
Application of Smooth Mixed Meshes Based on Metric 
Identity in Aerospace Analysis and Design 

Jochen Wild 

DLR, Institute for Aerodynamics and Flow Technology, Lilienthalplatz 7,  
D-38108 Braunschweig, Germany 

Abstract. An applicable method for generating mixed meshes around simple and medium 
complex configurations is presented. Core part of the mesh generation strategy is a smooth 
meshing of the boundary layer region by structured hexahedrons and prisms applying smooth-
ing based on solving face-weighted Laplacian equations. A preconditioning of the point set for 
triangulation by shear and edge-weighted average affine invariant transformation is proposed to 
stabilize end accelerate constrained Delaunay volume triangulation. An examples of the mesh 
generation strategy is shown for a generic transport aircraft in high-lift configuration. 

1   Introduction 

Numerical design optimization is an emerging design tool for real world applications 
in aerodynamics. The state of the art of 3D Navier Stokes solvers already show a 
good predictive capability even for more complex 3D aircraft configurations as shown 
for example in [1][2][3]. 

Optimization based on high-level computational fluid dynamics (CFD) tools using 
Reynolds-averaged Navier-Stokes equations (RANS) in the meantime is widely used 
for 2D airfoil design. Today the step towards 3D wing optimization is to be done.  
Although already practical for simple configurations like wing-body, the effort of cal-
culating more complex configurations is still too high for application within an opti-
mization environment. The main limiting factor hereby is the number of grid points 
necessary for accurate flow simulation using hybrid unstructured grids consisting of 
tetrahedral and prismatic elements. E.g. for the configuration used in the Drag Predic-
tion Workshop [1] the medium hybrid unstructured grid used giving promising results 
contained approximately 12 million grid points. This resulted in a computational ef-
fort of 100 hours CPU-time on a NEC SX5 high performance computer for a given 
flow condition. Even the grid generation for this case took about 1 day turn-around 
time. This computational effort is clearly unacceptable in terms of an optimization 
process, where multiple configurations have to be evaluated. As a rough estimate, 
when assuming 200 evaluations for a converged optimization, this will lead linearly to 
200 days grid generation and 800 CPU-days flow calculation. Even assuming a paral-
lel processing of the flow on 4 processors will result in more than 1 year turn-around 
time for the optimization.  

Regarding applications in high-lift optimization the situation worsens. Today a hy-
brid unstructured mesh for a transport aircraft configuration contains about 20 Million 
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grid points. A mesh is usually generated over night using an advancing front method 
for high quality meshes. Even with the new computer technology providing massively 
parallel LINUX cluster systems, 1 to 5 days are needed for a fully converged flow 
simulation. Using such meshes would require 40 to 1000 days of computing, depend-
ing on the optimization algorithm. 

The big shortcoming of hybrid unstructured grids is the low anisotropy of surface 
triangles resulting in a large number of grid points, which is agglomerated through the 
number of prismatic layers for the boundary layer resolution. This low anisotropy 
leads to an unnecessary high resolution in spanwise direction, especially for high as-
pect ratio wings. Recovering the experience with the application of structured grids, it 
is known, that the aspect ratios of the surface quadrilaterals can be much higher, addi-
tionally resulting in well aligned body conforming meshes. The shortcoming of an 
overall use of structured meshes is the increasing complexity of the targeted configu-
rations, where structured meshing reaches its limitations, mainly due to grid topology 
issues. 

In the past the author et al. [4] reported a new strategy to generate mixed meshes 
containing smooth structured hexahedral and prismatic elements for the resolution of 
boundary layers by a parabolic marching routine based on the face-weighted Laplace 
equation. In the following the method is briefly described. New extensions are pre-
sented concerning the interface to the field triangulation and a preconditioning 
method for the Delaunay field triangulation. These extensions have been crucial in 
order to accelerate and stabilize the process. Finally the method is applied to a high-
lift wing-body configuration including the use within an optimization environment. 

2   Mixed Mesh Generation Methods 

As long as the variations of the field variables to be resolved by the numerical solu-
tion to a set of differential equations are of the same order of magnitude in all direc-
tions the use of hybrid unstructured meshes is appropriate and furthermore avoids the 
manual labor of subdividing the field into blocks usually needed for structured 
meshes. On the other hand an adequate resolution of very thin layers with large nor-
mal gradients requires a layered structure of the mesh. Such meshes may be generated 
by marching away from a fixed mesh face, say the body surface in case of a boundary 
layer, or away from a floating mesh face in case of a wake. When the mesh on the ini-
tial face is unstructured, the resulting three-dimensional mesh extruded from it con-
sists of prisms of triangular cross-sections and is called hybrid. A structured mesh on 
the initial face, of course, leads to a fully structured three-dimensional mesh. 

