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1 Introduction

The anisotropic mesh adaption techniques in the last decade have dramatically
improved the numerical simulations accuracy of complex problems. An optimal
anisotropic mesh adaption consists in refining and coarsening the mesh, by using
a metric to specify stretching directions, in order to accurately capture physical
anisotropy such as shock waves, contact discontinuities, vortexes, boundary lay-
ers and free surfaces. Thus, we propose in this paper, an anisotropic a posteriori
error estimator that controls the error due to mesh discretization in all space
directions. From the a posteriori error analysis, we obtain an optimal metric
(optimal mesh) as a minimum of an error indicator function and for a given
number of elements. The optimal metric obtained is used to build an optimal
mesh for the given number of elements. Furthermore, solutions for the physical
problems illustrated here are often more accurate on adapted meshes than those
obtained on globally-refined meshes and at a much lower cost.

The mesh adaption procedure consists in improving iteratively the couple
mesh/solution until convergence. This iterative process becomes more expensive
when we handle the complex industrial three-dimensional problems.

In this paper, we propose a dynamic parallel mesh adaption on unstructured
mesh that is powerful for computing unsteady three-dimensional problems. In
this context, we decompose the original 3-dimensional mesh adaption problem
into Ns smaller subproblems which are solved (i.e., meshed) concurrently using
P processors.

Unfortunately, the adaptive solution of unsteady problems causes load imbal-
ance among processors on a parallel machine. This is due to the fact that the com-
putational intensity is not only time dependent, but also varies spatially over the
problem domain. However, balancing dynamically the computational load is very
difficult. It requires reliable measurements of processor workload and the amount
of data transfer, as well as the minimization of interprocessor communication. For
this reason, we have built a parallel mesh partitioning/re-partitioning procedure
that is extended and customized for FEM computations [7]. The partitioning/
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re-partitioning scheme allows also to dynamically load balance the workload over
heterogeneous architectures [8].

Figure 1 depicts our framework for parallel adaptive flow computation. It con-
sists of a CFD solver and mesh adapter, with a partitioner that redistributes the
computational mesh when necessary. The mesh is first partitioned and mapped
among the available processors. The flow solver runs for several iterations, updat-
ing solution variables. Once a solution is obtained, the mesh adaption procedure
is invoked. It targets a re-meshing based on the a posteriori error estimator com-
puted from the flow solution. The old mesh is then locally adapted, generating
a new one and followed by the repartitioning procedure to load balance the new
workload.

     Partitioning

Initial mesh

Balanced mesh

Adaption

Data exchange Data exchange

Load balancingLoad balancing

Adaption Adaption

sub−mesh  1 sub−mesh  i sub−mesh  p

Flow solutionFlow solution

  New sub−mesh   New sub−mesh   New sub−mesh

Flow solution

Fig. 1. Overview of our framework for parallel adaptive flow computation

This paper is organized as follows: the first section details the notations and
notions that will be used in the sequel. The second section is devoted to the main
contribution of this paper, the generalization of Almeida’s anisotropic estimator
[1] to multi-dimensional unstructured meshes (n ≥ 3). The second major contri-
bution consists in the parallel implementation of the mesh adaption procedure,
presented in Section 3. In Section 4 we depict numerical results which exhibit
the advantage of the combined parallel mesh adaption algorithm and anisotropic
error estimator to handle accurately complex CFD problems.

2 The Optimal Adaptive Mesh Procedure

2.1 Notations and Notions

Given a polygon Ω ∈ Rd, we consider a set of triangulations {Th}. We use the
standard subspace of approximation

Vh = {v ∈ H1
0 (Ω) : v|T ∈ Pk(T )} (1)
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where Pk(T ) denotes the space of polynomials of degree k. We associate, for
each node ni, 1 ≤ i ≤ NTh

of the triangulation, a basis function ϕi ∈ Vh. For
each i, we set Si = supp ϕi.

