Filling Arbitrary Holes in Finite Element Models

Andreas Schilling!, Katrin Bidmon®, Ove Sommer?, and Thomas Ertl!

! Visualization Research Centre (VISUS), Universitdt Stuttgart, Germany
{schilling,bidmon,ertl}@visus.uni-stuttgart.de

2 science + computing ag, Tiibingen, Germany
ove.sommer@science-computing.de

Summary. We present a new approach for filling arbitrary holes in Finite Element
(FE) models composed of independent meshes which are commonly used in Computer
Aided Engineering (CAE). During the preprocessing of an FE model for fluid struc-
ture simulation a closed structure hull is required in order to subsequently generate
a volume mesh representing the fluid. Today’s complex CAE models include thou-
sands of holes that need to be effectively processed. The widespread algorithms mostly
fail the special requirements in this context as they can only process holes within a
single mesh or smooth surfaces without feature lines. Extending these features into
the filling mesh is important for both the visual quality as well as the simulation re-
sults. The presented approach handles these cases and automatically detects ordinary
holes, e.g. with topological defined boundary. Additionally, holes with more complex
boundaries, e.g. defined by several independent meshes, can be specified interactively
by the user. Our hole quantification enables the user to automatically close the vast
majority of holes and substantially accelerates this preprocessing step. Furthermore,
the presented meshing algorithm offers extensive control to gain satisfying results for
the described use case.

1 Introduction

Growing standards for new industrial products require the close collaboration of
different numerical simulation disciplines during virtual prototyping using multi-
physics solvers. One example is the combination of computational fluid dynamics
and structural dynamics simulation. In order to allow the interaction between
structure and bounded or surrounding fluid the different properties of a mixed
CAE model need to be represented by capable finite elements and their interface
areas have to be coupled. Some application fields of such models are ship simu-
lation, acoustic analysis of a power train or a whole car passenger compartment.
To complete the CAE model for the latter case based on an existing structure
model the fluid volume has to be meshed by 3D finite elements in a preprocessing
step. A tetrahedral mesher requires a watertight bounding structure. Generally
this is not given because today’s car body models consist of hundreds of inde-
pendently meshed car body parts (see Fig. 1) which are connected to each other
by special finite elements.

232 A. Schilling et al.

Fig. 1. FE models generally consist of many independently meshed parts that provide
arbitrary holes due to unmodelled parts as well as constructive cut-outs

In the application we consider a fluid mesh is generated using a hexahedral
volume growing approach. The user specifies a seed point inside the structure
model that surrounds the fluid volume. The volume mesh extends with a specified
minimal cell size in all directions until it will be stopped by any intersecting
structure. Therefore, all holes in the surrounding structure that are at least as
large as the minimal cell size need to be closed to prevent the generation of fluid
cells outside the fluid volume. Until now those holes had to be found visually by
the user or they were detected after the volume has grown to the outside. These
preprocessing steps took several days. Our approach allows for cutting down on
this processing time significantly by providing the potential for processing the
majority of those holes automatically.

Aside from ordinary holes inside a structural mesh, such as constructive cut-
outs, the CAE models also contain holes with complex boundaries, e.g. composed
and defined by more than one continuous finite element mesh. These holes, for
example, may result from missing model parts which are not available in the
current structural model, e.g. the front shield or doors. Whereas the former type
of holes can be detected automatically, the latter need to be defined interactively
by the user. We describe a method to define holes effectively and an algorithm
that allows the meshing of detected and defined holes in consideration of require-
ments included by the application area in CAE modelling. A hole classification
facilitates the meshing automation to a large extent which leads to a significant
speed-up of the overall preprocessing step.

2 Related Work

Holes in meshes are a very common problem in several parts of visualization.
They often arise in datasets derived from scanned geometry where data is missing
or as polygonization artefacts during isosurface extraction. Hence, there is a wide
range of methods — some follow a very general approach, others are tailored to
suit more special cases. All these methods are mainly developed with closed,

Filling Arbitrary Holes in Finite Element Models 233

oriented 2-manifold meshes in mind. In contrast to holes in scanned geometry
or resulting from surface reconstruction, holes in CAE models usually are not
erroneous parts in the model but intended constructive cut-outs or unmodelled
parts and thus may spread over numerous independently meshed parts. Thus,
the meshes involved are not necessarily oriented and 2-manifold and especially
are not closed surfaces. However, some steps in the workflow require a watertight
model in some parts. Therefore, these gaps and holes have to be closed.

