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Summary. This paper presents a new method for handling non-conforming hexahedral-
to-hexahedral interfaces. One or both of the adjacent hexahedral meshes are locally mod-
ified to create a one-to-one mapping between between the mesh nodes and quadrilaterals
at the interface allowing a conforming mesh to be created. In the finite element method,
non-conforming interfaces are currently handled using constraint conditions such as gap-
elements, tied contacts, or multi-point constraints. By creating a conforming mesh, the
need for constraint conditions is eliminated resulting in a smoother, more precise nu-
merical solution. The method presented in this paper uses hexahedral dual operations,
including pillowing, sheet extraction, dicing and column collapse operations, to affect the
local mesh modifications. In addition, an extension to pillowing, called sheet inflation,
is introduced to handle the insertion of self-intersecting and self-touching sheets. The
quality of the resultant conforming hexahedral mesh is high and the increase in number
of elements is moderate.

1 Introduction

The finite element method is an indispensable part of the design through analysis
process. Mesh generation is often a key bottleneck preventing broader use of
the finite element method. The method utilized to handle interface conditions
between assembly components can have a dramatic impact on the quality of
the solution. Commonly, two spatially adjacent geometric volumes must behave
as a single component, and under ideal conditions, a conforming mesh will be
created between components. A conforming mesh ensures a smooth and accurate
interpolation of the solution to the governing equations over the interface, and
also improves solution efficiency by minimizing the number of equations that
must be solved. Although conforming meshes are preferable, non-conforming
meshes are regularly encountered for a variety of reasons including:

1. Different engineers created the mesh on the different components.
2. The meshing algorithm used on the model did not honor boundary meshing

constraints [1, 2].
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3. Difficulties in generating the mesh required a different mesh topology on the
interfacing surfaces for the two components. For example, utilizing hexahe-
dral sweeping [3, 4], one interface surface may be required to be a linking-
surface requiring a mapped mesh, while the other interface surface may be
a source surface allowing a paved mesh.

4. The desired density of elements is different in the two components.

The current state of the art is to artificially constrain the non-conforming
meshes with multi-point constraints, tied contacts, or gap elements [5, 6, 7, 8]
to maintain solution continuity across the interface. However, these methods
typically result in solution quality degradation, disjoint solution fields, and/or
adverse effects on solution convergence. Thus, these non-conforming interface
conditions should only be used in non-critical regions of the model. A conforming
interface is preferred, whenever possible.

In this paper, we present a new algorithm, entitled ‘mesh matching’, which
converts non-conforming hexahedral-to-hexahedral interfaces into conforming in-
terfaces. This new method locally modifies the topology of the hexahedral ele-
ments in one or both of the adjacent hexahedral meshes to create a one-to-one
pairing of nodes and quadrilaterals on the interface surfaces so that the meshes
can be merged into a conforming mesh across the interface. As with any mesh
modification procedure, the quality of the modified elements may be reduced
from the initial mesh quality; however, assuming the element quality remains
above prescribed element quality thresholds, the benefits of having a conforming
mesh may compensate for the reduction in element quality.

This paper is organized as follows: Section 2 reviews existing hexahedral mesh
topology and modification theory used during mesh matching. In Section 3 a new
mesh topology operator is defined. In Section 4, the mesh matching algorithm is
presented. In Section 5, two examples of mesh matching are provided. Finally, in
Section 6, we provide some concluding remarks along with some areas of current
and future efforts.

2 Previous Research – The Hexahedral Mesh Dual

The dual of a hexahedral mesh [9, 10] is an alternate representation of the mesh
composed of sheets and columns of hexahedral elements in the interior of the
mesh, and chords and vertices on the boundary of the mesh.

Fig. 1. A hexahedral element has 12 edges organized as 3 sets of 4 parallel edges
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Dual Sheets and Columns

Figure 1 illustrates how the 12 edges on a hexahedral element can be divided into
three sets of four edges. The four edges in each set are topologically parallel to
each other (i.e. do not share any nodes, but have one or more common adjacent
hexahedra). Given one edge, the other three topologically parallel edges in each
adjacent hexahedra can be identified. From each of these edges a similar set of
topologically parallel edges can be recursively gathered from each of the adjacent
hexahedra extending through the mesh. Thus, a dual sheet, Si, can be defined
as a set of topologically parallel edges. Alternatively, Si can also be defined as
the set of hexahedral elements traversed to build this set of edges. Figure 2b
shows a single dual sheet uniquely defined by traversing starting from edge A
in Figure 2a. A dual sheet is self-intersecting if any hexahedron in the sheet has
more than one of its three edge sets in the definition of the sheet (Figure 2c). A
dual sheet is self-touching if two or more edges defining the sheet use the same
mesh node (Figure 9d and Figure 10c).