An a posteriori error estimator for the difference between a given function
u ∈ W 2,p(Ω) and a discrete function uh which is an approximation of u ∈ Ω is
presented as,

‖u− uh‖Lp(Ω) ≤ C‖u−Πu‖Lp(Ω) ≤ C
( ∑

T∈Th

‖H(u)(x)‖p
Lp(T )

) 1
p

, (2)

where Π : W 2,p(Ω) → Vh is the Clément interpolation operator,
H(u)(x) = D2u(x)(x − xT )(x − xT ), D2u(.) is a Hessian operator and xT is
the barycenter of the element T .

The a posteriori error estimator is based on processing the function uh ∈
Vh in order to obtain a better approximation to the Hessian of u. We use an
approximation instead of the exact Hessian matrix to estimate the Lp-norm of
the error e = u− uh.

The process to obtain a recovered Hessian matrix from the function uh is
based on a technique to recover the gradient. Zienkiewicz and Zhu [9] used a
recovered gradient to estimate the energy norm of the error of the finite element
approximation (for more information on recovering first derivatives, see also
[10]). Furthermore, Almeida et al. [1] presented an upper bound of the error
‖u − uh‖Lp(Ω) that depends on the recovered Hessian and on the number of
elements,

‖u− uh‖Lp(Ω) ≤ C‖u−Πu‖Lp(Ω) ≤ C
( ∑

T∈Th

‖H(u)(x)‖p
Lp(T )

) 1
p

≤ C′N−α
Th
‖HR(uh)(x)‖Lp(Ω) (3)

where α ≥ 0 and NTh
denotes the number of elements of the mesh.

In our work, we use the Lp-norm of the recovered Hessian as an a posteriori
error estimator. To simplify the notation, the recovered Hessian HR will be noted
only H .

In what concerns re-meshing, our algorithm implies that around an arbitrary
point P of the mesh, we try to build equilateral tetrahedrons in the metric
defined by the local metric field M, according to a local topological technique.
This metric is defined in Rd by:

M(P ) =
1

h1(P )
e1 ⊗ e1 + · · ·+ 1

hd(P )
ed ⊗ ed (4)

where (ei)i=1,d are the eigenvectors of the recovered hessian H(uh(P )) and hi(P )
are the mesh sizes in the ei directions.

2.2 Anisotropic A Posteriori Error Estimator

We assume that the function uh ∈ Vh is a good approximation of the function
u. Hence, we get
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‖u− uh‖Lp(Ω) ≈ C‖H(uh(x))(x − x0) · (x− x0)‖Lp(Ω) (5)

where H(uh) is the recovered Hessian. This shows that the interpolation error
in one point x such that |x − x0| is small enough, is governed by the behavior
of the second order derivative in such point. Thus, the interpolation error is
not distributed in an isotropic way around point x0, i.e., the error depends on
direction x−x0 and the Hessian matrix value in this point, H(uh(x)). Therefore,
we suggest as in [15, 1, 16, 14, 13, 4] the use of the expression (5) as a directional
local estimator. However, the Hessian matrix is not a metric: it is not positive
definite. Therefore, the following tensor is introduced

H = RΛRT (6)

where R is the orthonormal matrix which corresponds to the eigenvectors
(ei)i=1,d of the Hessian matrix, while Λ = diag(|λ1|, ..., |λd|) is the diagonal
matrix of the absolute values of the eigenvalues of H(uh(x)). H can be also
written as follows:

H = RΛRT = |λ1|e1 ⊗ e1 + · · ·+ |λd|ed ⊗ ed (7)

Given a mesh discretization Th of Ω, we define the anisotropic error estimator
of the element T ∈ Th by

ηT =
( ∫

T

(
H(uh(x0))(x − x0) · (x− x0)

)p
dT

) 1
p

(8)

and the global estimator η by

η =
( ∑

T∈Th

ηp
T

) 1
p (9)

where x0 is the barycenter of T .
The definition of ηT can be used to get the following upper bound.

