriction to Δ. Similarly, let I2u be the piecewise quadratic Lagrange inter-
polant of u, and I2,Δu be its restriction to Δ. Our goal is to generate a mesh
that minimizes (approximately) the Lp-norm, p ∈ (0,∞], of the interpolation
error

e = u− I1u
or its gradient∇e. A sequence of meshes with increasing number of simplexes
must provide the optimal reduction of this error. For instance, the Tichomirov
result [16] implies that the optimal reduction of the L∞-norm of error is
proportional to N−1

h .
Let us consider a particular d-simplex Δ with vertices vi, i = 1, . . . , d+ 1,

edge vectors ek = vi − vj , 1 ≤ i < j ≤ d + 1, and mid-edge points ck,
k = 1, . . . , nd, where nd = d(d + 1)/2. Let λi, i = 1, . . . , d + 1, be the linear
functions on Δ such that λi(vj) = δij where δij is the Kronecker symbol. For
every edge ek, we define the quadratic bubble function bk = λiλj .

Let u be a continuous function and u2 = I2,Δ u be its quadratic approxi-
mation on Δ. We have

e2 = u2 − I1,Δu2 = 4
nd∑

k=1

(u2(ck)− I1,Δu2(ck)) bk ≡
nd∑

k=1

γk bk. (1)

The L2-norm of the error e2 is given by

‖e2‖2L2(Δ) = |Δ| (B γ, γ), (2)

where γ is a vector with nd components γk and B is the nd × nd sym-
metric positive definite scaled Gramm matrix with positive entries Bk,l =
|Δ|−1

∫
Δ
bkbl dV . Note that (2) is only a number; therefore, it does not pro-

vide any directional information. To recover this information, we split the
error into nd pieces associated with edges of Δ:

‖e2‖L2(Δ) = |Δ|1/2
nd∑

k=1

αk and
nd∑

k=1

αk = (Bγ,γ)1/2. (3)

Not careful selection of αk may result in loss of directional information. In
the sequel, we motivate the following choice of αk:

αk = |γk| (Bγ, γ)1/2

(
nd∑

k=1

|γk|
)−1

. (4)

We repeat the above derivations for the gradient of the error. The L2-norm
of ∇e2 is given by

‖∇e2‖2L2(Δ) = ‖
nd∑

k=1

γk∇bk‖2L2(Δ) = |Δ|(B̃ γ, γ),
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where B̃ is the nd×nd symmetric positive definite matrix with entries B̃k,l =
|Δ|−1

∫
Δ∇bk·∇bl dV. Again, we split this error (a number) into nd edge-based

error estimates α̃k ≥ 0 such that

‖∇e2‖2L2(Δ) = |Δ|
nd∑

k=1

α̃k and
nd∑

k=1

α̃k = (B̃ γ,γ). (5)

Again, a proper choice of αk is required to preserve directional information
in a final metric. In the sequel, we motivate the following choice of α̃k:

α̃k = |γk| (B̃ γ, γ)

(
nd∑

k=1

|γk|
)−1

. (6)

In both cases, the edges-based errors αk and α̃k are proportional to |γk|
which is the same for all simplexes sharing the edge ek. This observation is a
key to understanding ’smoothness’ of the metric whose element-by-element
construction is based on the following result [1, 4].

Lemma 1. Let αk, k = 1, . . . , nd, be values prescribed to edges of a d-simplex
Δ such that

αk ≥ 0 and
nd∑

k=1

αk > 0.

Then, there exists a constant tensor metric MΔ such that

(
d!

(d+ 1)(d+ 2)

)1/d

|Δ|2/d
MΔ
≤

nd∑

k=1

αk ≤ |∂Δ|2MΔ
. (7)

The proof [1, 4] of Lemma 1 provides the constructive way to define the
metric MΔ. Due to its importance, we present a shortened proof here.

Proof. Let us define the quadratic function

v2 = −1
2

nd∑

k=1

αkbk.

The trace of v2 on ek is a quadratic function w2 vanishing at endpoints vi, vj

of ek with an extremum at ck. Therefore, w′2(ck) = 0 and ∇v2(ck) · ek = 0.
Let H be the Hessian of v2. Applying the multi-point Taylor formula [9, 10]
for v2 at endpoints vi and vj of ek, we get

0 = v2(vi) = v2(ck)− 1
2
∇v2(ck) · ek +

1
8
(H ek, ek), (8)

0 = v2(vj) = v2(ck) +
1
2
∇v2(ck) · ek +

1
8
(H ek, ek).
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Thus,
(H ek, ek) = αk.