A hexahedral element contains six quadrilateral faces, grouped into three pairs
of topologically opposite quadrilaterals. From a single quadrilateral, a column
of hexahedra is defined by traversing adjacent hexahedra through their topolog-
ically opposite quadrilaterals. Thus a dual column, Ci, is defined as the set of
topologically opposite quadrilaterals of adjacent hexahedra. Alternatively, Ci is
defined as the set of hexahedral elements traversed to locate this set of quadrilat-
erals. Figure 3b illustrates the dual column defined by quadrilateral face A speci-
fied in Figure 3a. An important link between sheets and columns is that a column
defines the intersection of two sheets (Figure 3c). A column is self-intersecting
if any hexahedron in the column has more than one of its quadrilateral pairs in
the definition of the column (Figure 3d).

Fig. 2. Hexahedral Dual Sheets: (a) A simple mesh with two edges, A and B, identified.
(b) The dual sheet uniquely identified by edge A. (c) A self-intersecting sheet identified
by edge B.

Dual on the Boundary of a Hexahedral Mesh

The boundary of a mesh is the set of quadrilaterals which have exactly one
adjacent hexahedron. These quadrilaterals can be grouped based on their as-
sociated geometric surface. Quadrilateral meshes have a dual representation of
dual chords and vertices. The four edges on a quadrilateral are grouped into two
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Fig. 3. Hexahedral Dual Columns: (a) Hex mesh with highlighted quadrilateral A. (b)
The column of hexahedra defined by quadrilateral A. (c) The sheets which intersect to
form the column in (b). (d) A self-intersecting column.

Fig. 4. Boundary quad meshes and their dual: (a) A hexahedral mesh. (b) One bound-
ary surface mesh. (c) A single dual chord. (d) The complete surface dual.

pairs of topologically opposite edges. A dual chord is uniquely defined starting
from a single edge and traversing adjacent quadrilaterals through opposite edges
(Figure 4). This process is repeated until every edge in the quadrilateral mesh
has been associated with a dual chord. Thus, a dual chord, ci, can be defined as
a set of the topologically opposite edges on a quadrilateral mesh. Alternatively,
ci can also be defined as the quadrilaterals that were traversed to build this
set of edges. Finally, a dual chord ci can also be defined as the collection of line
segments connecting the centroids (dual vertices, vi) of this set of quadrilaterals.
A dual chord is self-intersecting if any quadrilateral in the chord has all four of
its edges in the definition of the chord. Associated with each dual chord, ci, is
the dual sheet, Si, defined by traversing topologically parallel edges from any
edges in ci. Likewise, associated with each dual vertex, vi, is a dual column, Ci,
defined by traversing topologically opposite quadrilaterals from the quadrilateral
associated with vi.

2.1 Dual Topological Operators

The matching procedure described in Section 4 performs a series of topological
operations on hexahedral dual sheets and columns. Sheet extraction [11] removes
a dual sheet by collapsing all edges that define it, reducing it to a continuous set
of quadrilateral faces (Figure 5). Any sheet topology, including self-intersecting
and self-touching sheets, can be extracted. Sheet extraction is not always possible
due to geometric nodal associativity. That is, when collapsing the edges that
define a sheet, the two nodes on each edge are merged. If two edge nodes have
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Fig. 5. Hexahedral sheet extraction: (a) A hexahedral mesh with one dual sheet. (b)
The edges are collapsed to extract the sheet. (c) The sheet is extracted. (d) The sheet
becomes a continuous set of quadrilaterals.

Fig. 6. Pillowing: (a) A hexahedral mesh with a shrink set of five hex elements iden-
tified. (b) A pillow is inserted. (c) The pillow sheet.

Fig. 7. Dicing: (a) A hexahedral mesh with one dual sheet indicated. (b) The sheet is
diced into three sheets.

conflicting geometric associativities, the edge cannot be collapsed. However, the
sheet can be extracted if preceded by a sheet insertion to add sufficient mesh
topology. In addition, low node valency in the region of the sheet extraction can
sometimes lead to doublets [12], resulting in ill-shaped elements with zero or
negative scaled Jacobians [13].

