
July 31, 2008

Safe Points for Delaunay Refinement

Benoı̂t Hudson1

Toyota Technological Institute at Chicago
bhudson@tti-c.org

Summary. Since 1995, when Ruppert invented his Delaunay mesh refinement algorithm and
proved that it always produces a mesh barely larger than is optimal, a number of techniques
have extended his work to various settings: higher dimension, curved features, fast runtime,
parallelism, etc. Each extension needs a different method to choose vertices for the mesh, and
thus each extension needs its own tedious proof of the output size guarantee. In this research
note, I show how to classify points as safe or potentially unsafe; any algorithm that chooses
only safe points achieves the sizing guarantee. Furthermore, I show that it is easy to classify
as safe the vertices chosen in prior work. This work frees future meshing researchers to more
easily consider varying the choice of vertices in order to achieve important new properties.

1 Introduction
The Delaunay refinement method [Rup95, She98] sits at a happy confluence of the-
oretically provable qualities and good behaviour in practice. The method starts by
computing a Delaunay triangulation, then incrementally adds vertices one by one,
retriangulating after each insertion, until the mesh has the desired properties: every
mesh element has good quality, and the geometric model being meshed is accurately
represented. According to Shewchuk [She98]: The central question of any Delaunay
refinement algorithm is “where should the next vertex be inserted?” He gives what
he calls a “reasonable” answer, but it is not the only one.

In particular, Boivin and Ollivier-Gooch show how to adapt Ruppert’s algorithm
for some curved inputs [BOG02], adding vertices near the middle of a curved seg-
ment, instead of at the midpoint of a linear segment. There have recently been sev-
eral results on meshing piecewise smooth inputs in higher dimension (e.g. [RY07,
CDL07]) that discuss where to put new vertices on the curved surfaces. Away from
any surfaces, Üngör recommends using the off-center [Üng04] rather than the tra-
ditional circumcenter, nearly halving the output size in practice. Har-Peled and
Üngör [HPÜ05] use off-centers to achieve fast runtime. Alternately, Hudson, Miller,
and Phillips [HMP06] achieve fast runtime on a broader class of inputs by starting
with a very coarse mesh, then alternating between inserting input points and Steiner
(created) vertices. Refinement can also be done in parallel: the question becomes to
find a set of vertices to insert simultaneously [STÜ07, STÜ04, HMP07].

July 31, 2008

2 Benoı̂t Hudson

p

q

rp

rq

Fig. 1: Two curved features: a curve (left), and an ellipse (right). The ball B(p, rp) intersects
the curve twice, so lfs(p) < rp. Similarly, B(q, rq) intersects the ellipse in a sphere, not a ball,
so lfs(q) < rq . The local feature size is the maximum function that satisfies these constraints.

All of these articles reproduce, with minor adjustments, a proof pioneered by
Ruppert. The proof states that the algorithm terminates, and outputs a mesh only
slightly larger than is optimal. It is typically two pages long. Chernikov and Chriso-
choides [CC07] have a more general proof that encompasses a few algorithms, but
the present work provides a much broader generalization, allowing far more radical
departures from tradition.

Contributions: I describe simple rules for categorizing one or more vertices as safe
to insert, even in parallel. The rules appear in Section 3. In this research note, I
formally state the main theoretical result (Section 4), but leave the proofs to an online
manuscript [Hud08]. Finally, I provide an example of how to apply the proof.

2 Preliminaries

The quality criterion I use in this work is the Voronoi quality, which is closely related
to the well-known radius-edge ratio. Let NN(v) be the distance from a vertex v to its
nearest neighbour. Let R(v) be the distance from v to the farthest node of its Voronoi
cell. Then the vertex v is ρ-good if R(v) ≤ ρ NN(v). As input, I assume the mesher
receives a piecewise smooth complex: a set X of smooth manifolds—which I call
features—that do not intersect except at their boundaries. In the end, the mesh should
respect the geometry: each input feature should be represented or approximated by a
union of simplices (segments, or triangles) in the output mesh.

