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Summary. When applying higher order finite elements to curved 3D domains in large-
scale accelerator simulations, complexities that arise include needing valid curved finite
elements and the capability to track the movement of mesh refinement in the critical
domains. This paper presents a procedure which combines Bézier mesh curving and
size driven mesh adaptation technologies to address those requirements. The intelligent
selection of local mesh modifications to eliminate invalid curved elements and properly
control the size distribution are the two key technical components. The procedure
has been successfully applied by SLAC to generate 3D moving curved meshes in the
large-scale electromagnetic modeling of next generation accelerator designs. The results
demonstrated that valid curvilinear meshes not only make the time domain simulations
more reliable but also improve the computational efficiency up to 30%.

1 Introduction

Higher order finite elements [1], which are well known for faster rates of con-
vergence in terms of computational efficiency, can provide an effective approach
for large-scale simulations. When applying higher order finite elements to three-
dimensional curved domains, the elements must be properly curved to maintain
the rate of convergence [2]. The common approach to the construction of such
meshes is to apply a straight-sided mesh generation procedure [3, 4] and then
curve the mesh edges and faces on the curved domain boundaries to the proper
orders. This approach takes advantage of the conventional unstructured mesh
generators to deal with the complexity of model geometry. However, the re-
sulting meshes may become invalid because the curving of the mesh entities to
model boundaries can lead to negative determinant of Jacobian in the closures
of curved elements. Effective and efficient correction of those invalid elements
is critical in curvilinear mesh construction and for its usage with higher order
finite elements.

The electromagnetic simulation tools developed at Stanford Linear Accel-
erator Center (SLAC), supported by DOE SciDAC program [5, 6, 7] have
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successfully taken advantage of higher order finite elements to perform analysis
needed for the design of the next generation linear accelerators, for example,
short-range wakefield calculations. In those simulations, a small region near the
beam requires sufficient refinement to resolve high frequency while the rest of the
domain can have a large mesh size. This refinement region must move with the
particles beam through the curved domains in the time dependent simulations to
achieve acceptable computational efficiency. Since the domains are curved and
higher order finite elements are used, the refined meshes must also be curved
to provide a sufficiently higher order geometric approximation to ensure that
the solution can effectively achieve the desired level of accuracy. The uniform
refinement using smaller mesh size throughout the entire domain can produce
over-refined meshes outside of the critical particle beam domains while larger
mesh size can generate too coarse meshes which often become invalid during the
curving procedure. These lead either to infeasibly large problem size, inaccurate
results, or possible failure of the simulations.

To enable the higher order finite elements in large-scale simulations, a mov-
ing mesh adaptation in curvilinear domains that includes the combination of
a general mesh curving tool [8, 9] and size driven mesh adaptation [10, 11] is
presented. A full set of curved mesh modification procedures play an important
role in ensuring the resulting curved meshes are valid and with minimal number
of elements for the desired accuracy.

The outline of this paper is as follows. Section 2 describes a general mesh curv-
ing procedure to construct valid curvilinear meshes for three-dimensional curved
domains. The procedure employs Bézier polynomial to represent the higher or-
der geometric shapes for curved mesh entities. The extension of the size driven
mesh adaptation procedure in curved domains is discussed in Section 3. Analy-
ses results applied by SLAC for linear accelerator design are shown in Section 4.
Conclusions and future works are given Section 5.

2 Mesh Curving

A flexible distributed mesh data structure [12] is employed in this paper to
support the mesh adaptation in curved domains. The mesh data structure applies
a general topology and classification of the entities with respect to the geometric
model entity that the mesh entity is on [13]. Md

i and Gd
i are used to describe the

mesh and model topological entity of dimension d, d = 0, 1, 2, 3 represent mesh
and model vertex, edge, face, and region respectively.

The approximation of the mesh to curved geometric domains is maintained by
assigning appropriate Bézier higher order geometric shapes to mesh edges and
faces on curved domain boundaries. The Bézier topology-based mesh geometry
shape is constructed using Bernstein polynomials which possess a number of
advantageous properties including [14]:

• The Convex Hull Property - A Bézier curve, surface, or volume is contained
in the convex hull formed by its control points.
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• Computationally efficient algorithms for degree elevation and subdivision are
available which can be used to refine the shape’s convex hull as well as adap-
tively refine the mesh’s shape.