Pillowing [10, 12, 14] is a method of inserting new dual sheets into a mesh. Pil-
lowing is performed by identifying a set of hexahedral elements as the shrink set
(Figure 6a). The hexahedra in the shrink set are separated from the remainder
of the mesh by a ‘shrink’ distance, allowing the placement of a new sheet be-
tween the shrink set and the other hexahedra in the mesh (Figures 6b and 6c).
The new sheet is always non-self-intersecting and non-self-touching. In contrast to
sheet extraction, pillowing is always possible given a well-defined shrink set. Since
its introduction by Mitchell [12], it has been applied in many mesh modification
procedures [10, 15, 16, 17, 18].



472 M.L. Staten, J.F. Shepherd, and K. Shimada

Dicing [19] is another method of inserting dual sheets into a mesh. Dicing is
performed by splitting the edges that define an existing dual sheet. Dicing can
insert multiple sheets at once by splitting each edge multiple times (Figure 7).
The new sheets inserted with dicing are duplicates of the input sheet; if the
input sheet is self-intersecting, the new sheets will also be self-intersecting. The
disadvantage of dicing is that it can only copy existing sheets (i.e., it cannot
create new sheets that did not already exist in the mesh). In addition, dicing
cannot create self-touching sheets.

The column collapse operation is also an important dual operation (Figure 8).
A column is collapsed by merging one pair of opposite nodes of each quadrilateral
defining the column. As described in Section 2, a dual column defines the inter-
section of two dual sheets. This intersection is removed by collapsing the column.
In addition, the paths of the two sheets is altered. Collapsing self-intersecting
columns creates doublets [12] and should be avoided.

Fig. 8. Column collapse: (a) A hexahedral mesh with one dual column indicated.
(b) The sheets that intersect to define the column drawn separate from the mesh. (c)
Opposite nodes are merged to collapse the column. (d) The sheets defining the column
no longer intersect. (e) The entire mesh after the column collapse.

3 Sheet Inflation – Generalized Sheet Insertion

The mesh matching algorithm presented in Section 4 requires the ability to in-
sert any kind of sheet including both self-intersecting and self-touching sheets.
Previous research allows the insertion of sheets through pillowing and dicing.
However, neither pillowing nor dicing can insert self-touching sheets, and pillow-
ing is unable to insert self-intersecting sheets. Dicing can insert self-intersecting
sheets, but only if an existing self-intersecting sheet exists in the correct location
of the mesh. Hence, a sheet insertion operator which inserts both self-intersecting
and self-touching sheets is required.

Sheet inflation can be thought of as the reverse of sheet extraction. In sheet ex-
traction, a dual sheet is reduced to a continuous set of quadrilaterals. This process
can be reversed by inflating the quadrilaterals to re-introduce the extracted sheet.
Knupp et al. [14] introduced a similar operator with the inflate hex ring which
inflates a set of quadrilaterals into a new dual column. For sheet inflation, the
boundary of the quadrilateral set must lie on the boundary of the hex mesh. Self-
intersecting and self-touching sheets are inserted by inflating quadrilateral sets
with non-manifold edges. A set of non-manifold edges with four adjacent quadri-
laterals (i.e. 4NMEsets) can be inflated as either a self-intersecting (Figure 9c)
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Fig. 9. Sheet inflation example #1: (a) A simple hex mesh with boundary edges
indicated. (b) A non-manifold continuous set of quadrilaterals bounded by the indicated
boundary edges in (a). The highlighted edges form a 4NMEset. (c) A self-intersecting
sheet inflation option. (d) A self-touching sheet inflation option.

Fig. 10. Sheet inflation example #2: (a) A simple hex mesh with boundary edges
indicated. (b) A non-manifold continuous set of quadrilaterals bounded by the indicated
boundary edges in (a). The highlighted edges form two 3NMEsets. (c) A self-touching
sheet inflation option. (d) A self-touching and self-intersecting sheet inflation option.

or a self-touching sheet (9d). A set of non-manifold edges with three adjacent adja-
cent quadrilaterals (i.e. 3NMEsets) can be inflated as either self-touching (Figure
10c), or self-touching and self-intersecting (Figure 10d). Thus each non-manifold
edge set can be inflated in two different ways. The input to sheet inflation requires
each non-manifold edge set have a flag indicating which option should be per-
formed. 3NMEsets must appear in the quadrilateral set in pairs, or be paired with
a boundary.