The related algorithms can be split into two main categories: Volumetric ap-
proaches and geometry-based techniques. The volumetric methods split the re-
gion around a hole into inner part and outer part, usually based on the volumetric
hull. Hence, the boundary layer defines the missing surface. In [5] the model is
converted into volume representation by a signed distance function and a diffu-
sion process is applied. Thus, the function is extended through the volume until
it spans all holes which can be meshed subsequently. Additional constraints have
to be added to avoid unintended merging of surfaces. Tailored to repair meshes
from range scans, the quality of the resulting surface reconstruction is not suffi-
cient for CAE models.

A very promising algorithm to fill complex holes was presented in [8]. So-
called atomic volumes are generated by space decomposition and determined to
be either completely inside or outside the model, based on a graph representation
of the volume structure. Additionally, different topological filling styles can be
chosen by the user. Even though this is a very powerful method, it does not fit
the special needs of CAE models consisting of numerous independently meshed
parts. The same holds for the method presented in [10]. There, the holes are filled
using a context-based method: The characteristics of the surface are analysed
and parts of the mesh determined to fit the region around the hole are copied
into the hole and thus fill it iteratively. Although this gives impressive results
for surfaces resulting from erroneous surface sampling, it is not applicable to our
scenario, due to the reasons mentioned above.

Radial basis functions and the resulting implicit surface are used e.g. in [2] and
[3]. This approach was extended in [4] to recover sharp feature lines in holey areas
using an iterative and time-consuming error reduction step. Yoo [14] presents a
method capable of handling large polygon models. Domain decomposition is used
to solve the problems locally and an implicit surface is defined going through the
hole. The final mesh results from a combination of smoothing and refinement
scheme together with marching cubes.

Altogether, these methods do not fit too well the needs for filling holes in CAE
models. In this context geometrical approaches are more promising, described in
the following.

In [1] an early method for closing gaps in CAE models is presented. Neverthe-
less, only stitching and filling of small holes is performed. Newer methods are far
more flexible. In [13] an algorithm based on moving least squares is presented,
reconstructing a locally smooth surface. This limitation makes the approach
unsuitable for the more general shapes of holes in CAE models. An updated ver-
sion of this method was presented in [12] but the algorithm itself stayed mainly

234 A. Schilling et al.

unchanged. The algorithm presented in [7] fills holes considering the curvature
of the enclosing mesh.

Another geometrical approach for filling holes in meshes is [11]. The algorithm
uses an advancing front method to close the holes incrementally. Usually, MLS
projection, evaluating the vertices’ neighbourhood to get a suitable projection
plane, is used to insert additional triangles at the front. A pro of this method
is that it is also applicable to noisy and unstructured data. By contrast, [6]
uses minimal surfaces to fill arbitrary and not necessarily plane holes. Using
dynamic programming an ideal solution for the entire problem is computed.
This approach holds the advantage of being applicable to arbitrary holes as well
as being independent of the surrounding mesh and its characteristics. On the
other hand, minimal surfaces do not always meet the requirements of FE models.

Nevertheless, the methods in [6] and [11] turned up to be most promising to
be adapted to our problem and thus were used as a base of our solution. We go
into more detail about it in the following sections.

3 Preliminaries

In the first step of the complete hole filling process the present holes in a model
have to be identified. Before we explain the detection process for holes we first
want to clarify the meaning of a hole in the scope of this work. Two classes of
holes can be distinguished exemplified in Fig. 2:

A topological hole is a hole that can be identified by topological properties,
i.e. by searching a loop of boundary edges (see Fig. 2(a)). A boundary edge in a
mesh is an edge that is adjacent to only one element.

A semantic hole is a hole that, in general, can not be identified by topological
properties. Reasons for that may be, that the hole spans over several independent
meshes or that it is not made up by boundary edges, e.g. a cut-out in a thick-
walled part. An example of a semantic hole resulting from an unmodelled part
is depicted in Fig. 2(b), the selection mechanism for semantic holes is described
in Sec. 4.