Those properties are useful to form the validity check algorithm for Bézier
higher order curved elements and to determine local mesh modifications to cor-
rect invalid elements which have negative determinant Jacobian in the element
closures due to the curving of mesh entities. The resulting curved meshes can
always guarantee that each element has positive determinant of Jacobian in its
closures.

2.1 Bézier Topology-Based Higher Order Shape Representation

Bernstein polynomials provide an effective means to define Bézier hierarchic
higher order shapes for topological mesh entities in their parametric coordinates.
A qth order Bézier mesh entity can be represented as [9],

x(ξ) =
∑
|i|=q

B|i|(ξ)b|i|ξ
|i| (1)

where B|i|ξ
|i| are the Bernstein polynomials defined in the mesh entity paramet-

ric coordinate system as shown in Table 1. Note that the independent parametric
coordinates for a topological mesh entity should be ξ1, (ξ1, ξ2) and (ξ1, ξ2, ξ3)
respectively with the constraints that ξ2 = 1 − ξ1, ξ3 = 1 − ξ1 − ξ2 and
ξ4 = 1 − ξ1 − ξ2 − ξ3. b|i| are the control points used to define the shapes of
the Bèzier mesh edges, faces and regions. Figure 1 shows the control points for
a quadratic curved mesh edge, triangle face and tetrahedral region.

Table 1. ξ, |i|, B|i| and ξ|i|for topology mesh entity

ξ |i| B|i| ξ|i|

Edge (ξ1, ξ2), ξ1 + ξ2 = 1 |i| = i + j q!
i!j! ξi

1ξ
j
2

Triangle (ξ1, ξ2, ξ3), ξ1 + ξ2 + ξ3 = 1 |i| = i + j + k q!
i!j!k! ξi

1ξ
j
2ξ

k
3

Tetrahedron (ξ1, ξ2, ξ3, ξ4), ξ1 + ξ2 + ξ3 + ξ4 = 1 |i| = i + j + k + l q!
i!j!k!l! ξi

1ξ
j
2ξ

k
3 ξl

4

In the case that a straight-sided mesh and its associated geometry CAD
model are given, the control points for those mesh entities on the curved model
edges/faces are determined based on Bézier curve and surface interpolation
method to evaluate the model geometry at a set of discrete parametric loca-
tions. Common approaches often use the uniformly distributed parametric space
points. However, alternative methods, such as chord length method or curvature-
based procedure, will be used to improve the geometric approximation [14]. In
the case that a curved mesh with different shape representation method is given,
the control points are computed by converting the given shapes to Bézeir shapes.
For example, a quadratic mesh edge using Lagrange interpolating method to rep-
resent its curved shape has three control points l1, l2 and l3, the control points
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Fig. 1. Bézier control points for a curved mesh edge, face and region

for the Bézier shape of the edge, x = b20ξ
2
1 + 2b11ξ1(1− ξ1) + b02(1− ξ1)2, can

be computed by solving the following equations,

x(ξ1 = 0) = b02 = l1
x(ξ1 = 1/2) = b20

4 + b11
2 + b02

4 = l2
x(ξ1 = 1) = b20 = l3

(2)

Therefore, b02 = l1, b20 = l3 and b11 = (4l2 − (l1 + l3))/2.

2.2 Validity Check of Bézier Higher Order Curved Elements

When the finite element basis is increased in applying the higher order finite ele-
ments, the integration rules of the finite element approximation must be properly
improved to ensure that the numerical integration error does not become the
dominant error. The improvement of the integration rules requires evaluation
of the geometric mapping of the curved element at new integration locations
or knowledge that the Jacobian is positive throughout the element. To avoid
the need to constantly recheck the integration points, a general element validity
check is performed. This validity check for Bézier higher order curved elements
takes advantage of its convex hull property to ensure that a valid curved element
always has positive determinant of Jacobian in its closures, which is independent
of the basis functions, the polynomial orders, or the applied integration rules [8].