For manifold sets of quadrilaterals, sheet inflation is the same as pillowing
the hexahedra on one side of the quadrilaterals set. Thus, sheet inflation can be
implemented in a manner similar to pillowing, with the following three differences
caused by the non-manifold edge sets:

1. Multiple shrink sets are required, partitioned from each other by the non-
manifold edge sets.

2. Nodes along non-manifold edge sets must be duplicated either twice for self-
touching sheets, or three times for self-intersecting sheets.

3. Quadrilaterals which lie between two 3NMEsets must be duplicated twice,
and the resulting gap is filled with two hexahedra instead of one.
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4 Hexahedral Mesh Matching

4.1 Mesh Matching Input Requirements

The input requirements of the mesh matching algorithm are:

1. Two geometric surfaces, A and B, that are:
a) Topologically identical (The number of boundary curves, loops, and ver-

tices defining the two surfaces must be the same),
b) Geometrically similar (each boundary curve/vertex on Surface A must

have a corresponding boundary curve/vertex on Surface B that is within
a tolerance, β), and

c) Both adjacent to hexahedral mesh elements.
2. An integer value for a depth parameter indicating how many layers into the

adjacent hexahedral meshes the modifications can propagate.
3. A flag indicating which (or both) of the surfaces can have their mesh topology

modified. The simplest case is that both meshes can be modified, but all
changes can be done on one side of the interface if necessary.

If input requirement 1a or 1b are not met by the initial hexahedral meshes, the
Graft Tool [18] can be used to imprint the boundaries of the interface surfaces
onto each other.

4.2 Mesh Matching Procedure

Figure 11a illustrates a two-volume model positioned such that Surface A on Vol-
ume A overlaps exactly with Surface B on Volume B meeting the input require-
ments in Section 4.1. However, as seen in Figures 11b and 11c, the quadrilateral
meshes on Surfaces A and B do not match. In this case, the non-conforming
mesh was created because the topology of Volume B requires Surface B to be
a linking surface for sweeping, while the topology of Volume A requires Surface
A to be a source surface for sweeping. The resulting mesh is non-conforming
as shown in Figure 11d and 11e. The objective is to modify the mesh topology
of one or both of the adjacent hexahedral meshes such that the quadrilateral
meshes on Surfaces A and B match, node-for-node and quad-for-quad. The node
pairs can then be merged resulting in a conforming mesh across the interface.

We make the following assertion:

Assertion 1: Given two geometric surfaces, A and B, which meet the input
requirements stated in Section 4.1, the topology of the two adjacent hexahedral
meshes can always be modified to create identical quadrilateral mesh topology
on both Surfaces A and B, which can then be merged to create a conforming
hexahedral mesh across the interface.

Rationale: Two quadrilateral meshes will be topologically identical iff the duals
of the two quadrilateral meshes are identical. Let ΩcA and ΩcB be the sets of
chords, ci, in the quadrilateral meshes on Surfaces A and B respectively. Initially
ΩcA �= ΩcB. However, through sheet insertion and extraction, dual chords can
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Fig. 11. Non-Conforming mesh example: (a) Geometric model composed to two vol-
umes, A and B. (b) The mesh on Volume A. (c) The mesh on Volume B. (d) The complete
mesh showing the discontinuity in the mesh. (e) Zoom-in of mesh discontinuity.

be inserted and extracted from boundary quadrilateral meshes. Thus, one or
both of ΩcA and ΩcB can be modified such that they do match. The algorithm
of mesh matching is then:

1. For each ci ∈ ΩcA:
a) Search for a cj ∈ΩcB such that cj = ci within a tolerance, δ. If an equal cj

is found, insert ci and cj into Ωc−pairs, else, insert ci into ΩcA−unmatched.
2. For each cj ∈ ΩcB:

a) If cj /∈ Ωc−pairs insert cj into ΩcB−unmatched.
3. For each ci ∈ ΩcA−unmatched:

a) Use the following rules to determine if ci should be inserted into ΩcB or
extracted from ΩcA:
i. No ci should be extracted if doing so violates geometric associativity