Topological holes can easily be found, so the detection process can run auto-
matically once it is started. They can be found by searching a boundary edge and
tracing connected boundary edges until a closed loop is found. This process is
repeated until all edges of the mesh have been processed. Alternatively, the user
can interactively select a seed boundary edge to start the detection. In case the
meshes may have T-joints or boundary vertices that are part of several boundary
edges, the detection algorithm has to deal with these special cases additionally.

If the mesh is not closed the described algorithm will also detect the outline
as a hole, as it applies to the above definition of a hole. Either a test has to be
applied to sort out boundaries automatically or the user has to sort out these
false holes by selection after the detection process has ended.

In most cases, semantic holes can not be identified automatically. Holes of
this class are e.g. unmeshed parts or constructive openings (see Fig. 2). In the
most complex cases these holes may appear by a certain configuration of several

Filling Arbitrary Holes in Finite Element Models 235

(a) Topological holes are (b) Semantic hole (yellow curve) en-
enclosed by a continuous closed by several independent meshes
mesh. (coloured).

Fig. 2. In contrast to topological holes, semantic holes may not be detected auto-
matically if they do not provide a topological boundary — like this opening between
a passenger compartment and a car trunk (yellow curve) — and need to be defined
manually. The various colours define a separate mesh each.

independent meshes without any boundary edges at all, so that only the user
can identify the presence of a hole by looking at the complete model. Semantic
holes that span over several meshes but still consist of boundary edges can
be detected if information about the connectivity of the meshes is provided.
Algorithms using sophisticated heuristics may also be able to detect some of the
semantic holes that do not contain boundary edges, however they are error-prone
and it is unsure whether they produce satisfactory results when being applied
to a model consisting of hundreds of independent meshes or even whether they
will terminate at all. Thus, the user needs the possibility to manually define a
loop of edges that can be used as the hole boundary, regardless whether these
edges are boundary edges of the mesh or not.

Once all holes have been identified, they have to be closed by an appropriate
patching mesh. This mesh either may be connected with the surrounding mesh
or may be defined as a new and independent mesh. This procedure is described
in Sec. 4.

The following requirements shall hold for the meshing algorithm patching the
hole:

e Geometric features, such as constructive edges or design engineered curves,
in the surrounding mesh should be preserved.

e If neighbourhood information of boundary edges is missing (e.g. at gaps) the
algorithm still should produce acceptable results.

e The algorithm must provide interactive influence on the shape of the patching
mesh, e.g. whether it shall smoothly blend into the surrounding mesh or not.

236 A. Schilling et al.

4 Definition of Semantic Holes

Topological holes and some of the semantic holes can be detected automatically,
but, as described in the previous chapter, complex semantic holes require user
interaction.We chose a compromise between a moderate effort for the user and
decent speed of the definition process. The user has to select few nodes on the
mesh, whereas the paths in between are calculated by a greedy algorithm, to run
as straight and short as possible. Paths along feature lines or boundary edges are
favoured by the algorithm. The most important functionality is the definition of
semantic holes across several meshes, detailed below.

The path between two selected nodes that lie on the same mesh is chosen to
run as straight and short as possible along element edges as mentioned above. In
case the next selected target node v; belongs to a different mesh an additional
test is introduced and potential connecting node pairs are retrieved: Utilizing
a bounding volume hierarchy, the minimum distance between the precedent se-
lected path node v and the target mesh is calculated. If this distance is below
a given threshold value, the nearest node on the target mesh is queried, again
using the bounding volume hierarchy. This node v;, and the last node along the
path on the current mesh v;, are then a potential connecting node pair between
the two meshes (see Fig. 3).

To ensure an optimal connection, all valid connection candidates are stored
and the one fitting best the users’ expectations regarding the path run is chosen
based on three criteria:

1. The angle p enclosed by the vector d; (from the start node vs to the target
node v;) and the vector d; (from v, to the first connecting node v;,) should
be as small as possible, so that the resulting path runs as straight as possible
towards the target node.