To respect both the geometry and the spacing function, the mesh must pack ver-
tices sufficiently densely. This induces a so-called local feature size function: in the
output mesh, for every point p ∈ Ω, there must be a mesh vertex within a distance of
O(lfs(p)). The function is minimal on the features, where it is defined as illustrated
in Figure 1, and elsewhere grows proportionally as we move away from features. See
the full version of this paper for a technical definition. One unfortunate fact about the
local feature size function I use is that it is only bounded away from zero if the com-
plex is non-acute—intersecting features must meet at right or obtuse angles. This is
a traditional problem with all Delaunay mesh refinement algorithms; some specially
handle small angles, while others fail or risk failing when faced with acute angles.
Properly handling inputs with acute angles remains a major open problem.

July 31, 2008

Safe Points for Delaunay Refinement 3

p

u

v

(a) QUALITY

δr

p

q

r

v

(b) YIELDING

p

(c) ENCROACHMENT

Fig. 2: Examples of almost-safe points.

3 Safe Points

Fundamentally, the safety rules must ensure that if the algorithm were to insert a
point p, then, in the output, the relation NN(p) ∈ Ω(lfs(p)) holds—that is, not only
is the mesh at least as dense as local feature size, but it is no denser. However, the
safety rules should also resemble conditions that algorithms can easily test. For the
analysis, I define safety not on points but on triples 〈p, r, f〉. They should be read
as denoting an open ball B(p, r) with radius r, centered on a point p that lies on a
feature f . Ideally, the ball should be empty of any vertices; the parameter δ allows
accounting for either purposeful perturbation or rounding errors.

Definition 1 (Almost-safe). Let X be a piecewise manifold complex. Let B(p, r) be
a ball centered on an input feature f ∈ X , but not centered on any lower-dimensional
feature. The triple 〈p, r, f〉 is almost safe if no vertex on f , nor any 0-manifold that
is a subfeature of f , lies within B(p, δr), and also one or more of the following
conditions hold (see Figure 2):
• INPUT: p ∈ X . Then we define r ≡ ∞.
• ENCROACHMENT: For some f ′ ∈ X , B(p, r) ∩ (f ∪ f ′) is not contractible.
• QUALITY: B(p, r) contains a vertex v, and |pv| ≥ ρ NN(v).
• YIELDING: B(p, r) contains both a point q that lies on fq and a vertex v that

lies on f ; f is a subfeature of fq; and q is the center of an almost-safe triple.
Under these conditions, we say that q yields to p.

I call these triples merely almost-safe, because they could be arbitrarily close to
a feature. The QUALITY and YIELDING rules would then allow arbitrary amounts of
refinement. Following prior work, I solve this issue by requiring that an almost-safe
triple that can yield must not be inserted:

Definition 2 (Full Safety). Let 〈p, r, f〉 be an almost-safe triple. The triple is fully
safe if p does not yield to any point on a subfeature of f .

The safety rules are all local checks, so we should not be surprised that we can
apply them in parallel. I use the technique of serialization: an algorithm is allowed to

July 31, 2008

4 Benoı̂t Hudson

insert a set of safe triples in parallel if there exists at least one sequential ordering of
the insertions under which each triple is safe when it is inserted. This is equivalent
to the following geometric condition (see the full-length paper):

Definition 3 (Safe Set). Let S = {〈pi, ri, fi〉, . . .} be a set of triples. We say the set
is safe if S does not have a pair of triples on the same feature, 〈p, r, f〉 and 〈p′, r′, f〉
with |pp′| < δ min(r, r′).

Definition 4 (Safe Meshing Algorithm). An algorithm is a safe meshing algorithm
for an input X if it incrementally inserts safe sets, and no other points.

p

qr

v

Fig. 3: PROJECTION

In the next section, I claim that a safe meshing al-
gorithm will necessarily terminate, as long as ρ is set
sufficiently large (we cannot ask for triangles arbitrar-
ily close to equilateral). In the case of piecewise linear
complexes, the requirement on ρ can be improved by
replacing the YIELDING rule with:

PROJECTION: 〈p, r, f〉 satisfies the YIELDING con-
ditions, and, additionally, the orthogonal projection of
q onto f is closer to v than is p, where v is defined as
in the YIELDING rule.

4 Termination proof

The key theorem shows that the lfs function acts as a lower bound on the spacing
between vertices in the final output mesh of a safe algorithm, assuming that the
quality criterion is appropriately set. Then the safe algorithm must terminate. The
proof [Hud08] invokes a parameter β. In an algorithm that uses the PROJECTION
rule, β =

√
2. If we can only prove that it uses the YIELDING rule, then β = 2. Most

extant algorithms assume they make no numerical error, and thus δ = 1.