Given a qth order Bézier tetrahedron mesh region described in Eq.1, the Ja-
cobian matrix of the geometric mapping with respect to the independent para-
metric coordinates (ξ1, ξ2, ξ3) is,

J =
[
∂x
∂ξ

]
=

⎡⎢⎣
∂x1
∂ξ1

∂x1
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ1

∂x2
∂ξ2

∂x2
∂ξ3

∂x3
∂ξ1

∂x3
∂ξ2

∂x3
∂ξ3

⎤⎥⎦ (3)

where x = (x1, x2, x3) Therefore, the determinant of the Jacobian J is,

det(J) = (
∂x

∂ξ1
× ∂x

∂ξ2
) · ( ∂x

∂ξ3
) (4)
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where ∂x
∂ξi

are the three partial derivatives of xq which are (q−1)th order Bézier
functions. Therefore, the resulting determinant of Jacobian is a Bézier polyno-
mial function with order 3(q − 1),

det(J) =
∑
|i|=r

C|i|c|i|ξ
|i| (5)

where r = 3(q − 1). C|i| and c|i| can be expressed using the coefficients B|i| and
b|i| in Eq. 1. As an example, the quadratic tetrahedral region shown in Figure 1
can be expressed as,

x = B2000b2000ξ
2
1 + B0200b0200ξ

2
2 + B0020b0020ξ

2
3 + B0002b0002ξ

2
4 (6)

+B1100b1100ξ1ξ2 + B1010b1010ξ1ξ3 + B1001b1001ξ1ξ4

+B0110b0110ξ2ξ3 + B0101b0101ξ2ξ4 + B0011b0011ξ3ξ4

Considering that ξ4 = 1 − ξ1 − ξ2 − ξ3, B2000 = B0200 = B0020 = B0002 = 1
and the rest coefficients B′s equal to 2, therefore,

∂x

∂ξ1
= 2{(b2000 − b1001)︸ ︷︷ ︸

a1

ξ1 + (b1100 − b0101)︸ ︷︷ ︸
b1

ξ2 (7)

+ (b1010 − b0111)︸ ︷︷ ︸
c1

ξ3 + (b1001 − b0002)︸ ︷︷ ︸
d1

ξ4}

∂x

∂ξ2
= 2{(b1100 − b1001)︸ ︷︷ ︸

a2

ξ1 + (b0200 − b0101)︸ ︷︷ ︸
b2

ξ2

+ (b0110 − b0011)︸ ︷︷ ︸
c2

ξ3 + (b0101 − b0002)︸ ︷︷ ︸
d2

ξ4}

∂x

∂ξ3
= 2{(b1000 − b1001)︸ ︷︷ ︸

a3

ξ1 + (b0110 − b0101)︸ ︷︷ ︸
b3

ξ2

+ (b0110 − b0020)︸ ︷︷ ︸
c3

ξ3 + (b0011 − b0002)︸ ︷︷ ︸
d3

ξ4}

The determinant of Jacobian is a cubic Bernstein polynomial and the coeffi-
cients C|i| and c|i| are listed in Table 2. ai, bi, ci and di are the vectors defined
by the corresponding control points shown in Eq. 6.

The convex hull property of Bézier polynomial indicated that the polynomial
is bounded by its minimal and maximal control points [14]. So,

min(c|i|) ≤ det(J) ≤ max(c|i|) (8)

Therefore, a curved tetrahedral region is valid in its closure as long as its
min(c|i|) > 0.
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Table 2. C|i| and c|i| for det(J) of a quadratic tetrahedral region

|i| C|i| c|i| |i| C|i| c|i|
3000 8 (a1 × a2) · a3 0300 8 (b1 × b2) · b3

0030 8 (c1 × c2) · c3 0003 8 (d1 × d2) · d3

2100 8 (a1 × b2 + a2 × b1) · a3 1200 8 (a1 × b2 + a2 × b1) · b3

... ... ... ... ... ...

2.3 Effective Procedure to Generate Valid Curvilinear Meshes

The mesh curving procedure can deal with a starting straight-sided mesh and
an existing curved mesh with invalid elements. In the case of a straight-sided
mesh, the procedure computes the Bézier control points for the mesh edges/faces
on curved domain boundaries and curves them incrementally. In the case of a
given curved mesh with different initial higher order shapes representation, for
example, Lagrange interpolation, the shapes are converted to Bézier form and
the invalid elements are detected and corrected incrementally. Central to both
of the approaches is the selection of effective local mesh modification operations
to eliminate the invalid elements till the resulting curvilinear meshes are valid.