2. The path length ||d;|| from the start node to the first connecting node is
preferred to be as short as possible.

3. The node pair distance A; should be as short as possible.

Fig. 3. Criteria for an ideal connection between separate meshes: 1) The angle p
enclosed by the straight connection d: = (vs,v:) and the connection to the candidate
node d; = (vs, v¢). 2) The distance ||d;|| to the connecting node v;, and 3) The distance
Aj = ||vj, — v, || between the candidate node pair.

Filling Arbitrary Holes in Finite Element Models 237

The angle p is the primary crite-
rion as it is also the most intuitive
one. However, there still may be cases
where a better angle does not result
in a good path, e.g. if the chosen node
lies on a completely different part of
the mesh which has a slightly bet-
ter angular deviation. Therefore, the
second criterion is applied. The third
one is least important criterion as it
at best has aesthetic impact. Never-
theless, if the rating for several node
pairs according to the criteria above
is equal, A; is used to choose the best

Fig. 4. Selection of a semantic hole: Red

- squares indicate user-selected nodes, the

pair. red line indicates the automatically gener-
Figure 4 gives an example of a ated path in between

user-defined selection of a semantic

hole spanning over several indepen-

dent meshes: The red squares mark the nodes defined by the user, the red line
represents the automatically generated selection path in between and thus the
border of the semantic hole.

5 Patching the Holes

The numerous small and simply shaped holes in the CAE models are usually
plane bound and thus, satisfactory patching can be applied automatically, with-
out any need of user interaction. Therefore, we adapted the approach [6], briefly
described in Sec. 2, for filling these small holes with minimal surfaces.

Nevertheless, the more complicated shaped holes and especially semantic holes
cannot be closed satisfactory with this algorithm as constructive features have
to be conserved and perpetuated into the filling mesh. For these constellations
a second approach using an Advancing Front Method was implemented and
adapted to the needs of CAE meshes, as described in the following sections. In
case the hole is too weirdly shaped for that method to be applied with moderate
user interaction, the previously mentioned minimal surface algorithm is used to
patch the hole — maybe imperfectly but sufficiently.

5.1 Filling Holes Using an Advancing Front Algorithm

For more complex shaped holes, especially those with feature lines to be perpet-
uated, another approach with supplementary user influence was needed in order
to gain more satisfactory results.Therefore, we adapted and extended an exist-
ing Advancing Front Method (AFM) [11] in order to create a patching mesh to
fill the holes. Advancing Front Methods mesh an area in an iterative manner by
inserting new nodes and elements at the borders (the so called front) of the area.

238 A. Schilling et al.

This way the front advances into the inside of the area until it is closed. The ba-
sic concept of AFMs is pretty simple and advanced functionality and heuristics
can easily be added without having to reimplement the whole algorithm. Thus
these methods offer an easy possibility to be extended to suit a certain domain
of problems, as in our case.

For simplicity, an edge in the following section always denotes an edge being
part of the advancing front — if not stated otherwise. Without loss of generality,
the presented algorithm creates a triangulation. It can be extended to create
quadrilateral elements, desirable if the resulting mesh was used for FE simulation
and not just as a volume delimiter as in the present case.

Basic Concept

The method as described in [11] consists of two basic steps, outlined below,
denoted as makeConver and addVertices:

(a) Vn+1 (b)
'o' new
: Y
e A% ' = < n+l
Vs ™| n-1 : dir
n-1- y o ': .
v s
n .
A
n
a< o o> 0

Fig. 5. The basic steps of the Advancing Front Method: Connecting adjacent edges (a)
to make the front piecewise convex, and inserting new vertices to propagate the front (b)

e makeConvex searches for two adjacent edges that enclose an angle o smaller
than a certain threshold value ¢. In that case a new edge is introduced that
completes those two edges to a triangle (see Fig. ba) . Before committing
the new triangle, a test is performed to assure that no other triangles are
intersected, thus creating illegal geometry.

This step is repeated until no adjacent edges enclose an angle smaller than ¢.

e addVertices adds new nodes inside the hole and connects them with the
current front in order to create new triangles and to make the front smaller
(see Fig. 5b). For each edge the new node is placed along the perpendicular
bisector of the edge. In order to fit the surrounding mesh the MLS Projection
and a biquadratic polynomial is used to calculate the final position of the
node on the surface.