The Hessian H may be indefinite and hence cannot be used to define the
metric MΔ. In order to make it positive semidefinite, we take its spectral
module:

|H| = WT |Λ|W,
where H = WTΛW is the spectral decomposition of the symmetric matrix
H.

If detH �= 0, we set MΔ = |H|. The upper bound follows from

|∂Δ|2|H| =
(

nd∑

k=1

(|H|ek, ek)1/2

)2

≥
nd∑

k=1

(|H|ek, ek) ≥
nd∑

k=1

|(H ek, ek)| =
nd∑

k=1

αk.

To estimate the lower bound, we use formula for the Cayley-Menger deter-
minant generalized to the case H �= I (for its proof we refer to [1]):

det(H) |Δ|2 =
(−1)d−1

2d(d!)2
det(K(H)), (9)

where

K(H) =

⎛

⎜
⎜
⎜
⎝

(Hv11,v11) · · · (Hv1d1 ,v1d1) 1
...

. . .
...

...
(Hvd11,vd11) · · · (Hvd1d1 ,vd1d1) 1

1 · · · 1 0

⎞

⎟
⎟
⎟
⎠

(10)

and vij ≡ vi − vj . Therefore,

|Δ|2|H| = det(|H|) |Δ|2 =
(−1)d−1

2d(d!)2
det(K(|H|))

≤ 1
2d(d!)2

sup
α∈�nd

|detK(H)|
max

1≤k≤nd

αd
k

(
nd∑

k=1

αk

)d

.
(11)

For a square matrix K(H) with elements ki,j , it holds

|det(K(H))| ≤ |
∑

σ

d+2∏

i=1

ki,σi | ≤ (d+ 2)! max
σ
|
d+2∏

i=1

ki,σi |,

where the summation is performed over all possible permutations σ of matrix
rows and columns. Since ki,j = (H ek, ek) = αk, 1 ≤ i < j ≤ d1, from (10) we
derive that det(K(H)) is a homogeneous polynomial of degree d of αk and

sup
α∈�nd

|detK(H)|
max

1≤k≤nd

αd
k

≤ (d+ 2)! sup
α∈�nd

max
1≤k≤nd

αd
k

max
1≤k≤nd

αd
k

≤ (d+ 2)! .
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Therefore, we conclude from (11) that

|Δ|2|H| ≤
1
2d

(d+ 1)(d+ 2)
d!

(
nd∑

k=1

αk

)d

which implies the lower bound in (7).
If det(H) = 0, the Hessian H cannot be used to generate a metric. In this

case, we modify αk to get a new quadratic function v2 with a non-degenerate
Hessian such that (7) is still satisfied. For the sake of simplicity, we restrict
ourselves to the case 0 ≤ α1 ≤ α2 ≤ · · · ≤ αnd

and αnd
�= 0. The modified

edge data are

α̃k = αk, k = 1, . . . , nd − 1, α̃nd
= (1 + δ)αnd

,

where δ ∈]0, 1].

Let ṽ2(δ) = − 1
2

nd∑

k=1

α̃kbk be the modified quadratic function and H̃(δ) be its

Hessian. Formulas (9) and (10) imply that p(δ) ≡ det(H̃(δ)) is a polynomial
of degree two. Since p(0) = det(H) = 0, there exists δ0 ∈]0, 1] such that
det(H̃(δ0)) �= 0. We set MΔ = |H̃(δ0)| and check that

nd∑

k=1

αk ≤
nd∑

k=1

α̃k ≤
nd∑

k=1

(|H̃(δ0)|ek, ek) ≤
(

nd∑

k=1

(|H̃(δ0)|ek, ek)1/2

)2

= |∂Δ|2MΔ

and
nd∑

k=1

αk ≥ 1
2

nd∑

k=1

α̃k ≥
(

(d+ 1)(d+ 2)
d!

)− 1
d

|Δ| 2dMΔ
.

This proves the assertion of the lemma. �

Using Lemma 1 and norm definition (3), we build the auxiliary metric MΔ

for error e2. Similarly, using Lemma 1 and norm definition (5), we build
the auxiliary metric M̃Δ for ∇e2. These metrics do not provide a geometric
representation of the error since the error estimates involve also the volume
of simplex in the Cartesian metric. This mismatch is fixed in the following
section.