(see Section 2.1).
ii. No ci should be extracted if doing so creates doublet topology.
iii. Sheet insertions should be done if mesh density has already been

decreased bordering upon acceptability thresholds.
iv. Sheet extractions should be done if mesh density has already been

increased bordering upon acceptability thresholds.
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v. If insertion is done:
A. Project ci onto Surface B, and find a continuous set of mesh

edges, EB , on Surface B which approximate this projection.
B. Use dicing if ∃ cj ∈ ΩcB such that cj = EB with a tolerance, γ,

where γ >> δ.
C. Use pillowing if a well-connected shrink set can be defined behind

the quadrilaterals on one side of EB .
D. Otherwise, use sheet inflation on a continuous quadrilateral set

which contains EB on its boundary.
vi. If extraction is done, consider doing a column collapse (see example

1 in Section 5.1) in order to avoid global changes.
b) If ci is to be extracted, remove ci from ΩcA and ΩcA−unmatched

c) If ci is to be inserted, remove ci from ΩcA−unmatched, and insert it along
with the newly inserted chord into Ωc−pairs.

4. Repeat Step 3 for each cj ∈ ΩcB−unmatched

5. Smooth all nodes local to the interface surface modifications to improve
element quality [21].

The ‘Chord Equals’ Operator

In order to perform Step 1a and Step 3avB, ci = cj must be defined:

Definition 1. ci = cj, within a tolerance, δ, iff the maximum distance between
ci and all vk in cj is less than δ AND the maximum distance between cj and all
vk in ci is also less than δ.

ci = cj does not require ci and cj to have the same number of dual vertices.
Rather, ci = cj if the two chords are spatially close to each other. For example,
in Figure 12 the two indicated chords have 16 and 15 chord vertices. However,
when the two surfaces are overlaid, the maximum distance between the two
chords is less than δ. Thus, these two chords are equal.

In short, mesh matching implements Shepherd’s [20] 2nd assertion which
states: There exists a transformation that converts one set of fundamental sheets

Fig. 12. The mesh topology of example Surfaces A and B. Although the indicated
chords have different number of dual vertices, they are still spatially within δ when
overlaid.
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into an alternative set of fundamental sheets. This assertion can be generalized
as follows:

Assertion 2: There exists a transformation that converts one hexahedral mesh
into any other hexahedral mesh on a given geometry.

Rationale: Any sheet can be extracted from a mesh. If geometric associativity
would be violated by sheet extraction, the sheet can be extracted after a sheet
insertion to adequately add the appropriate mesh topology. In addition, any
sheet can be inserted, including self-touching and self-intersecting sheets. Thus
any sheet not matching the goal topology can be extracted, and any missing
sheet can be inserted. In the case of mesh matching, the hexahedral mesh to
convert to is a mesh which matches across the interface.

5 Examples

5.1 Simple Example

We now illustrate mesh matching on the simple example from Figure 11. Figure
13a identifies a chord, ci, in Surface A, which has no pair in Surface B. In Figure
13b, a string of edges, EB , on Surface B is identified which roughly matches the
projection of ci. EB partitions the surface quadrilaterals into two sets, of which,
one is chosen (normally the smaller set). A pillow shrink set is then defined as
the hexahedral elements behind the chosen quadrilateral set. The input depth
parameter is used to determine how far into the volume to propagate to build the
shrink set. Figures 13c and 13d show the mesh after the pillow is inserted using
depth=2, followed by appropriate smoothing [21]. The resulting new chord in
Surface B is then paired with the identified unpaired chord in Figure 13a. Figure
14 repeats this process for another unpaired chord in Surface A.

Figure 15 illustrates the use of dicing to introduce topology required for mesh
matching. In Figure 15a, three topologically parallel chords are indicated. One
of these three chords is paired with the chord indicated in Figure 15b, which
is diced, followed by smoothing, introducing the required topology to match all
three chords. After these three operations, the topology on the left side of Surface
B is beginning to match the topology on the left side of Surface A. Additional
sheets are inserted and extracted until the mesh topology on these two surfaces
matches.

Sheet Extraction for Mesh Matching

Although all required topology can be introduced with sheet insertion, doing
so will have the potentially undesirable side-effect of increasing the density of
the mesh local to the interface surfaces. Sheet extraction is useful in reducing
or eliminating the increase in mesh density. For example, Figure 16a shows the
mesh topology on Surface A with one unpaired chord indicated. Figure 16b shows
the mesh topology of Surface B; clearly the chord indicated in Figure 16a has
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Fig. 13. Pillowing during mesh matching: (a) The mesh topology on Surface A with
one non-paired chord, ci, indicated. (b) The mesh topology on Surface B with a string
of mesh edges, EB, indicating where pillowing will be performed. (c) Surface B after
pillowing is performed. (d) Volume B after pillowing is performed.