These two steps are executed alternately until no more front edges exist and
hence the hole has been closed.

Filling Arbitrary Holes in Finite Element Models 239

Fig. 6. Inappropriate meshes resulting from interpolation with the MLS projection
method [11, 12]

(a) Placement of a new node along a (b) Completely recovered feature at the miss-
feature edge (red). ing edge of a box.

Fig. 7. Handling of feature lines during vertex insertion

Two problems arise from the method if applied as described: Enclosed fea-
ture lines are removed in the makeConvex-step and (nearly) perpendicularly
aligned hole borders result in inappropriate meshes, as the MLS projection in
the addVertices-step extends the patching mesh too far towards the surrounding
mesh border elements (see Fig. 6).

In order to solve these problems, the following changes have been made to the
original algorithm :

e During the makeConvex-step it is tested, whether the shared node of two
adjacent edges is a feature node, to avoid the cutting of feature lines.

e Instead of using MLS projection, new nodes in the addVertices-step are at
first simply placed in the plane of the adjacent element. The bending of the
mesh is applied later and the angle is a user-defined parameter.

e New nodes at feature lines are placed along the feature line in order to per-
petuate this important information.

The first extension simply introduces an additional test in which for two
adjacent edges the angle 8 between the element normals of the adjacent elements

240 A. Schilling et al.

is considered (see Fig. 7(a)). If this angle is larger than a threshold angle v, a
feature line has been detected and the two edges must not be closed by a triangle.
The further extensions are more complex and will be described in the following
sections.

5.2 Extensions to the Algorithm
Inserting Vertices with Bending Angle and Feature Line Handling

For edges that are not adjacent to a vertex on a feature line, a new node is
placed along the perpendicular bisector of the edge. This vector is the result
of the cross-product between the adjacent element normal and the edge itself
and thus lies in the plane of the adjacent element. In order to prevent, noise in
the mesh to is carried on or even increased, a user-defined support is applied.
Therefore, also the bidirectional neighbouring elements are used to calculate the
direction in which the new node is placed. These neighbours are weighted with
weights w; using a function similar to a Gaussian distribution:

wi:#e%i, 1=0.n—-1
The support could be as large as the whole front, which however does annul
the local approach of the algorithm and raises the computational complexity
significantly. Due to the support, a slight smoothing is applied to the front
which leads to a more robust algorithm.

In case an edge is adjacent to a feature node, this edge is treated special:
Instead of placing a node relative to an edge, it is placed along the feature
edge incident to the feature node (see Fig. 7(a)). The result of this method is
exemplified in Fig. 7(b).

User-defined Bending Angle

After the new nodes have been placed, their positions need to be optimized
in order to gain a satisfactory result. Without further treatment the algorithm
would only work well for cases, where the hole borders are aligned in such a
way, that their advancing fronts grow towards each other, e.g. for completely
flat holes. Else, the problems shown in Fig. 6 can not be resolved. For more
complex holes it is required that the patching mesh bends, either to blend well
into the surrounding mesh or to meet the user expectations — which may also
be, that the connection between the patching and the surrounding mesh shall
only be C° continuous, e.g. when closing an open box.

The bending of the mesh is introduced by a rotation of the new nodes around
the edge, to which a new node has been placed relative to (see Fig. 8). For feature
nodes the axis is perpendicular to the feature direction, to align the rotation with
the feature line. The new nodes do not simply bend by the given angle, but their
positions are optimized relative to each other, so that the new front is as short
as possible (resulting in a quasi-minimal area triangulation). The user-defined
angle is an upper limit for the actual rotation of each node.

Filling Arbitrary Holes in Finite Element Models 241

In order to optimize the position of each node, the neighbours are taken
into account. Each node is rotated by at most the given angle to minimize the
distance to its neighbours, i.e. the node is as close as possible to the average of
the neighbours. Just as with the calculation of the growing direction described
in section 5.2, a support is used. The node rotation is repeated until it converges
towards a stable situation.