Structured meshes are easily clustered differently in all grid line directions. Since 
they need far less points for directional clustering than hybrid unstructured meshes, 
they add efficiency to the numerical solution procedure of the differential equations. 
On the other hand their generation suffers from the amount of work to be invested to 
achieve the blocking for complex geometries. To ease the situation we combine both 
kinds of surface meshes starting the three-dimensional marching generation of mixed 
meshes simultaneously from neighboring patches with structured and unstructured 
surface meshes. 
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For the generation of these mixed meshes we integrated surface and volume trian-
gulation methods into the DLR structured mesh generator MegaCads [5]. We used 
available methods, in fact the TRIANGLE code of Shewchuk [6] and the DE-
LAUNDO code of Müller et al. [7] for surface mesh generation in parametric space. 
For Volume triangulation we chose the NETGEN code of Schöberl [8]. 

2.1   Structured Hexahedral Boundary Layer Meshes 

Like in most structured mesh generation methods the 3D structured mesh blocks are 
initially generated by an algebraic interpolation method. Depending on the block 
boundaries we use either tri-linear or transfinite interpolation [9]. Since our objective 
is to generate smooth meshes we additionally apply smoothing with the use of elliptic 
equations. In the work of Niederdrenk [10] beginning with the metric identity in its 
differential conservative form the well known Poisson equations for structured 
meshes were derived including a precise analytical definition of all 9 control func-
tions. The metric identity in its differential form simply states that the sum over the 
face normal vectors in the grid conforming +ξ and -ξ direction together with the sum 
over the remaining face normal vectors in η- and ζ-directions must vanish. A decom-
position using the face normal vectors leads to a system of differential equations that 
can be separated into the face weighted Laplace equation in computational space and 
the so-called control functions 

2
2 1 31 21
1 2

1

2
2 2 32 1 2
2 2

2

2
2 3 1 3 2 3
3 2

3

S SS SV S
S r r

V VS V

S SS SV S
S r r

V VS V

S S S SV S
S r r

V VS V

ξξ ξ
η ζξ

ηη η
ξ ζη

ζζ ζ
ξ µ ζ

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞⎪ ⎪+ ++ +⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞⎪ ⎪+ ++ +⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ + ++ ⎢ ⎥⎜ ⎟⎨ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦⎩

1 2 2 3 3 12 2 2 0.S S r S S r S S rξη ηζ ζξ

⎫⎪ +⎬
⎪ ⎪⎭

+ + =

 (1) 

with the Si being the face normal vectors 

1 2 1, ,S r r S r r S r rη ζ ζ ξ ξ η= × = × = ×  (2) 

Prescribing the control functions, the metric identity becomes a mesh generating 
equation. This is used either for elliptic smoothing or for an advancing layer method 
through these differential equations parabolized with respect to the marching direction 
and subsequently discretized [11]. By this the generation of the initial algebraic mesh 
is not necessary.  

2.2   Smooth Prismatic Boundary Layer Meshes 

For unstructured meshes there exists no globally underlying computational space. 
Therefore, starting from the same basic principle we begin with the metric identity in 
its discrete form to directly derive from it the set of algebraic equations to be solved 
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numerically. The derivation of the equa-
tions has been shown in a previous paper 
of the author et al. [4]. Proceeding as in 
the structured case we decomposed the 
face normal vectors into the line vector di-
rections and rewrote the metric identity in 
terms of line vectors with coefficients 
consisting of scalar products of face vec-
tors. Compared with the expanded differ-
ential form of the identity for structured 
meshes, which split into the Laplacian 
terms and the control functions, the corre-
sponding decomposition of the discrete 
form of the identity yields nothing similar, 
still leaving the problem to isolate the 
Laplacian smoothing part from the pure 
identity. The problem area is, of course, confined to the unstructured mesh in the body 
conforming surfaces. Decomposing the discrete identity for planar surfaces results in 
the definition of suited averages, such that the discrete Laplace equation is repre-
sented. To verify this we compared them to the discretized form of the Laplace equa-
tion for structured quadrangles and hexagonal cells [12]. So our averaging procedure 
is not proven but only believed to hold for any collection of triangles forming an N-
cornered cell. 