2.2 Metrics for the Lp-norm of Error and Its Gradient

In this section, we consider Lp-norms, p ≥ 1, of the errors as well as Lp-quasi-
norms, 0 < p < 1. As described in [18, 1, 4], as well as in [14], the metrics
controlling various Lp-norms differ by a scaling factor. Let

MΔ,p = (det(MΔ))−1/(d+2p)
MΔ and M̃Δ,p = (det(M̃Δ))−1/(d+p)M̃Δ.
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The following estimates are proved in [18, 1, 4].

Lemma 2. Let MΔ,p and M̃Δ,p be the constant tensor metrics defined above.
Then,

cp|Δ|2/d+1/p
MΔ,p

≤ ‖e2‖Lp(Δ) ≤ Cp |Δ|1/p
MΔ,p

|∂Δ|2MΔ,p
(12)

and
c̃p|Δ|1/d+1/p

M̃Δ,p

≤ ‖∇e2‖Lp(Δ) ≤ C̃p |Δ|1/p

M̃Δ,p

|∂Δ|
M̃Δ,p

, (13)

where constants cp, Cp, c̃p, C̃p depend only on d and p.

For brevity, we confine ourselves to the case p =∞. In this case, the constants
in Lemma 2 depend only on d. Moreover, the metrics generated by Lemma 1
are optimal, i.e. MΔ,∞ = MΔ and M̃Δ,∞ = M̃Δ.

2.3 Extension to General Functions

For a given continuous function u, we use the computable error e2 to estimate
the true error e:

e = u− I1,Δu.

Let F be the space of symmetric d × d matrices and |H| be the spectral
module of H ∈ F . We introduce the following notations:

|‖ek|‖2|H| = max
x∈Δ

(|H(x)| ek, ek) and |‖∂Δ|‖2|H| =
nd∑

k=1

|‖ek|‖2|H|.

The following result is proved in [1, 4].

Lemma 3. Let u ∈ C2(Δ̄). Then,

d+ 1
2d
‖e2‖L∞(Δ) ≤ ‖e‖L∞(Δ) ≤ ‖e2‖L∞(Δ) +

1
4

inf
F∈F
|‖∂Δ|‖2|H−F|.

and

‖∇e2‖L∞(Δ) − osc(H, Δ) ≤ ‖∇e‖L∞(Δ) ≤ ‖∇e2‖L∞(Δ) + osc(H, Δ), (14)

where the oscillation term is

osc(H, Δ) = Cosc
|∂Δ|d−1

|Δ| inf
F∈F
|‖∂Δ|‖2|H−F|

and Cosc depends only on d.

The oscillation terms are conventional in the contemporary error analysis.
Their value depend on the simplex and particular features of the function.
For smooth solutions and shape-regular simplexes, the oscillation terms are
much smaller than the error value.
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2.4 On Selection of αk

Let H(u2) be definite. The derivation of metric MΔ suggests a simple moti-
vation for the choices (4) and (6). Since the bubble function bk is non-zero
only on one edge, we get

|(MΔek, ek)| = −1
2
αk(H(bk)ek, ek).

The last term is the second derivative in direction ek. The inner product is
a constant independent of the edge length and shape of the simplex. The
definition of γk in (1) implies that the maximum norm of error on edge ek is
simply |γk|/4. Using this, we get

|(MΔek, ek)| = 4
αk

|γk| ‖e2‖L∞(ek).

Let us consider a mesh that is uniform in metric MΔ. For such a mesh, we
immediately get the following equalities:

α1

|γ1| ‖e2‖L∞(e1) =
α2

|γ2| ‖e2‖L∞(e2) = · · · = αnd

|γnd
| ‖e2‖L∞(end

).

Thus, the optimal mesh equidistributes ‖e2‖L∞(ek) over all edges of each
simplex Δ. It explains our choice for (4). Similar arguments are used to
motivate the choice (6).

The choice (4) has another advantage. In spite of the local metric con-
struction, we have approximate equality of edge length measured in different
metrics MΔ coming from simplexes Δ sharing the edge. In other words, the
recovered cell-based metrics are globally consistent. This results is verified
with numerical experiments in Section 4.1.