However, two problems occur using
this approach: First, if many nodes are
collinear, the local approach fails to op-
timize the node positions for the com-
plete hole, as any movement of a node
raises the distance to its neighbours (see
Fig. 9). In fact, changes from other nodes
will propagate, however only after a very
large amount of iterations. The second
problem is, that for complex holes with
borders that are initially not oriented to-
wards each other, front parts may miss
each other as they grow, leading to either
bad and unwanted results or even to un-
solvable situations. Thus, for each node a
point on the opposite part of the front is
additionally used in the computation pro-
cess. Therefore, a plane normal to the re-
spective edge is placed through the node.
The intersection point of this plane with
the opposite part of the front is then con-
sidered as an additional neighbour (see Fig. 10). For concave bound holes special
care has to be taken to avoid the use of intersection points lying behind a node.
The opposite point is weighted by distance and the maximum distance where
this point still has influence is the user-defined parameter maxDistance. The
weight w then simply is calculated as

Fig. 8. Example of node rotation to
optimize position. Depending on the
neighbourhood, the new node vnew
could e.g. rotate downwards (v,,eq) OF
upwards (Vpew)-

maxDistance — distance

maxDistance

with max Distance — distance being cropped into the range [0, maxDistance].

Node and Triangle Validation

After the nodes have been rotated, they need to be inserted into the patching
mesh along with the new triangles. First, nodes that are too close to each other
become merged into a single node to avoid delicate situations and the appearance
of cracks in the patching mesh. Then, the new triangles are tested to be valid,
i.e. they must not intersect or encroach other triangles. It is also important, that
new triangles are not too close to other ones without having nodes merged, as

242 A. Schilling et al.

Fig. 9. Problems occurring at collinear nodes: The node vnew, does not move as the
average neighbour v,.g, lies at the same position. Only the corner node vpew, is able
to move to a new position Vnew! s close to the average neighbour vavg, -

Fig. 10. Using the opposite point v,p, on the advancing front helps collinear nodes to
bend correctly. Without that vnew would not be able to move, as the average vqvg, lies
at the same position. The new average vauvg, lies further inside the hole and enables
the node to move to position v,,eq -

Filling Arbitrary Holes in Finite Element Models 243

this also may lead to degenerated triangles or inappropriate situations in later
steps of the algorithm.

To improve the intersection test, we adapted the concept of fences, as de-
scribed by Schreiner et al. [9]. Fences are perpendicular extensions to an edge
which are inserted for each front edge as auxiliary geometry. A test, whether a
new triangle encroaches other boundary parts can now be implemented as an
intersection test of the new triangle against the fences of nearby edges. The min-
imum distance of the node to the fences of nearby edges is computed to check
whether a new node lies too close to other edges. If this distance is below a
certain threshold value 7, the test fails and the new node is rejected.

The height of the fences is important for their efficient use. If they are too
small, front parts will still encroach each other, if they are too large, the test
might fail wrongly if fences from uninvolved parts of the front are intersected.
Schreiner et al. propose an error metric which, however, can only be used during
remeshing, where an original mesh is present the deviation can be calculated
against. As in our applications there is no original data in the hole area, we use
a factor of the average edge length of the hole boundary and a factor of the step
size at which the front advances is used for the distance threshold 7.

After all tests have been passed, the new triangles are committed and the
front is updated with the new boundary edges.

Initial Mesh Bending and Adjusting Edge Lengths

When closing holes with perpendicular oriented hole borders (e.g. an open box),
the local approach would implicate a problem: Even if the user sets the bending
angle to the maximum, the mesh will not bend down completely to close the
hole evenly, due to the fact, that at some angle the nodes lie optimally to each

Vavavavad S N
FavavavAv,AIN
DRRORR KK

2

=

W\
AR oA
L

P,
—_—

/o

(a) Meshed without initial (b) Meshed with initial
bending. bending.

Fig. 11. Effect of user-interaction on bending: Meshing without (a) and with initial
bending (b), causing the hole to be meshed flatly

244 A. Schilling et al.

av,
AV,

~f

g
i
Y

(a) Mesh with gradual ad- (b) Mesh with forced adjust-
justment of edge length. ment of edge length.