Finally we solve equation (3) for the unknown central point r0 on level m: 
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where ∆rn,m is defined as the midpoint between two adjacent corner points  

( ), 1,, 0,, ,with 1 2 n m n mn m mn m n m rc rcr rm r rm ++∆ = − = . (4) 

and the face and edge vectors according to Fig. 1. 

2.3   Intermediate Layer to Connect to Volume Triangulation 

In order to be able to triangulate the volume the outer hull of the hexahedrons of the 
structured mesh must be converted to a triangulation. First attempts to generate py-
ramidal elements on top of the hexahedrons led to intersections in concave regions 
that were only removed by using very flat pyramidal cells. 

The way chosen now is a division of the outermost hexahedrons into pyramids and 
tetrahedrons using the center point. By this method the interface surface grid formed 
by the outer layer is as smooth as the hexahedral layer itself. Fig. 2 shows the  
 

Q

P

n

m + 1

m,  unknown point r
o , m

t

∆ t ∆s∆r

O
m - 1

 

Fig. 1. Discrete triangular prism 
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Fig. 2. Division of outermost structured hexahedrons into pyramids and tetrahedrons to achieve 
a smooth interface surface for tetrahedral mesh generation 

sequence of dividing the outer layer first into pyramids, afterwards into tetrahedrons 
to form a smooth outer hull for the volume triangulation. 

2.4   Preconditioned Delaunay Meshing of Tetrahedrons 

For the meshing of the outer field with tetrahedrons we use the NETGEN code [8], 
which is a constrained Delaunay method with an advancing front for boundary recov-
ery. One major difficulty of using structured hexahedral cells in unstructured meshes 
is the interface to the outer tetrahedral cells, especially if Delaunay triangulation is 
applied. The Delaunay criterion drives the mesh towards isotropic tetrahedrons, and 
by this the height of the triangle interfacing to the hexahedrons is much larger than the 
height of the hexahedrons. This normally results in a jump of volume size and is 
therefore unfavorable for the flow simulation. Another difficulty arises due to the fact 
that although the interface grids at the outer hexahedral layer looks smooth and well 
aligned, it does not fulfill the Delaunay criterion. This usually degrades the perform-
ance of the triangulation algorithm. 

In order to be able to generate a suited tetrahedral mesh we use a geometric pre-
conditioning of the surface mesh for the Delaunay algorithm. We call it precondition-
ing since it is a global transformation of the initial boundary triangulation in order to 
make it more suitable for Delaunay meshing. The volume triangulation is applied on 
the modified point set without major changes. 

A first transformation is a shear transformation, which is important for the applica-
tion to swept high aspect ratio wings of transport aircraft.  

1
1

−=P S P  (5) 
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where P is the set of boundary points and S is the shear transformation for the wing 
sweep. Assuming the spanwise coordinate to be y the shear transformation is given by 
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where ϕ  is the wing sweep angle. This transformation shears the surface elements 
and results in an intermediate mesh that is more Delaunay than the original one. 

The second item to deal with is the high aspect ratio of the surface triangles. At this 
time anisotropic Delaunay meshing is not available. We therefore apply an edge-
weighted mean affine invariant transformation. For each surface triangle an affine in-
variant transformation 

1−=i ip A p%  (7) 
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Fig. 3. Meshing box around outboard high-lift wing: top left) original geometry; top right) 
shear transformation applied; bottom) shear and edge-weighted affine invariant transformation 
applied 
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is defined by a matrix A reflecting the anisotropy of the surface element  
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where n is the number of points of the surface element and xc is the center point. In 
fact the affine invariant is the quadratic form of an ellipsoid passing through the 
points of the surface element. By this the matrix reflects the size and stretching of the 
element. We now calculate a mean edge-weighted average of these matrices of all sur-
face elements. 
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The advantage of the edge weighting is that the large regular triangles at the outer 
domain boundary don’t mask the high anisotropy of the small surface elements at the 
interface. The final point array used for the Delaunay triangulation is now 

1 1− −=P A S P  (10) 

In Fig. 3 the meshing box around the outboard portion of a transport aircraft high-lift 
wing is shown for all steps of the preconditioning. The points-of-view are identical  
excluding a necessary swapping of the axes due to the affine invariant transformation 
where the sorting of the axes is according to the eigenvalues. 