2.5 Error Estimates as Functions of Nh

The error equidistribution principle suggests to build meshes that are quasi-
uniform in metric M, for the interpolation error, or in metric M̃, for the
gradient of the interpolation error. Let Ωh and Ω̃h be simplicial meshes with
Nh cells that balance the volume and perimeter of cells:

N−1
h |Ω|Mp � |Δ|MΔ,p � |∂Δ|dMΔ,p

∀Δ ∈ Ωh

and
N−1

h |Ω|M̃p
� |Δ|

M̃Δ,p
� |∂Δ|d

M̃Δ,p
∀Δ ∈ Ω̃h,

where a � b means that c a ≤ b ≤ C a with constants depending only on d
and p. On such meshes, the following error estimates are held:

‖e‖Lp(Ω) =

(
∑

Δ∈Ωh

‖e‖pLp(Δ)

) 1
p

�
(
∑

Δ∈Ωh

|Δ|1+
2p
d

MΔ,p

) 1
p

� |Ω|
1
p + 2

d

Mp
N
− 2

d

h
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and

‖∇e‖Lp(Ω) =

⎛

⎝
∑

Δ∈Ω̃h

‖∇e‖pLp(Δ)

⎞

⎠

1
p

�

⎛

⎝
∑

Δ∈Ω̃h

|Δ|1+
p
d

M̃Δ,p

⎞

⎠

1
p

� |Ω|
1
p + 1

d

M̃p

N
− 1

d

h .

Thus, the Mp (resp., M̃p)-quasi-uniform meshes provide asymptotically op-
timal rate for reduction of the interpolation error (resp., the gradient of the
error).

3 Mesh Adaptation Algorithm

To build a continuous metric from a piecewise constant metric, we employ
the method of shifts. For every node ai in Ωh, we define the superelement σi

as the union of all d-simplices sharing ai. Then, to every node ai, we assign
the metric with the largest determinant among all metrics associated with
the superelement σi.

We use Algorithm 1 to build an adaptive mesh minimizing the Lp-norm
of error or its gradient.

Algorithm 1. Adaptive mesh generation

1: Generate an initial mesh Ωh, compute a piecewise constant metric Mp, and
apply the method of shifts to get a continuous metric still denoted by Mp.

2: loop
3: Generate a Mp-quasi-uniform mesh Ωh.
4: Recompute the metric Mp.
5: If Ωh is Mp-quasi-uniform, then exit the loop.
6: end loop

To generate a M-quasi-uniform mesh, we use a sequence of local mesh
modifications [2, 7, 17] that gradually increase the measure of mesh quasi-
uniformity. The local modifications of mesh topology include edge swapping,
node relocation, insertion and deletion. These operations are implemented in
package Ani2D (sourceforge.net/projects/ani2d).

4 Numerical Results

4.1 Interpolation Problems

In this section, we demonstrate with numerical experiments that the recov-
ered piecewise-constant metric is sufficiently ’smooth’ and reflects anisotropic
features of the interpolated function. Let E0 be the set of interior mesh edges.
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In the two dimensional case, we define the measure of metric discontinuity
as follows:

V (M) =
1

N(E0)

∑

e∈E0

Ve(M), Ve(M) =
∣
∣
∣
∣
|‖e|‖MΔ − |‖e|‖MΔ′

|‖e|‖MΔ + |‖e|‖MΔ′

∣
∣
∣
∣ ,

where N(E0) is the number of interior edges and MΔ, MΔ′ are two triangles
with the common edge e. Note that V (M) is zero for a continuous metric. For
a sequence of refined shape-regular meshes and corresponding piecewise con-
stant metrics approximating a continuous metric, V (M) is converging to zero.

In the first experiment, we calculate V (M) on a sequence of quasi-optimal
meshes built with Algorithm 1. In the unit square Ω = [0, 1]2, we consider
the analytical function proposed in [11]:

u(x, y) =
(x− 0.5)2 − (

√
10y + 0.2)2

((x− 0.5)2 + (
√

10y + 0.2)2)2
.

The function has an anisotropic singularity at point (0.5, −0.2/
√

10) located
outside the computational domain but close to its boundary. Table 1 shows
that V (M) is roughly 0.1, i.e. the length of edge e varies roughly 20% when
measured in metrics MΔ and MΔ′ associated with this edge. Lack of conver-
gence of V (M) to 0 as Nh →∞ may be related to the fact that the mesh is
only quasi-uniform in metric M.