Fig. 12. Effect of user-interaction edge length adjustment: Gradual (c) and forced (d)
edge lengths

other. However, the local approach is not sufficient for a real global optimization
resulting in a new minimum border length (see Fig. 11(a)).

But even if it worked correctly, another problem remains: Often, the user
wants the connection of the patching mesh with the original mesh to be only C°
continuity but the patching mesh itself to have an overall smooth gradient. Using
a large angle would not result in the expected surface, but in a quasi-minimum
surface with possibly sharp bends as the new nodes might bend more or less
freely during the optimization of their positions. Therefore, an option for an
initial maximum bend is provided. In the first iteration step, it allows the mesh
to bend freely and align in such a way, that the front parts point towards each
other. After that, the algorithm is normally executed with the given parameters.
The bending is gained by again using an opposite point of the front for each new
node when optimizing the node positions. This point however is not weighted
by distance but with a fixed, large weight to ensure that it is weighted stronger
than all other neighbouring nodes. The result can be seen in Fig. 11(b).

Another important property that can be influenced by user interaction is the
edge length of the new triangles. By default, the algorithm creates a triangulation
with roughly the same tessellation as the surrounding mesh. This is satisfactory
for most cases, however can be unnecessary. If the only requirement is a closed
hole to be used as a volume boundary, there is no need for the mesh to have a
fine tessellation. Especially for large holes, reducing the number of new triangles
can additionally have a significant impact on the time needed to mesh a hole.

Therefore, two options are provided to adjust the edge lengths of the patching
mesh. Either, the edge length is adjusted gradually, starting with the initial edge
length of the hole boundary. This results in a visually smooth connection of the
surrounding and the patching mesh (see Fig. 12(a)) and avoids gaps between
the patching mesh and the enclosing one. The other option immediately forces
the adjustment of the edge lengths by merging adjacent edges (or splitting single
edges) until the desired length is gained (see Fig. 12(b)). This introduces a certain

Filling Arbitrary Holes in Finite Element Models 245

error which however is no problem for the volume growing process as long as the
emerging gap is small enough, so that a volume element does not fit through.

6 Results

The hole definition interaction mechanism as well as the meshing algorithm
described above have been implemented and evaluated with several CAE car
models. In order to reduce the need of interaction as far as possible the user
can apply different filters that classify holes for their minimum or maximum
size, their flatness and their location. These filters allow to reduce the number
of holes that need to be inspected by the user to less than 20% of the already
filtered holes. Furthermore, convenient interaction mechanisms enable the user
to review these holes. Since the meshing of even bigger holes is done in a few
seconds the user can vary the control parameters if the created mesh did not
meet the requirements. If any hole with a complex shape cannot be closed in
one step because the generated mesh differs too much from the missing part this
hole can be partitioned into multiple but less complex semantic holes which then
can be closed (see meshed hole for missing trunk deck in Fig. 13).

It turned out that the overall process for hole detection, hole meshing and
volume mesh generation now can be done in hours instead of days as before.
For example, in a plain car body model without chassis consisting of 463 inde-
pendent parts 3359 holes have been detected. Since we are able to specify filters
for the minimum hole size (which equals the minimum size of the volume mesh
hexahedra) and the hole position, the number of holes that need to be meshed
could be reduced to 248. Our flatness criteria allowed to close 201 of them au-
tomatically. Only 47 holes had to be inspected interactively by the user before

(a) Manual hole partition (thick lines) to (b) Automatically closed car trunk.
optimally close a car trunk.

Fig. 13. Car trunk meshed smoothly (a) by definition of three semantic holes that
were meshed subsequently. The different shades of blue denote independent meshes of
the CAE model. (b) shows the same hole but filled automatically.

246 A. Schilling et al.

e

e Vi,
VA‘&' i

At

s
e
e AN e

e ANAYAY S
Navavavavarath L

I

tié""e%A
% <
Eos o]

SAvATATATAY

Fig. 14. The flatness classification of holes allows to automatically mesh the vast
majority of all holes without any user interaction. In this case only 1 of 48 holes inside
the engine hood required user interaction.