ηp
T =

∫
T

(
H(uh(x0))(x − x0) · (x− x0)

)p
dT (10)

Substituting (7) in (10) we get,

ηp
T =

∫
T

( ∑
i=1,d

|λi(x0)|[ei(x0)⊗ ei(x0)](x− x0) · (x− x0)
)p
dT

=
∫

T

( ∑
i=1,d

|λi(x0)|[ei(x0) · (x− x0)]2
)p
dT

If we write x − x0 in the eigenvectors basis: x− x0 =
∑

i=1,d

xiei where |xi| ≤ hi,

the projection of x− x0 on ei direction is [ei · (x− x0)]2 = x2
i ≤ h2

i and then,



Dynamic Parallel Adaption for Three Dimensional Unstructured Meshes 199

ηp
T ≤

∫
T

( ∑
i=1,d

|λi(x0)|h2
i

)p
dT (11)

We notice that an optimal mesh regarding a solution field u is the one that
is aligned with this solution. It means that the shape of each element in the
mesh is such that the local error in any direction attains the same value. This is
equivalent to the fact that the local error in the principal directions of curvature
is constant per element i.e.

|λ1|h1 = · · · = |λd|h2
d = cte. (12)

Then, the stretching of the element T is defined as

s1T :=
h1

h2
=

( |λ2|
|λ1|

)1/2
, siT :=

hi

hi+1
=

( |λi+1|
|λi|

)1/2
, s(d−1)T :=

hd−1

hd
=

( |λd|
|λd−1|

)1/2

(13)

where hi are sorted in the decreasing order, i.e., h1 ≥ h2 ≥ · · · ≥ hd. Combining
(11) and (12) we get

ηp
T ≤ |T |

(
d|λd(x0)|h2

d

)p (14)

where |T | is the volume of element T .
Finally, we obtain the following upper bound of the local error estimator

ηT ≤ d|T | 1p |λd(x0)|h2
d (15)

This shows that the local estimator is bounded by the maximum of the second
order derivative in the barycenter of the element times the square of the longitude
in this direction.

We may introduce as the local estimator the above upper bound and is given
by

ηT = d|T |
1
p |λd(x0)|h2

d (16)

In the next section, we define a minimization problem where the functional is
the error indicator. The solution of this problem is the metric used to construct
an optimal adapted mesh.

2.3 Optimal Mesh as a Solution of an Optimization Problem

Let Th denote the current finite element discretization of the domain Ω, uh

denotes the approximate solution associated to the mesh Th, hold(P ) describes
the local mesh size at node P in the direction of the maximum value of the
directional second order derivative at the point P . Then, given the number of
desired elements NT ′

h
in the new adapted mesh, the optimal mesh adaptive

procedure generates a new mesh, T ′
h, such that the new distribution hnew(P ),

for all P ∈ Th minimizes the global estimator error. Hence, the optimal mesh
adaptive procedure looks for an optimal mesh as a solution of the following
constrained optimization problem
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Find hT = {h1T , · · · , hdT}, T ∈ Th that minimizes the cost function

F (hT ) =
∑

T∈Th

(
ηT

)p

under the constraint NT ′
h

= C−1
0

∑
T∈Th

∫
T

d∏
i=1

1
hiT

dT

(17)

where C0 is the volume of a regular tetrahedron. In the constraint equation, the
number of desired elements is obtained as follows:

|Ω| =
∑

T∈Th

|T |M = NT ′
h
C0 =

∑
T∈Th

∫
T

det(M) dx =
∑

T∈Th

∫
T

d∏
i=1

1
hiT

dx. (18)

The optimization problem (17) was studied in the case of two dimensional meshes
(d = 2) in [1]. Here, we generalize the study to three dimensional unstructured
meshes. The main difficulty of the 3D analysis is, that there are different direc-
tions of stretching, in opposition to 2D case where there is only one direction.
The following theorem generalizes the anisotropic error estimator proposed in
[1] to three dimensional unstructured meshes.