The computation of the determinant of Jacobian to detect invalid elements
can provide useful information to determine key mesh entities and appropriate
operations to correct the invalidity. The invalid elements are defined as those
curved elements having at least one negative coefficients, c|i| ≤ 0 as shown in
Eq. 5. The key mesh entities are defined as those whose control points appear in
the computation of the negative coefficients c|i|. As an example, Figure 2 shows
an invalid quadratic tetrahedral region and the computation of the determinant
Jacobian shows that coefficient c3000 < 0. Based on Eq.8 and Table 2, the control
points b2000, b1100, b1010 and b1001 have been used to compute the c3000 which
indicates that M0

0 ,M
1
0 ,M

1
1 and M1

2 are key mesh entities and applying local

b2000

b1100 b1010

b1001

M0
1 M1

1

M2
1

M0
0

Fig. 2. The computation of det(J) indicates that the mesh entities M0
0 , M1

0 , M1
1 and

M1
2 are key mesh entities
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Fig. 3. 3D curved local mesh modification operations

mesh modifications on any of them can effectively make c3000 positive and the
curved element valid.

The set of curved local mesh modifications applied to create valid curvilin-
ear meshes include edge split, edge swap, edge collapse, region collapse, double
split+collapse, and edge re-shape [9] as shown in Figure 3. Comparing to the
straight-sided mesh, the validity check algorithm discussed in Section 2.2 is used
to determine whether a curved local mesh modification operation can be applied.
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Those operations are essential to ensure the reliability of the mesh curving pro-
cedure to create valid curved elements.

The procedure processes one curved mesh entity at a time as follows [8]:

• Determine the key mesh entities to apply local mesh operations based on the
negative coefficients, c|i| ≤ 0, in computing the determinant of Jacobian.

• Determine if the invalidity is caused by pairs of neighboring mesh faces or edges
classified on the boundary such that angles of 1800 are created. In those cases,
c|i| ≤ 0 only happens at i, j, k, l = r. Apply either split (see Figure 3(a))
or swap operations (see Figure 3(b)) to introduce additional entities to sub-
divide those larger angles to correct the invalid curved element.

• Determine if the invalidity is caused by pairs of opposite mesh edges coming
too close to each other in one curved region, where c|i| ≤ 0 happens at
i, j, k, l �= r. Apply either region split (see Figure 3(d)) or split+collapse (see
Figure 3(e)) to remove the invalid curved element.

• If neither of above two steps is successful, examine the applications of the
remaining operations (see Figure 3(c), 3(f)) to correct the invalid curved
elements.

• If the invalid curved element can not be corrected using those local mesh
operations, local refinement is applied and all new mesh entities will be added
to the list to be processed. Subdivision creates more options for applying
operations later.

Figure 4 shows the straight-sided and curved mesh for a 3D curved model
to demonstrate the effectiveness of the developed procedure. The mesh has 139
regions and 31 curved regions are invalid. 20 local mesh modifications are applied
to correct those invalid elements. Curved meshes for more complex domains used
by SLAC for electromagnetic linear accelerator analysis are shown in section 4.

Fig. 4. Straight-sided mesh (left) and curved mesh (right) for a 3D curved domain

3 Moving Adaptive Mesh Refinements in 3D Curved
Domains

The developed size driven mesh adaptation procedure [10] has been successfully
applied in cardiovascular blood flow simulations [15], metal forming process [16],
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wave propagation simulations [17], etc. where the results demonstrated substan-
tial computational efficiency can be improved using the isotropic or anisotropic
adapted meshes to effectively resolve solution fields. The procedure has been
extended to deal with curved meshes for higher order finite elements in large-
scale simulations. The extended procedure maintains the existing functionalities
developed for straight-sided meshes such as vertex-based size field specifications
and selective local mesh modification applications [10]. In addition, the following
two steps have been added in the case where the mesh is curved.

• The validity check algorithm described in Section 2.2 must be applied when
the affecting cavities for a local mesh modification operation have curved
mesh entities. This step ensures that resulting curved meshes are valid after
applying the selected local mesh operation.

• Any newly created mesh entities on the curved domain boundaries must be
properly curved to the model boundaries which ensures that the geometric
approximation of the resulting adapted meshes is maintained. As an example,
Figure 5 shows how the procedure to split a quadratic curved mesh edge M1

0

which is classified on the curved model edge G1
0. The two newly created mesh

edges M1
1 and M1

2 are also curved to the model edge G1
0.