(a) Mesh generated for semantic hole man- (b) Meshed hole between engine compart-
ually defined in Fig. 4. ment and centre console.

Fig. 15. Examples of automatically filled semantic holes (green meshes)

Filling Arbitrary Holes in Finite Element Models 247

they could be closed, two of them needed to be partitioned as exemplified in
Fig. 13. An example of a car part with both, automatically meshed holes and
holes that require user interaction for ideal meshing is given in Fig. 14.

Another strong benefit of the presented method is the definition and filling of
semantic holes. Beside the car trunk shown in Fig. 13 examples of filled semantic
holes are given in Fig. 15. Figure 15(a) shows the automatically meshed hole
selected previously in Fig. 4 which is enclosed by various independently meshed
car parts. The generated geometry is depicted in green. The automatic meshing
of a more complex shaped semantic hole is demonstrated in Fig. 15(b).

7 Conclusion

We presented a process to fill holes in FE models both, automatically and with
user interaction. Topological holes in the meshes can be detected and closed au-
tomatically, still giving the user the possibility to influence the meshing method
if desired. Semantic holes cannot be detected automatically as they span over
several separate meshes and therefore are ignored by other approaches. We pre-
sented a method to define these holes interactively in a simple and time-saving
way by the user. Once defined, these holes can be either filled automatically or
more specifically according to the user’s intention, whereas the algorithm still
keeps in mind the special claims of meshes in CAE models.

References

1. Barequet, G., Kumar, S.: Repairing CAD models. In: VIS 1997: Proceedings of the
8th conference on Visualization, pp. 363-370 (1997)

2. Branch, J., Prieto, F., Boulanger, P.: Automatic hole-filling of triangular meshes
using local radial basis function. In: 3DPVT 2006: Proceedings of the Third Inter-
national Symposium on 3D Data Processing, Visualization, and Transmission, pp.
727-734 (2006)

3. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum,
B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial
basis functions. In: SIGGRAPH 2001: Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, pp. 67-76 (2001)

4. Chen, C.-Y., Cheng, K.-Y.: A sharpness-dependent filter for recovering sharp fea-
tures in repaired 3d mesh models. IEEE Transactions on Visualization and Com-
puter Graphics 14(1), 200-212 (2008)

5. Davis, J., Marschner, S., Garr, M., Levoy, M.: Filling holes in complex surfaces
using volumetric diffusion. In: First International Symposium on 3D Data Pro-
cessing, Visualiztion and Transmission, vol. 11 (2002)

6. Liepa, P.: Filling holes in meshes. In: EG Symposium on Geometry Processing, pp.
200205 (2003)

7. Pernot, J.-P., Moraru, G., Véron, P.: Filling holes in meshes using a mechanical
model to simulate the curvature variation minimization. Computers & Graph-
ics 30(6), 892-902 (2006)

8. Podolak, J., Rusinkiewicz, S.: Atomic volumes for mesh completion. In: EG Sym-
posium on Geometry Processing, pp. 33-41 (2005)

248

10.

11.

12.

13.

14.

A. Schilling et al.

Schreiner, J., Scheidegger, C.E., Fleishman, S., Silva, C.T.: Direct (Re)Meshing for
Efficient Surface Processing. Computer Graphics Forum 25(3), 527-536 (2006)
Sharf, A., Alexa, M., Cohen-Or, D.: Context-based surface completion. In: Pro-
ceedings of the 2004 SIGGRAPH Conference, pp. 878-887 (2004)

Tekumalla, L.S., Cohen, E.: A hole-filling algorithm for triangular meshes. Tech-
nical report, School of Computing, University of Utah (2004)

Wang, J., Oliveira, M.: Filling holes on locally smooth surfaces reconstructed from
point clouds. Image and Vision Computing 25(1), 103-113 (2007)

Wang, J., Oliveira, M.M.: A Hole-Filling Strategy for Reconstruction of Smooth
Surfaces in Range Images. In: Proceedings of SIBGRAPI, pp. 11-18 (2003)

Yoo, D.-J.: Filling holes in large polygon models using an implicit surface scheme
and the domain decomposition method. International Journal of Precision Engi-
neering and Manufacturing 8(1), 3-10 (2007)