The L∞-norm of the interpolation error is proportional to N−1
h , while

the L∞-norm of its gradient is proportional to N−0.5
h . Note that the meshes

minimizing the interpolation error and its gradient are different (see Fig. 1).
The figure indicates sharper features of the gradient of the error, which is the
expected result.

In the second experiment, we consider the Texas-shape domain inscribed
in [− 3

2 ; 3
2 ] and shown in Fig 2. We consider the analytical function

u(x, y) = (x2y + y3)/163 + tanh(2(sin(6y)− 3x)(sin(6x)− 3y)) (15)

that has a spider-like distinguished feature highlighted by the mesh anisotropy.
The results of numerical experiments collected in Table 2 confirm conclusions

Table 1. Experiment 1: convergence of the interpolation error and its gradient

Interpolation error Gradient of interpolation error

Nh ‖e‖L∞(Ω) V (M) ‖∇e‖L∞(Ω) V (M)

1000 8.29e-2 0.122 5.41e+1 0.119

4000 2.36e-2 0.114 2.70e+1 0.097

16000 6.59e-3 0.115 1.42e+1 0.096

64000 1.83e-3 0.113 7.71e+0 0.099

rate 0.92 0.48
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Fig. 1. Experiment 1: The adaptive meshes with roughly 2000 triangles minimizing
the maximum norm of the interpolation error (left) and its gradient (right).

Table 2. Experiment 2: convergence of the interpolation error and its gradient.

Interpolation error Gradient of interpolation error

Nh ‖e‖L∞(Ω) V (M) ‖∇e‖L∞(Ω) V (M)

1000 1.03e-1 0.197 1.75e-0 0.220

4000 2.09e-2 0.122 7.72e-1 0.146

16000 5.38e-3 0.098 3.76e-1 0.104

64000 1.39e-3 0.090 1.93e-1 0.090

rate 1.03 0.53

that we made in the previous experiment. We observe the first-order conver-
gence rate for the maximum norm of the error and the half-order convergence
rate for the gradient of this error. The measure of metric discontinuity V (M)
is slowly decreasing; however, its convergence to zero is questionable. Fig. 2
shows that the meshes minimizing the interpolation error and its gradient are
different, which is the expected result.

Actual numerical values of V (M) cause slight but yet unpleasant instabil-
ities in the adaptive process. We found numerically that the adaptation is
more robust for a continuous tensor metric that provides faster convergence
and results in a smoother mesh. That is why we use the method of shifts to
generate of a continuous metric.

4.2 Applications to PDEs

In this section, we apply the developed methodology to adaptive solution of
finite element problems. We consider problems with isotropic and anisotropic
solutions.
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Fig. 2. Experiment 2: The adaptive meshes with roughly 2000 triangles minimizing
the maximum norm of the interpolation error (left) and its gradient (right)

Hierarchical error estimates

We describe briefly a discretization error estimator based on enrichment of the
linear finite element space with a space of piecewise quadratic finite element
functions (bubbles) associated with edges of Ωh [12]. The extended finite
element problem results in a system of algebraic equations:

[
ALL ALQ

AQL AQQ

] [
uL

uQ

]

=
[
fL

fQ

]

,

where subscripts L and Q stand for linear and quadratic terms.
Let u∗L be an approximate solution of the original P1 finite element problem

ALLu
∗
L = fL. We define the deviation dL = uL − u∗L and the discretization

error dQ = uQ. They satisfy
[
ALL ALQ

AQL AQQ

] [
dL

dQ

]

=
[
rL

rQ

]

, (16)

with
rL = fL −ALLu

∗
L and rQ = fQ −AQLu

∗
L.

The exact solution of (16) is too expensive. In order to estimate the dis-
cretization error dQ, equation (16) is replaced with a simpler equation

[
ALL 0

0 AQQ

] [
d̃L

d̃Q

]

=
[
rL

rQ

]

. (17)

Using a local finite element analysis, one can show that the diagonal matrix
in (17) is spectrally equivalent to the matrix in (16). Therefore, the energy
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norm of the discretization error dQ can be estimated using the energy norm of
d̃Q. The matrix AQQ is well-conditioned for shape-regular meshes; therefore,
the vector d̃Q can be efficiently calculated with a simple conjugate gradient
method.