M1
1 M2

1M0
1

M0
0

G0
1

G0
1

edge to be split
new edges

new vertex

Fig. 5. Before (left) and after (right) refine a quadratic curved mesh edge M1
0 on

model edge G1
0. New mesh edges M1

1 , M1
2 have been appropriately curved to the model

boundaries

In size driven mesh adaptation procedure, a mesh metric field, which can be
either isotropic or anisotropic, is defined to specify the desired size of elements.
The metric field is used to compute the edge length and directions of the current
mesh with respect to this metric. A series of controlled mesh modification steps
are applied to obtain a new mesh that satisfies the specified mesh metric field
which consist of the following three steps [11]:

• Coarsening stage to eliminate the mesh edges that are shorter than the de-
sired edge length in the metric field. This stage is accomplished by applying
collapse operation on the identified shorter edges one at a time.
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• Refinement stage to reduce the maximal mesh edge length to reach the de-
sired edge length in the metric field. Edge-based refinement templates and
application of local mesh modification to project the new created mesh ver-
tices to the curved boundaries are iteratively applied until the adapted mesh
satisfies the mesh size metric field requirements [10].

• Shape improvement stage to improve the quality of the resulting mesh using
swap and/or vertex reposition operations.

For large-scale adaptive simulations, discretization error estimation is applied
to construct size fields to control the mesh adaptation [15, 16, 17] in which the
adapted meshes can conform to the size requirements. However, there are certain
situations where other factors may also be applied to set the size field. For ex-
ample, the size information being given for the short-range wakefield simulations
performed by SLAC is supplemented to have a refined mesh in areas where parti-
cles currently reside. The specification of this refinement information is dictated
by the initial locations of the particles beam and the desired mesh size around
the beam which is often at least one order of magnitude smaller than the rest
of the domains. The larger size difference between the finer particle domain and
the coarse domain can lead to bad quality resulting meshes. The left mesh in
Figure 6 shows an adapted curved mesh which uses size 1 and 10 to control the
fine and coarse mesh in the model. The abrupt size field change causes meshes
at the fine and coarse mesh interface not acceptable which clearly demonstrated
that the control of the mesh gradation is needed.

Fig. 6. Curved meshes without (left) and with (right) mesh size gradation control

The procedure described in [18] is adopted to control a smooth mesh size
transition over the mesh. Central to the algorithm is that the ratio between the
larger mesh size to the smaller mesh size at the two bounding mesh vertices of
any mesh edge is under a prescribed factor β, where β > 1.
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Let M1
i be a mesh edge, M0

j1 and M0
j2 are its two bounding mesh vertices,

the given mesh sizes at each vertex are hj1 and hj2 which represent the desired
edge lengths at those two vertices. We require that,

max{hj1

hj2

,
hj2

hj1

}
1

L(M1
1 ) ≤ β (9)

where L(M1
1 ) represents the length of the mesh edge M1

i with respect to the
mesh size field as defined as,

L(M1
1 ) = ||M1

i ||
∫ 1

0

1
H(t)

dt (10)

where ||M1
i || denotes the length of the mesh edge and H(t) is a monotonic

interpolation function along the mesh edge such that H(0) = hj1 and H(1) = hj2 .
For the piecewise linear mesh size field used in this paper to track the moving
mesh adaptation in curved domains, the function H(t) is,

H(t) = hj1 + (hj2 − hj1)t (11)

Therefore, Eq.10 gives,

L(M1
1 ) = ||M1

i ||
log(hj1/hj2)
hj1 − hj2

, hj1 �= hj2 (12)

Therefore, for any mesh edge which is not satisfied in Eq.9, the larger mesh
size of its bounding mesh vertices is decreased to min(hj1 , hj2)βL(M1

i ) to meet
Eq.9. The process is iteratively performed over the mesh when all of the mesh
edges satisfy Eq.9. For the mesh shown in Figure 6(b), β is adopted as 2.0. More
moving adaptive meshes are shown in section 4.