Fig. 14. Pillowing during mesh matching: (a) The mesh topology on Surface A with
one non-paired chord, ci, indicated. (b) The mesh topology on Surface B with a string
of mesh edges, EB, indicating where the 2nd pillow will be inserted. (c) Surface B after
pillowing is performed. (d) Volume B after pillowing is performed.

Fig. 15. Dicing during mesh matching: (a) The mesh topology on Surface A with
three chords indicated. (b) The mesh topology on Surface B with a single chord to be
diced indicated. (c) Surface B after dicing is performed. (d) Volume B after dicing is
performed.

no match in Surface B. Figure 16c shows the mesh in Volume A. The indicated
sheet is extracted from the mesh as shown in Figure 16d which removes the
unpaired chord in 16a from Surface A as shown in Figure 16e.
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Fig. 16. Sheet extraction during mesh matching: (a) The mesh topology on Surface A
with one unpaired chords indicated. (b) The mesh topology on Surface B. (c) Volume
A with the sheet extending from the chord indicated in (a) highlighted. (d) Volume A
after indicated sheet is extracted. (e) Surface A the sheet is extracted.

Fig. 17. Localized sheet extraction during mesh matching: (a) The mesh in Volume
A with two sheets identified, the one to extract, and one that remains local to the
interface surface. (b) The column where the two indicated sheets intersect has been
collapsed, redirecting the sheet to extract to remain local to the interface region. (c)
After sheet extraction; all changes are local to interface surfaces.

One potentially undesirable side-effect of sheet extraction is that the entire
sheet must be extracted in order to maintain a conforming all-hexahedral mesh.
Figure 16c clearly shows that the sheet to be extracted extends far away from
the interface surfaces, resulting in a global change. However, the changes can be
kept local to the region around Surface A if we first perform a column collapse
operation (see Section 2.1). For example, in Figure 17a one additional sheet,
which remains local to the interface surfaces, is identified. If such a local sheet
does not exist in the mesh, one can be inserted by pillowing a few layers of
hexahedra away from the interface surfaces. As described in Section 2, the two
sheets indicated in Figure 17a intersect in a column of hexahedra. By collapsing
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Fig. 18. Final mesh after mesh matching: (a) Final conforming mesh on example model
after all topology on interface surfaces was matched. (b) The final mesh topology on
the interface surface.

Table 1. Element Quality Results for Simple Example Model

Number of Minimum Scaled
Elements Jacobian

Before Matching 5,925 0.7334
After Matching 6,024 0.5335

this column, we redirect the sheet to extract in such a way that it now remains
local to the interface surfaces as illustrated in Figure 17b. The extraction sheet
can then be extracted as illustrated in Figure 17c keeping all changes local to
the interface surfaces.

The pillow, sheet inflation, sheet extraction, dicing and column collapse op-
erations can be applied repeatedly until the topology on the interface surfaces
matches allowing the mesh to be merged into a single conforming mesh. Figure 18a
shows the final mesh with the final interface quadrilateral mesh shown in
Figure 18b. Table 1 shows the element counts and element quality before and af-
ter mesh matching. As with any hexahedral mesh modification, mesh matching
introduces irregular nodes into the mesh topology which will tend to decrease ele-
ment quality. In this case, the resulting mesh has a minimum scaled Jacobian [13]
of 0.5335, which is still well suited for analysis.

In the case that one side of the interface cannot be changed, the dicing, pillow-
ing, and sheet extraction operations are restricted to be performed only where
changes are allowed. For example if Surface A cannot be modified, all unpaired
chords in Surface B are removed through sheet extraction in Volume B. Like-
wise, any unpaired chords in Surface A are inserted into Surface B through sheet
insertion in Volume B. Thus, Surface and Volume A remain unchanged. If ex-
traction of a sheet is required that would result in invalid geometric associativity,
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Fig. 19. Industrial example: (a) An I-beam structure for a civil engineering application.
(b) Close look at interface between diagonal stiffener and corner I-Beams. The meshes
do not matches at the interface. This model provided courtesy of Tyler Josephson and
Professor Paul Richards from the Civil and Environmental Engineering Department at
Brigham Young University.

this sheet can be redirected before the extraction using a column collapse thus
allowing it to be extracted.