Theorem 1. Consider the output of a safe meshing algorithm with ρ such that

δdρ > βd−1

Then, at any vertex v in the mesh, NN(v) ∈ Ω(lfs(v)). On a piecewise linear com-
plex, this means that the mesh output by the algorithm is within a constant factor
of the smallest possible mesh. For any input, this means the algorithm terminates as
long as lfs is bounded away from zero everywhere.

5 Application of the proof

Ruppert and Shewchuk give algorithms to mesh non-acute piecewise linear com-
plexes. For brevity, I discuss only Shewchuk’s algorithm, which is the three-dimen-
sional analogue of Ruppert’s. The initial step is to compute the Delaunay triangu-
lation of the input points. This corresponds to repeatedly invoking the INPUT rule,

July 31, 2008

Safe Points for Delaunay Refinement 5

which is always safe. Shewchuk also recommends maintaining a triangulation for
each input feature (each input polygon is a set of triangles, and each input segment
is a set of subsegments). Shewchuk defines an encroached subsimplex as being one
whose associated ball contains either a vertex of a disjoint feature, or a point be-
ing considered for insertion. When a subfacet is encroached, we should insert its
circumcenter p — unless the circumcenter itself encroaches a subsegment. This cor-
responds to the ENCROACHMENT and YIELDING rules. Finally, if a tetrahedron is
skinny (that is, if it has circumradius r, shortest edge uv, and r ≥ ρ|uv|), then we
may attempt to insert its circumcenter, yielding as necessary, which directly corre-
sponds to the QUALITY rule. Shewchuk proves a projection lemma: when a subsim-
plex is encroached, another subsimplex on the same feature is also encroached for
which the PROJECTION rule applies. Shewchuk uses δ = 1 in theory (in practice, nu-
merical errors may reduce δ). Theorem 1 thus proves that the algorithm terminates
for any ρ > 2, matching Shewchuk’s bound; or, in two dimensions, for ρ >

√
2,

matching Ruppert’s bound.

References

[BOG02] Charles Boivin and Carl Ollivier-Gooch. Guaranteed-quality triangular mesh gen-
eration for domains with curved boundaries. Inter. J. Num. Meth. Eng., 55(10):1185–
1213, 2002.

[CC07] Andrey N. Chernikov and Nikos P. Chrisochoides. Three-dimensional semi-
generalized point placement method for Delaunay mesh refinement. In IMR, pages
25–44, 2007.

[CDL07] Siu-Wing Cheng, Tamal K. Dey, and Joshua A. Levine. A practical Delaunay mesh-
ing algorithm for a large class of domains. In IMR, pages 477–494, 2007.

[HMP06] Benoı̂t Hudson, Gary L. Miller, and Todd Phillips. Sparse Voronoi Refinement. In
IMR, pages 339–356, 2006. See also Tech. Report CMU-CS-06-132.

[HMP07] Benoı̂t Hudson, Gary L. Miller, and Todd Phillips. Sparse parallel Delaunay mesh
refinement. In SPAA, pages 339–347, 2007.

[HPÜ05] Sariel Har-Peled and Alper Üngör. A time-optimal Delaunay refinement algorithm
in two dimensions. In SoCG, pages 228–236, 2005.

[Hud08] Benoı̂t Hudson. Safe Steiner points for Delaunay refinement, 2008. http://www.
cs.cmu.edu/∼bhudson/manuscripts/hudson08safe.pdf.

[Rup95] Jim Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh
generation. J. Algorithms, 18(3):548–585, 1995.

[RY07] Laurent Rineau and Mariette Yvinec. Meshing 3D domains bounded by piecewise
smooth surfaces. In IMR, pages 442–460, 2007.

[She98] Jonathan Richard Shewchuk. Tetrahedral Mesh Generation by Delaunay Refine-
ment. In SoCG, pages 86–95, 1998.

[STÜ04] Daniel Spielman, Shang-Hua Teng, and Alper Üngör. Parallel Delaunay refinement
with off-centers. In EUROPAR, 2004.

[STÜ07] Daniel Spielman, Shang-Hua Teng, and Alper Üngör. Parallel Delaunay refinement:
Algorithms and analyses. IJCGA, 17:1–30, 2007.

[Üng04] Alper Üngör. Off-centers: A new type of Steiner point for computing size-optimal
quality-guaranteed Delaunay triangulations. In LATIN, pages 152–161, 2004.