3   Application for a Generic Transport Aircraft in High-Lift 
Configuration 

For demonstration of the mixed mesh approach using the described parabolic march-
ing algorithms the meshing of a generic transport aircraft wing-body configuration 
with deployed high-lift devices is shown. This type of configuration is often too com-
plicated for structured meshing. Especially the geometric details at the device ends 
and their cut-out of the main wing are very hard to be meshed with the block struc-
tured approach. On the other hand purely hybrid unstructured meshes lead to point 
numbers of 20 million grid points or more. For design applications these grids are 
therefore not suitable.  

With the mesh generation strategy described in this work we are able to generate a 
mesh for a generic transport aircraft in high-lift configuration that contains only about 
2 Mio. grid points. The wakes of all three wing elements are resolved by aligned 
hexahedral elements up to one half flap chord behind the flap trailing edge. Due to the 
parametric grid generation process, the mesh generation is applicable to geometric 
changes within an optimization context. The grid generation process takes about 50 
minutes from scratch. Compared to the time needed to generate a classic hybrid un-
structured mesh of at least 6-8 hours, there remains a significant acceleration. This 
time frame is acceptable for the application within an optimization framework. 
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Fig. 4. View on boundary layer grid of generic transport aircraft in high-lift configuration, wing 
meshed with structured hexahedrons, wing tip and fuselage meshed with prisms 

 

Fig. 5. Zoom on wing boundary layer grid of the generic transport aircraft in high-lift configu-
ration with structured cells are covering boundary layers and wakes of all three wing elements 
and the wing tip resolved by smooth prismatic mesh. 

Fig. 4 shows an overview of the boundary layer grid. Nearly the complete wing is 
meshed with structured type meshes. Prismatic elements are applied around the fuse-
lage, on the wing tip and at the device ends. Additionally the wakes of all 3 wing  
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Fig. 6. Zoom on junction of main wing and outboard flap end of the generic transport aircraft 
showing smooth transition from hexahedral to prismatic elements and the structured wake grids 

 

Fig. 7. Comparison of flow field around high-lift configuration at AoA 10°: left) mixed mesh; 
right) hybrid mesh. Contours are shown for Mach number in field and pressure coefficient on 
surface mesh. Solid line indicates boundary of area resolved with structured elements. 

elements are captured by structured wake grids (Fig. 5). This is very relevant for 
high-lift flows, since the mixing of the shear layers has a big influence on the aerody-
namic performance. Fig. 6 shows a zoom on the device ends of the slat and the flap 
together with the wing cut-out in this area. A smooth transition from the structured 
hexahedral to the prismatic elements is observed. 

For this case a comparison to a hybrid unstructured mesh containing approximately 
the same number of points on the surface is done. Due to the missing resolution of the 
wakes the overall point number of 1.5 Mio. is lower than for the mixed mesh. Fig. 7  
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shows a comparison of a cut through the flow field. The contours in the field are the 
local Mach number while the coloring of the surface mesh is made by the pressure 
coefficient. Especially the wakes of the wing elements are much better resolved with 
the mixed mesh.  

For this configuration an aerodynamic optimization the of the positioning of slats 
and flaps has been performed applying the presented meshing algorithms. Within this 
optimization meshes were generated for 151 different configurations, while only in 13 
cases the grid generation process failed. The overall optimization including mesh 
generation and flow simulation on a 96 CPU parallel PC cluster took about 15 days 
turn-around time.  

4   Conclusion 

An applicable method for generating mixed meshes around simple and medium com-
plex configurations has been shown. Core part of the mesh generation strategy is a 
smooth meshing of the boundary layer region by structured hexahedrons and prisms 
applying smoothing based on solving face-weighted Laplacian equations. Special em-
phasis was put on the interface layer and the generation of tetrahedral elements in the 
outer field. A preconditioning of the point set for triangulation by shear and edge-
weighted average affine invariant transformation has been proposed to stabilize end 
accelerate constrained Delaunay volume triangulation. 

An example of the mesh generation strategy is shown for a generic transport air-
craft in high-lift configuration. A superior grid accuracy compared to standard hybrid 
unstructured hybrid meshes with an order of magnitude less points was shown. The 
improved resolution of wake areas due to structured elements has been demonstrated. 
Finally the mesh generation strategy was successfully applied within an optimization 
environment. 
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