5.2 Industry Example

Figure 19a shows an I-beam structure used in a civil engineering application. The
critical component to be analyzed is the diagonal stiffener. In fact, as part of the
analysis, several different designs of the stiffener as well as adaptive studies using
different size elements will be used. The mesh on the rectangular I-beams has
approximately one million hexahedral elements, and required significant effort
to generate. Ideally each time a new stiffener is introduced, the existing mesh on
the rectangular I-beam structure can be re-used rather than requiring it to be
re-meshed. The concepts of mesh matching presented in this paper apply to this
application since every time a new mesh is generated for the stiffener, the mesh
matching algorithm can be run on the connection with the rectangular I-beam
structure to create a conforming mesh.

Figure 19b shows a close up of the corner of the structure where the stiffener
connects to the corner plate. The stiffener is meshed with hexahedral elements
that are slightly smaller than that of the corner plate. As a result, we have a

Table 2. Element Quality Results for I-beam Model before and after mesh matching

Number of Element Minimum Scaled
in Corner Plate Jacobian

Before Mesh Matching 4,611 0.6624
After Mesh Matching - course Stiffener 7,221 0.5872
After Mesh Matching - fine Stiffener 17,883 0.4924
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Fig. 20. Industrial example: (a) The mesh on the interface surface on the corner plate.
(b) The mesh after mesh matching. The mesh topology was matched and merged into
a single all-hexahedral mesh. The highlighted elements indicate the sheets that were
inserted during mesh matching.

Fig. 21. Industrial Example: (a) The same I-beam model before mesh matching, this
time stiffener is meshed at a much higher density. (b) After mesh matching.

non-conforming mesh. Figure 20a shows the interface surface on the corner plate.
It is meshed with 21×24 mapped quadrilateral mesh. The interface surface on
the stiffener is meshed with a 29×30 mapped quadrilateral mesh. The mesh
matching algorithm will need to increase the density of elements in the corner
plate so that it also has a 29×30 mapped quadrilateral mesh so that the mesh
on the interface can be merged. Figure 20b illustrates the mesh after successfully
creating a conforming mesh using mesh matching.

Figure 21a shows the same I-beam model, however, the stiffener has been
meshed at a much higher density of elements. The element size difference be-
tween the stiffener and the corner plate is 2.3 to 1. Rather than remeshing the
rectangular I-beam structure, mesh matching is used to enforce a conforming
mesh across the interface. Figure 21b shows the mesh after mesh matching has
successfully matched the mesh topology on the interface creating a conforming
all-hexahedral mesh through the interface. Table 2 shows the element count and
element qualities before and after mesh matching. As with the first example, al-
though element quality is reduced some by mesh matching, the resulting element
qualities are still suitable for analysis.
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6 Conclusion and Future Work

A new computational method, called mesh matching, for converting non-
conforming hexahedral-to-hexahedral mesh interfaces into conforming interfaces
utilizing localized hexahedral topology modification methods has been presented.
Mesh matching eliminates the need for artificial constraint conditions, such as
tied contacts, gap elements, and multi-point constraints. Mesh topology is mod-
ified using the dual operators of column collapse, dicing, pillowing, and sheet
extraction, along with a new operator, sheet inflation.

Many meshing algorithms require entire assemblies to be meshed at once
in order to have conforming meshes between components [1, 2]. Mesh match-
ing relaxes this requirement by creating conforming meshes between assembly
components after each component is meshed individually. Further, Tautges [22]
asserts that hex meshing would be greatly simplified if global coupling between
assemblies could be reduced or eliminated. Mesh matching reduces global cou-
pling by enforcing a conforming mesh after the initial meshes have been created.
Thus, mesh matching has the potential to greatly simplify the generation of
conforming assembly hexahedral meshes.

Research on mesh matching continues with focus in the following areas. First,
mesh matching requires repeated dicing, pillowing, sheet extraction, and sheet
inflation. The example in Figure 21 required more than 50 pillowing operations.
Manually specifying 50 shrink sets is a tedious task that is best automated.
Second, mesh matching requires the interface be limited to two topologically
identical and spatially similar surfaces. In practice, interface conditions often
include multiple adjacent surfaces on each component. Compared to a serial
approach, simultaneous matching of all interface surfaces will likely result in a
more optimal mesh. Third, mesh matching theory depends upon Assertion 1 in
Section 4.2. Future research to prove this assertion will guarantee the usefulness
of mesh matching. The unproven elements of Assertion 1 involve guaranteeing
that sheet inflation is always possible for any possible hexahedral topology.
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