4 Analysis Results

4.1 Curvilinear Meshes for FETD Electromagnetic Simulations

SLAC performs simulations for the wakefield effects of an 8-cavity cryomodule for
the proposed International Linear Collider (ILC) using the FETD method, which
applies a set of higher order hierarchical Nedelec basis functions [19] for the finite
element spacial discretization that requires the meshes to be curved. A curvilinear
mesh with 2.974 million quadratic isoparametric tetrahedral elements is used in
this FETD simulation. The initial curvilinear mesh uses Lagrange interpolation
to represent the higher order shapes for those curved mesh edges which have been
converted to Bézeir representations using Eq.2. 515 invalid curved elements were
detected and have been corrected using the procedure discussed in Section 2. The
valid curved mesh was exported by converting the Bézier shapes back to Lagrange
shapes to be suitable for the analysis simulation system. Figure 7 shows the curved
mesh for one cavity of the model and the close-up mesh before and after curving.
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Fig. 7. The mesh for one cavity (top), close-up mesh before (bottom left) and after
(bottom right) correcting the invalid curved elements marked as yellow

Fig. 8. Local mesh cavity before (left) and after (right) applying edge swap to correct
the invalid element

Figure 8 shows how an edge collapse operation is applied to correct the invalid
curved elements during curving process.

The mesh produced about 20 million degrees of freedom. The simulation used
256 Multi-stream processors on the Cray-X1E at Oak Ridge National Labo-
ratory. It took a total runtime of 300 wall-hours through multiple jobs with
checkpointing for a complete run and half terabtye of data was generated. Fig-
ure 9 shows a snapshot of the electric field distribution excited by a beam in the
ILC cryomodule.



Tracking Adaptive Moving Mesh Refinements in 3D Curved Domains 597

Fig. 9. A snapshot of the electric field distribution excited by a beam in an 8-cavity
cryomodule for the proposed International Linear Collider

Table 3. Statistics for correcting the 2.97M mesh with 515 invalid curved regions

Time usage (sec) Local mesh operations

Import the mesh 381.162 Edge collapse 253
Create invalid region list 45.106 Region collapse 17
Correcting invalid regions 256.182 Edge swap 76

Export the mesh 64.911 Double edge split+collapse 13
Recurving 32

The statistics for correcting the invalid curved regions is presented in Table 3.
The data shows that the procedure used about 10 minutes to correct the invalid
regions on a single processor linux workstation. The corrected curvilinear mesh
not only leads to a stable time-domain simulation but also reduces the execution
time per time-step by up to 30% due to better conditioned matrices, which is
90 wall-hours runtime efficiency improvement on the parallel computers.

4.2 Moving Adaptively Refined Meshes for Short-Range Wakefield
Calculations

A series of moving adapted meshes in a curved domain were generated using the
procedure described in Section 3 for short-range wakefield calculations by SLAC.
Figure 10 shows the geometric model which has some complex components in
the middle of domain. The initial location of the beam is at the left end of the
domain, the desired mesh size inside the particle dense mesh is 1 and the size
for the rest of the domains is 10. Figure 11 shows the moving adapted meshes
up to step 5. Figure 12 shows the interior adapted mesh at step 5. Mesh size
gradation control discussed in Section 3 is applied with β = 2.0. Figure 13 shows
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80

Fig. 10. Geometric model for the short-range wakefield simulation

(a) Initial mesh (b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4 (f) Step 5

Fig. 11. Moving adapted meshes in curved domain for short-range wakefield simulation
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(a) Interior (b) Close-up

Fig. 12. Interior mesh for the adapted mesh at step 5
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Fig. 13. Number of mesh regions at each step

the number of elements at each step which indicates that these adaptively refined
meshes have around 1 ∼ 1.15 million elements compared to the uniform refined
mesh with 6.5 million elements if the mesh size inside the particle domains is
applied in the entire domain. The increase of the number of elements in the
middle of the domain is due to the complex geometries as shown in Figure 10.
The computation effort of short-range wakefield calculations using the moving
adaptively refined meshes can be reduced by one order of magnitude compared
to the uniformly-refined mesh.
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5 Conclusion

This paper has presented a procedure to track moving adaptive mesh refinement
in curved domains which is capable of generating suitable curvilinear meshes
to enable large-scale accelerator simulations. The procedure combined a gen-
eral mesh curving tool and size-driven mesh adaptation to produce valid curved
meshes with substantially fewer elements and the analysis results demonstrated
such meshes improved the computational efficiency and reliability. Future work
will focus on the scalable parallelization of all steps for petascale simulations.