Theorem 1. For d = 3, the optimization problem (17) has a unique solution
and is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

h3T =

[
β

(2p+3)
3 C1T

∫
T C2T dT

] 1
2(p+3)

h2T = s2Th3T

h1T = s1T s2Th3T

(19)

where

C1T = 3pC0s1T s2
2T |λ3|p, C2T = C−1

0
1

s1T s2
2T

and

β
1

2
3 (p+3) = N−1

T ′
h

∑
T∈Th

{( 1∫
T

C2T dT

) 1
2
3 (p+3)

∫
T

C2T

[ 2p + 3

3
C1T

] 1
2
3 (p+3) dT

}
.

Proof. Let us consider the following optimization problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find hT = {h1T , h2T , h3T }, T ∈ Tn such that minimizes the cost function

F (hT ) =
∑

T∈Th

|T |
[

3|λ3|h2
3T

]p

under the constraint NT ′
h

= C−1
0

∑
T∈Th

∫
T

3∏
i=1

1
hiT

dT

(20)
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Let s1T = h1T

h2T
and s2T = h2T

h3T
be the two stretching directions of the element T

in R3. Then, we write h1T and h2T as a function of s1T , s2T and h3T :

h1T = s1T s2Th3T , h2T = s2Th3T (21)

The volume of a tetrahedron T on the metric space can be written as:

|T |M = |T | det(M) → |T | = |T |M det(M)−1 = C0 h1Th2Th3T . (22)

where C0 =
√

2
12 is the volume of a regular tetrahedron. Thus, with the variable

change (21), the 3D optimization problem becomes a 1D optimization problem
such as the unique value to look for is h3T⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find h3T , T ∈ Tn that minimizes the cost function

F (h3T ) = C0

∑
T∈Th

3ps1T s
2
2T |λ3|ph2p+3

3T dT

under the constraint NT ′
h

= C−1
0

∑
T∈Th

∫
T

1
s1T s2

2T

1
h3

3T

dT

(23)

Introducing the following notations

C1T = 3pC0s1T s
2
2T |λ3|p, C2T = C−1

0

1
s1T s2

2T

and γT =
1

h3
3T

. (24)

The minimization problem can be then written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find γT , T ∈ Tn such that minimizes the cost function

F (γT ) =
∑

T∈Th

C1T γ
− 2p+3

3
T dT

under the constraint NT ′
h

=
∑

T∈Th

∫
T

C2T γT dT

(25)

which is equivalent to the following min-max problem

minγT maxβ L(γT , β) = F (γT )− β
[
NT ′

h
−

∑
T∈Th

∫
T

C2T γT dT
]
. (26)

The solution of this min-max problem is given by

∂L
∂γT

= 0 ⇒ −2p + 3
3

C1T γ
− 2

3 (p+3)

T + β

∫
T

C2T dT = 0 (27)

∂L
∂β

= 0 ⇒ NT ′
h
−

∑
T∈Th

∫
T

C2T γT dT = 0. (28)
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From (27) we get

γT =

[
2p+3

3 C1T

β
∫

T
C2T

] 1
2
3 (p+3)

. (29)

and substituting the expression of γT in (28) we obtain

β
1

2
3 (p+3) = N−1

T ′
h

∑
T∈Th

{( 1∫
T
C2T

) 1
2
3 (p+3)

∫
T

C2T

[2p + 3
3

C1T

] 1
2
3 (p+3)

dT
}
. (30)

From the definition of the third equation of (24)

h3T =
( 1
γT

) 1
3

=

[
β

(2p+3)
3 C1T

∫
T

C2T dT

] 1
2(p+3)

(31)

We finally get the optimal value of h3T and then h1T and h2T thanks to expres-
sion (21) . �

Remark 1. We can get the same proof for d > 3, and that by using a recurrence
argument. The generalized form of the theorem can be written as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

hdT =

[
β

(2p+d)
d C1T

∫
T C2T dT

] 1
2(p+d)

hiT =
( d−1∏

k=i

skT

)
hdT , 1 ≤ i ≤ d− 1

(32)

where

C1T = C0d
p
( d−1∏

i=1

si
iT

)
|λd|p, C2T = C−1

0

1( d−1∏
i=1

si
iT

) and

β
1

2
d

(p+d) = N−1
T ′

h

∑
T∈Th

{( 1∫
T C2T

) 1
2
d

(p+d)