The entry of vector d̃Q associated with an edge ek of a simplex Δ plays
the role of interpolation error γk in formula (1). Thus, we can use the above
methodology to generate quasi-optimal meshes.

Problem with a point singularity

Let Ω be a unit disk with a radial cut. We consider the classical crack problem
with the exact solution

u(r, θ) = r1/4 sin(θ/4),

where (r, θ) are polar coordinates, r > 0 and θ ∈ [0, 2π). The crack line S is
defined by points (r, 0). We consider the following boundary value problem:

Δu = 0 in Ω \ S,
u = sin

θ

4
on ∂Ω \ S,

u = 0 on S+,
∂u

∂n
= 0 on S−,

(18)

where S+ and S− denote the crack line when it is approached from regions
θ → +0 and θ → 2π, respectively.

Table 3 demonstrates the half-order convergence of the gradient of the
discretization error. A similar convergence is observed for the gradient of
a finite element function d̃h corresponding to vector d̃Q, which confirms the
theory of hierarchical error estimates on shape-regular meshes. The difference
in error values indicates that the constant of spectral equivalence of energy
norms of dQ and d̃Q is approximately 6.

This theory does not guarantee a similar connection between L2-norms of
these errors, which is also clear from the second and third columns in Table 3.
For this norm, we have to use the finite element function dh corresponding
to dQ; however, calculation of this function is rather expensive.

Problem with anisotropic singularities

Let Ω be the unit square Ω = (0, 1)2. We consider the following boundary
value problem:

−div (K gradu) = 1 in Ω,
u = 0 on ∂Ω,

where

K(x, y) = R
T
θ

[
1 0
0 103

]

Rθ, θ = 250 (x+ y),

and Rθ is the rotation matrix by angle θ. The analytical solution is unknown
and the discretization error cannot be computed. However, some features
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Table 3. Experiment 3: convergence of the discretization error and its gradient

Discretization error Gradient of discretization error

Nh ‖d̃h‖L2(Ω) ‖e‖L2(Ω) ‖∇d̃h‖L2(Ω) ‖∇e‖L2(Ω)

1000 1.10e-3 7.44e-3 1.94e-2 1.17e-1

4000 2.84e-4 3.10e-3 1.01e-2 6.08e-2

16000 7.04e-5 1.30e-3 5.35e-3 2.96e-2

64000 1.76e-5 9.48e-4 2.62e-3 1.59e-2

rate 1.00 0.51 0.48 0.48

Fig. 3. Experiment 3: The adaptive meshes with roughly 2000 triangles minimizing
the L2-norm of the hierarchical error estimator (left) and its gradient (right)

Table 4. Experiment 4: convergence of the hierarchical error estimators d̃h, dh and
their gradients

Discretization error Gradient of discretization error

Nh ‖d̃h‖L2(Ω) ‖dh‖L2(Ω) ‖∇d̃h‖L2(Ω) ‖∇dh‖L2(Ω)

1000 4.98e-6 5.55e-3 1.88e-4 6.52e-4

4000 1.48e-6 3.02e-3 1.16e-4 3.52e-4

16000 3.88e-7 1.82e-3 5.94e-5 1.67e-4

64000 9.87e-8 1.03e-3 2.94e-5 9.07e-5

rate 0.95 0.40 0.45 0.48

of the solution can be extracted from the mesh structure shown in Fig. 4.
Table 4 shows that the gradient of hierarchical edge-based a posteriori er-
ror estimator, ‖∇d̃h‖L2(Ω), correlates with ‖∇dh‖L2(Ω) even on anisotropic
meshes. Similarly to the previous experiment, the L2-norms of these estima-
tors exhibit different behavior.
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Fig. 4. Experiment 4: The adaptive meshes with roughly 2000 triangles minimizing
the L2-norm of the hierarchical error estimator d̃h (left) and its gradient (right)

5 Conclusion

We presented a new technology for generating meshes minimizing the in-
terpolation and discretization errors or their gradients. The cornerstone of
this methodology is construction of a space metric from edge-based error
estimates. For the interpolation error, these estimates were computed explic-
itly. For the discretizations error, we used the hierarchical error estimators
based on enrichment of the linear finite element space with quadratic bubble
functions associated with mesh edges. We proved and verified with numeri-
cal experiments, that for a mesh with Nh triangles, the error is proportional
to N−1

h and the gradient of this error is proportional to N
−1/2
h , which are

optimal asymptotics.
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