Acknowledgments

This work is supported by U.S. Department of Energy under DOE grant number
DE-FC02-06ER25769 and DE-AC02-76SF00515.

References

1. Babuska, I., Szabo, B.A., Katz, I.N.: The p-version of the finite element method.
Int. J. Numer. Meth. Engng. 18(3), 515–545 (1981)

2. Luo, X.J., Shephard, M.S., Remacle, J.F., O’Bara, R.M., Beall, M.W., Szabo, B.A.,
Actis, R.: p-version mesh generation issues. In: Proc.of 11th Meshing Roundtable,
pp. 343–354 (2002)

3. CUBIT geometry and mesh generation toolkit, http://cubit.sandia.gov
4. Simmetrix Inc. Enabling simulation-based design, http://www.simmetrix.com
5. Akcelik, V., Ko, K., Lee, L.Q., Li, Z.H., Ng, C.K., Xiao, L.L.: Shape determina-

tion for deformed electromagnetic cavities. J. Comput. Physics 227(3), 1722–1738
(2008)

6. Xiao, L., Adolphsen, C., Akcelik, V., Kabel, A., Ko, K., Lee, L.Q., Li, Z., Ng, C.K.:
Modeling imperfection effects on dipole modes in TESLA cavity. In: Proc. of 2007
Particle Accelerator Conference (2007)

7. Lee, L.Q., Akcelik, V., Chen, S., Gl, X., Prudencio, E., Schussman, G., Uplenchwar,
R., Ng, C., Ko, K., Luo, X.J., Shephard, M.S.: Enabling technologies for petascale
electromagnetic accelerator simulation. J. of Physics 78(Conference Series), 012040
(2007)

8. Luo, X.J., Shephard, M.S., Obara, R.M., Nastasia, R., Beall, M.W.: Automatic
p-version mesh generation for curved domains. Engineering with Computers 20,
265–285 (2004)

9. Luo, X.J.: An Automatic Adaptive Directional Variable p-Version Method in 3D
Curved Domains. PhD Thesis, Rensselaer Polytechnic Institute, New York (2005)

10. Li, X.R., Shephard, M.S., Beall, M.W.: Accounting for curved domains in mesh
adaptation. Int. J. Numer. Meth. Engng. 150, 247–276 (2003)

11. Li, X.R., Shephard, M.S., Beall, M.W.: 3D anisotropic mesh adaptation by mesh
modification. Comp. Meth. Appl. Mech. Engng. 194, 4915–4950 (2005)

12. Seegyoung, E., Shephard, M.S.: Efficient distributed mesh data structure for paral-
lel automated adaptive analysis. Engineering with Computers 22, 197–213 (2006)

13. Beall, M.W., Shephard, M.S.: A general topology-based mesh data structure. Int.
J. Numer. Meth. Engng. 40(9), 1573–1596 (1997)



Tracking Adaptive Moving Mesh Refinements in 3D Curved Domains 601

14. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. Academic
Press, London (1992)

15. Sahni, O., Muller, J., Jansen, K.E., Shephard, M.S., Taylor, C.: Efficient anisotropic
adaptive discretization of the cardiovascular system. Comput. Methods Appl.
Mech. Engrg. 195(41-43), 5634–5655 (2006)

16. Wan, J.: An Automated Adaptive Procedure for 3D Metal Forming Simulations.
PhD Thesis, Rensselaer Polytechnic Institute, New York (2006)

17. Chevaugeon, N., Hillewaert, K., Gallez, X., Ploumhans, P., Remacle, J.F.: Opti-
mal numerical parameterization of discontinuous Galerkin method applied to wave
propagation problems. J. Comput. Physics 223(1), 188–207 (2007)

18. Borouchaki, H., Hecht, F., Frey, P.J.: Mesh gradation control. Int. J. Numer. Meth.
Engng. 43(6), 1143–1165 (1998)

19. Sun, D.K., Lee, J.F., Cendes, Z.: Construction of nearly orthogonal Nedelec bases
for rapid convergence with multilevel preconditioned solvers. SIAM J. on Sci Com-
put. 23(4), 1053–1076 (2001)