∫
T

C2T

[2p + d

d
C1T

] 1
2
d

(p+d)
dT

}
. �

We know now the optimal distribution of the element’s shapes and the stretching
directions that are given by the eigenvectors of the recovered Hessian as well as
the optimal metric that will be used to modify the background mesh. Both are
used as an input of the mesh generator tool in order to obtain a new (optimal)
mesh. The mesh generator used here and its parallelization will be described in
the following section.
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3 Parallel Mesh Generation

In this section, we review a parallel mesh generation and adaption procedure
based on a topological mesh generator. In the first part (3.1) we describe briefly
the sequential mesh generator MTC and then (section 3.2) we illustrate the
strategy adopted to parallelize this mesh generator.

3.1 Mesh Generation

MTC is a mesh generator developed by Thierry Coupez at the Ecole des Mines
de Paris, Center for Material Forming, Sophia Antipolis. It is based on the idea
to improve iteratively, an initial unsatisfactory mesh by local improvements.

MTC mesh generator re-meshes the initial mesh iteratively by a local mesh
optimization technique. This technique consists in local re-meshing of cavities
formed by small clusters of elements in order to increase the “quality” of the
elements of the cluster. In the re-meshing process, two principles are enforced:

• The minimal volume, which assures the conformity of the mesh, with no
element overlaps: let Ti(C) denote the i-th set of elements T filling the local
cavity. Following the minimum volume principle we choose as an optimal
(possibly not unique) re-triangulation of the cavity the one satisfying∑

T∈Ti(C)

|(V olume)(T ))| → min, (33)

where the minimization is done over a small set i = {1, . . . , I} of possi-
ble triangulations Ti(C) of elements (Fig. 2 right) connecting the nodes on
the border of the cavity, or other nodes like the cavity barycenter, with all
boundary faces.

Fig. 2. Local mesh optimization process in MTC
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• The geometrical quality Q(T ), which is evaluated for each element. If
the minimum of (33) is not unique, this criterion picks among all admissible
cavity re-triangulations the one improving the geometrical quality of the mesh
by improving the quality of the worst element of the triangulation.

While the former criterion assures the conformity of the mesh, if the initial
mesh was conforming, the latter handles improvements of element shape, size,
connectivity, etc., depending on the quality function Q(T ). Usually, the quality
function Q(T ) is a function of the geometry of the element T and the prescribed
background metric, which give together a measure for the element size and the
element form (aspect ratio). For further details see [2].

Fig. 3. Illustration of the strategy used to parallelize the mesh generator. From the
top to the bottom, we show the successive steps of parallel repartitioning and parallel
re-meshing by keeping interfaces unchanged.
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3.2 Parallel Mesh Adaption Procedure

The parallelism of the mesh generator MTC is performed by partitioning/
repartitioning the initial mesh into submeshes. The individual submeshes are
refined/derefined or adapted to an error estimator by using sequential MTC
techniques. In order to achieve mesh conformity and correctness, the interface
faces between the submeshes should be subdivided the same way in all submeshes
that share them to avoid the non conforming points throughout the process. For
this reason, we have chosen to keep interfaces unchanged during the local (inside
each subdomain) re-meshing and then to move the interface inside the domain
in order to enable re-meshing in a next phase. Figure (3) shows this strategy ap-
plied to a simple 2D mesh with 6 submeshes partitioned onto 6 processors. The
partitioning/re-partitioning of a mesh is performed in parallel using a generic
graph partitioning that is extended and customized for FEM computations. This
software was developed as part of the DRAMA project [7].

