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Summary. The primary requirement for a mesh generator used in an automated
tool is robustness. Surface based meshing algorithms fail very often especially with
invalid boundary representation geometries. With generic boundary representation
formats like STEP or IGES, invalid geometries are very common due to the loss of
information and precision in CAD Data Exchange. This paper presents an approach
to a robust hexahedral mesh generator that is insensitive to invalid geometries and
produces meshes which can be used for stiffness calculations.

1 Motivation

A special preprocessor for the multibody system simulation of crankshafts (CAD-
SimShaft [SL07]) is under development by the Chair for Engineering Design and
Product Reliability at Berlin Institute of Technology. An important part of the pre-
processing is the stiffness calculation of crankshaft parts. Stiffness calculation is a
common task in mechanical engineering and easily done using the finite element
method. But first of all a model preparation is needed that includes the most im-
portant part, the mesh generation.

CADSimShaft uses OpenCASCADE [OPE08] as its geometry kernel. The CAD
models of the crankshafts are imported using generic CAD data exchange formats
like STEP and IGES resulting in invalid geometries sometimes. But even if the
geometry is valid the surface based mesh algorithms are not always successful. Of
44 different CAD crankweb models only 9 could be meshed using the available
algorithms in the Salome [OPE06] project. Common cause for the failed meshes was
a failure to create a consistent and closed surface mesh in order to initialize the
volume meshing algorithm.

Robustness of the mesh generation process is an absolute necessity for the CAD-
SimShaft software, even with geometrically invalid boundary representation models.
All failures are surface related, therefore a new volume based mesh generator is be-
ing developed. Hexahedral meshes are preferred over tetrahedral meshes because of
usually better computational results [BPM+95].
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2 Volume based Hexahedral Meshing

Volume meshes can be build from a mesh of the surface of the model or directly with-
out an existing surface mesh. The volume meshing algorithms presented in [Owe98]
can be classified into both groups. The algorithms working directly with the sur-
face or a surface mesh are: Boundary Constrained Triangulation, Advancing Front,
Medial Surface, Plastering and Whisker Weaving.

Volume oriented algorithms do not require a surface mesh and cope better with
dirty geometries[WS02][LLG+06]. They can be used as long as it is possible to
check if a point is inside or outside of a volume. This can be successfully determined
using the CAD kernel even if the surface representation is not completely valid.
The Octree-based and Grid-based algorithms can be used for tetrahedral and for
hexahedral meshing. An interesting variation of the octree for hexahedral meshes,
the 27-tree, is presented in [SSW96].

3 CAD Model Preparation

Complete CAD models are unnecessarily complex for mesh generation. A reduc-
tion of their complexity is possible with the CAD software used to design the
model. It is quite easy to export the design before all fillets and chamfers are
applied if the full design model and not just a generic exchange file is available.
A different approach is using feature recognition [Tau01] to remove needless de-
tail. Much research effort is spent on the closely related automatic decomposi-
tion [Bla96][LG96][LGT99][LGT01]. Automatic decomposition is difficult to imple-
ment for complex shapes where fillets on other fillets might have erased the basic
geometry.

Two more simple approaches do exist. Either the many small faces are combined
to fewer but larger approximations [Mez08] or the individual faces are ignored and
used to support a mesh node only if necessary.

Boundary Representations (BRep) of solid parts are constructed from six differ-
ent topological entities: Vertex, Edge, Wire, Face, Shell and Solid [OPE07]. Three
of these (Wire, Shell, Solid) carry organizational information only, the other three
(Vertex, Edge, Face) have geometrical information as well.

Most of the edges result from fillet patches. These patches can be very small
or narrow and have edges connecting tangent surfaces. They are detrimental to the
mesh because of the small face they define. In order to maintain the shape it is
necessary to identify those topological faces, edges and vertices which are important
for the model.

Automatic classification can be based on entities carrying geometric information
only. Possible classifications for faces are tangency at face boundaries, surface area
and aspect ratio. Edges can be classified by tangency of connecting faces and length.

The general shape of CAD models is preserved good enough for most applica-
tions if all sharp edges and vertices at corners are represented in the mesh. Only a
single parameter, the “sharpness” of an edge is necessary for an automatic complex-
ity reduction of the CAD model. The required information is given by the standard
exchange formats STEP and IGES. Tangency is therefore the most important clas-
sification possibility and can either be checked for each edge or for each face. Edge
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based classification is easier to implement because every edge is connected to exactly
2 faces whereas faces are bounded by n edges connecting them to n more faces. This
is similar to [Mez08] but individual faces are not used to rebuild a new surface in
the present approach.

Edge tangency checking is done by calculating the angle between the surface
normals on the faces at several points along the connecting edge. If an angle is
larger than a given threshold the edge must be considered in the mesh. The result
is a number of master edges of the shape. Vertices at non tangent master edge
connections are master vertices. Approximately one third of the topological edges
and one eighth of the topological vertices are master edges and master vertices for
all tested crankwebs.

Figures 1 and 2 give an impression of the reduction in complexity for a crankweb
using an threshold angle of 6◦. Only a fraction of the topological edges shown in
fig. 1 is selected as master edges. The few master vertices are shown in fig. 2 as small
crosses.

4 Implementation

The mesh can be created with an octree based algorithm or with a grid based al-
gorithm. The grid based approach is easier to implement for a BRep model and
results in a regular mesh for the first step. The grid is created with the help of
the spatial twist continuum (STC) [MBBM]. The STC of a regular hexahedral grid
is a regular hexahedral grid as well. Hence, the additional effort seems unjustified.
On the other hand it is easier to manipulate hexahedral meshes using their dual
STC [BMT+97][TK03][HBO04]. Only one input parameter is used, the average ele-
ment edge length.

The mesh generation is done in six steps: creation of the STC as a regular grid
using ray-casting, deformation of the STC to fit the surface (similar in effect to
[Dho99]), construction of the primal mesh, projection of primal mesh surface nodes
on the model surface, paving of identified master wires, moving mesh nodes on
master vertices.

5 Results and Conclusion

The robust meshing of the crankwebs as the most important target could be
achieved. All crankwebs could be meshed into hexahedra like the example Fig. 3.
First tests for stiffness calculations with hexahedral meshes showed good results. Be-
cause the true stiffness is not known, the results can only be checked against results
from other FEM calculations which are currently used for the multibody dynamic
simulation.

The meshes presented in this work are useful for stiffness calculations but not
yet for stress analysis. But the mesh and its STC is a useful base for improvements
using sheet insertion [HBO04]. The current study showed some elements along the
master wires being deformed into concave shapes. Although this has not been a
challenge for the method so far, sheet insertion to be used in the future would solve
this[MT95][ZHB08][MESB08][PBSB08].
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Fig. 1. Crankweb
with all topological
edges

Fig. 2. Crankweb
showing only master
(sharp) edges

Fig. 3. Finished
Mesh
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