4 Numerical Results

Using the anisotropic adaption technique described in Section 2 and 3, we study
the evolution of the error regarding the number of mesh elements on analytical
functions, in two and three dimensions. The global a posteriori error estimator
defined in (9) is used here to construct an optimal mesh with respect to the L2

error estimator. The global error estimator becomes then:

η = {
∑

T∈Γh

(ηT )2}1/2 (34)

4.1 2D Analytical Cases

Let us consider the following function

f(x, y) = tanh(100y− 50 + 20sin(−4x+ 4))), (x, y) ∈ Ω = [0, 1]× [0, 1] (35)

We represent on Fig.4 (left) the analytical function f defined on a square of
size [0, 1]×[0, 1]. The Hessian of the solution is then built by means of a double L2
projection technique. With a number of elements equal to 2000 the minimization
process leads to a new size distribution and the metric tensor generates a new
adapted mesh described on Fig.4 (right). The final anisotropic mesh obtained is
aligned with the analytical solution. We are now interested in the convergence
of the L2 global estimator regarding the number of elements in the mesh. For
this function, a convergence of order 2 is reached Fig.5.

4.2 3D Analytical Case

We choose now a more complex function in 3D in order to check the efficiency
of our adaption technique.
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Fig. 4. Visualization of the function f (left) on the adapted mesh (right)

Fig. 5. Evolution of the L2 error vs. the number of elements in the mesh for a 2D
analytical test case

h(x, y, z) = tanh((x+ 1)20(y− 0.5)9z), (x, y, z) ∈ Ω = [0, 1]× [0, 1]× [0, 1] (36)

We represent on Fig.6 (left) the analytical function h defined on a cube of size
[0, 1] × [0, 1] × [0, 1] and, after the mesh adaption strategy, the resulting mesh
is depicted in Fig.6 (right). The number of elements targeted is of 100000. As
in 2D case, the mesh emphasizes well with the solution of the analytical func-
tion. Moreover, we overcome with success the difficulty occurring in the corners.
Indeed, the steep change of directions in the corner regions may be cause of ele-
ment distortions. We can show that, with this more complex analytical solution
and in 3D, we also reach a convergence of order 2 in what concerns the L2 error
(Fig.7).

4.3 Dynamic Adaption Flows

In this paper, we apply our mesh adaption technique to simulate complex
multiphase problems involved in manufacturing processes like Water-Assisted
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Fig. 6. Visualization of the function h (left) on the adapted mesh (right)

Fig. 7. Evolution of the L2 error vs. the number of elements in the mesh for a 3D
analytical test case

Injection Molding (WAIM). The simulation of the process needs an accurate
description of the water evolution. The anisotropic strategy aims at improv-
ing multiphase flow computations by allowing a better description of physical
parameters that characterize strongly heterogeneous flows. Flow equations are
solved by considering heterogeneous incompressible Navier-Stokes equations cou-
pled with the heat equation. The water is supposed a newtonian fluid whereas
the polymer is considered non newtonian: its viscosity described by WLF and
Carreau Yasuda laws, respectively, for the dependency on the temperature field
and on the shear rate.⎧⎪⎪⎨⎪⎪⎩

ρ∂v
∂t + ρ∇v · v −∇ · (2ηε(v)) +∇p = ρg

∇ · v = 0
ρ = 1Ωwaterρwater + (1− 1Ωwater)ρpolymer

η = 1Ωwaterηwater + (1− 1Ωwater)ηpolymer

(37)
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where ρ,η,v,p,g represent respectively the density, viscosity, velocity, pressure and
gravity fields. We denote by ρwater, ηwater, ρpolymer, ηpolymer the density and
viscosity of the water and the polymer. The Navier Stokes equations are solved
with a mixed finite element formulation. We consider a linear and continuous
velocity enriched spatial discretization (P1+/P1).

⎧⎪⎪⎨⎪⎪⎩
ρC( ∂T

∂t
+ −→v · −−→∇T ) − ∇ · (k

−−→∇T ) = f on Ω×]0, tn[
T (−→x , t) = Timposed on Ω×]0, tn[
T (−→x , t = t0) = T0(

−→x )
η(T, γ̇) (CarreauY asuda/WLF ) Computation of the thermodependent viscosity

(38)

We follow the polymer/air and water/polymer interfaces with two Level Set
functions [12]. The Navier Stokes equations will provide us the velocity and
pressure fields and this same velocity will transport the Level Set functions
whose zero iso-values represent the interfaces. Therefore, a good description of
the interfaces depends on the accurate resolution of the coupled problem. The
Level Set strategy applied here is based on a new approach that allows to keep
an unitary gradient for the Level Set function without regularizing it periodically
with an Hamilton-Jacobi Equation [12].

2D dynamic adaption flows

We apply our adaptive strategy on 2D dynamic flows. We aim to simulate the
WAIM process on a 2D cavity. We impose at the entrance of the cavity a constant

(a) (b) (c)

(d) (e) (f)

Fig. 8. Evolution of the polymer/air and water/polymer fronts during the water as-
sisted injection process
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(a) (b)

Fig. 9. Zoom in the mesh

velocity field of 0.1m.s−1 in order to be close to the industrial process and to
fill the cavity in two seconds. During the first time of the simulation only the
polymer is in the cavity Fig.8 (a). Then we change the boundary conditions
for the Navier-Stokes equations and we impose a water velocity of 0.2m.s−1

at the same entrance. Thus, the water pushes the polymer outside the cavity
(Fig.8 from (b) to (f)). The mesh adaption strategy is applied on a reconstructed
Level Set function(combination of the polymer/air and water/polymer Level
Set functions) and the number of elements aimed is of 20000. Notice that the
interface is well captured thanks to anisotropic mesh refinement around the
interface, whereas the isotropic region is derefined in order to satisfy the number
of elements constraint.

A zoom in the mesh Fig.9 shows us the accuracy of our method.

3D industrial Water Assisted Injection Molding case

The aim of this section is to study the efficiency of our adaptive strategy on an
industrial 3D WAIM process Fig.10. So as to achieve our simulation we extend
to 3D space the coupled system described on section 4.3. Few seconds before
the water injection the cavity is already filled with the polymer. For this specific
simulation the adaption strategy is applied on the water/polymer Level Set
function(and not as in the 2D dynamic case on the two Level Set functions).

Fig. 10. Water Assisted Injection Molding Cavity
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(a) (b)

(c) (d)

Fig. 11. Evolution of water/polymer fronts during the water assisted injection process

During the water injection and regarding a certain percentage of injected water
a new mesh is generated dynamically.

The simulation is run onto 16 processors and we fix a constraint of 10 millions
of elements. A cut of the mesh allows to depict the water tracking inside the
cavity at different time of the simulation Fig.11. The mesh follows dynamically
the evolution of the water. The adaption process allows an accurate description
of the water vein and a considerable gain of CPU time, since, far from the
water/polymer front, the size of the elements increases. Therefore the number
of unknowns of our system is dramatically reduced.

5 Conclusions

We have presented a dynamic parallel mesh adaption procedure. It is based
on the definition of an anisotropic a posteriori error estimator, the search of the
optimal mesh (metric) that minimizes the error estimator and the use of the serial
mesh generator (MTC) in a parallel context. The parallelization strategy consists
in balancing dynamically the workflow by repartitioning the mesh after each
re-meshing stage. The numerical 2D and 3D applications show that the proposed
anisotropic error estimator gives an accurate representation of the exact error.
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It was shown also, that the optimal adaptive mesh procedure provides a mesh
refinement and element stretching which appropriately captures interfaces for
industrial injection polymers problems. Finally, the anisotropic adapted meshes
provide a highly accurate solutions that are often better than those obtained on
globally-refined meshes and at a much lower cost.

References

1. Almeida, R., Feijoo, R., Galeao, A., Padra, C., Silva, R.: Adaptive finite element
computational fluid dynamics using an anisotropic error estimator. Comput. Meth-
ods Appl. Mesh. Engrg. 182, 379–400 (2000)
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