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Summary. In this work we develop a procedure to deform a given surface triangu-
lation to obtain its alignment with interior curves. At present, we consider that these
curves are defined by the orthogonal projection from plane cubic splines to the initial
surface triangulation. For example, the curves can represent interfaces between dif-
ferent materials or boundary conditions, internal boundaries or feature lines. Another
possibility of this procedure is the adaption of a reference mesh to changing curves in
the course of an evolutionary process (for example, aligning of mesh nodes and edges
to moving shocks in compressible flows). Specifically, we propose a new method that
moves the nodes of the mesh, maintaining its topology, in order to achieve two objec-
tives simultaneously: the piecewise approximation of the curves by edges of the surface
triangulation and the optimization of the resulting mesh. We will designate this proce-
dure as projecting/smoothing method and it is based on the smoothing technique that
we have introduced for surface triangulations in previous works. The mesh quality im-
provement is obtained by an iterative process where each free node is moved to a new
position that minimizes a certain objective function. The minimization process is done
on a surface projection plane attending to the surface piece-wise approximation and
to an algebraic quality measure (mean ratio) of the set of triangles that are connected
to the free node. So, the 3-D local projecting/smoothing problem is reduced to a 2-D
optimization problem. Several applications of this method are presented.

Keywords: Mesh alignment, Moving meshes, Mesh adaptation, Surface mesh smooth-
ing, Node movement, R-adaptivity.

1 Introduction

The numerical simulation of physical problems requires the internal boundaries
and discontinuities to be properly represented. Usually, the largest errors are
introduced in a neighborhood of such discontinuities. These errors are often
greatly reduced if the mesh is aligned with the discontinuities. That is why it
is desirable to have a procedure capable of deforming a given triangulation to
get its alignment with a curve. Although there are numerous works dealing with
surface mesh optimization, see for example [9, 10], only a few of them address
the problem of the exact mesh alignment with interior curves. In fact, the only
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paper that we have found in the bibliography tackling this question in similar
terms, but for quadrilateral grids is [12]. The authors consider the problem of
aligning a planar grid with multiple embedded curves defined by basic segments
as straight lines or arcs of circle. A different approach to the problem can be
found in [3], where the curve is approximated by a polygonal line included in
the surface triangulation, but in this case the segments are not edges of the
mesh. The paper [19] presents a variant of Ruppert’s algorithm for producing
a 2-D Delaunay triangulation of a domain containing arbitrary curved inputs.
Nevertheless, this algorithm does not allow a dynamical adaption of the mesh
without remeshing.

The procedure that we describe in this paper aligns a given surface triangu-
lation with an arbitrary curve and it is based on the surface mesh smoothing
technique proposed in [5]. An analytical representation of the curve is not usually
available. Instead, it is approximately known by a sequence of interpolating data
points. We have chosen a parametric cubic spline as interpolating curve due it
is C2 continuous and it has other interesting properties that will be used later.
Obviously, the grade of approximation of the curve depends on the element sizes,
therefore, a good strategy is to combine the projecting/smoothing technique with
a local mesh refinement [11]. Our procedure is specially indicated for evolution-
ary problems where the boundaries change their shape or position with time;
for example, the ones related to fluid-structure interactions involving large dis-
placement (see, for example [21]), or crack modeling. The projecting/smoothing
technique could be also applied to domain decomposition, definition of material
interfaces, free boundary problems, etc.

The organization of the paper is as follows. In section 2 a rough description
of the proposed method is presented. In section 3 we propose an objective func-
tion, and the corresponding modification, able to untangle and smooth plane
triangulations simultaneously. The projecting/smoothing method is initially an-
alyzed for plane triangulations in section 4 and, afterward, it is extended to
triangulations defined on curved surfaces in section 5. Section 6 is devoted to
applications. The paper concludes with a brief discussion of the work and its
possible extensions.

2 Statement of the Projecting/Smoothing Method

Let C be a curve, and suppose that it is embedded in a surface triangulation
TΣ (see Figure 1). The basic idea of the projecting/smoothing method lies in
relocating the nodes of TΣ closest to C in positions just sited in the curve. This
operation, which we will refer to as node projection onto the curve, goes on until
getting an approximate representation (interpolation) of C by linked edges of
TΣ. A node of TΣ is considered projectable if we can displace it from its initial
position to any point of C in such a way the local mesh does not get tangled.
This projection implies an enforced alteration of the original positions of the
nodes and, in general, has a negative effect on the quality of the triangles close
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Fig. 1. The relocation of node p ∈ Σ is performed in the plane P by projecting q on
Q and, consequently, p on C

to C. To avoid this drawback, the remaining nodes are also displaced to new
positions following the smoothing procedure proposed in [5].

For 2-D (or 3-D) meshes, the quality improvement can be obtained by an
iterative process where each node of the mesh is moved to a new position that
minimizes an objective function derived from certain algebraic quality measure of
the local mesh [15, 8]. The objective function presents a barrier in the boundary
of the feasible region associated to the free node. In this context the 2-D (or
3-D) feasible region is the set of points where the free node could be placed to
get a valid local mesh, that is, without inverted elements. The barrier has an
important role because it avoids the optimization algorithm to create a tangled
mesh when it starts with a valid one. We show in [5] a procedure for smoothing
surface triangulations taking into account these aspects. The basic idea lies in
transforming the original problem on Σ into a two-dimensional one on a plane
P . To do this, the local mesh M(p), belonging to TΣ, is orthogonally projected
onto a plane P performing a local mesh N(q), where p is the free node on Σ and
q is its orthogonal projection onto P . The plane P is suitably chosen in terms of
M(p) in order to get a valid mesh on P (see Figure 1). Thus, the optimization of
M(p) is got by the appropriate optimization of N(q). It involves the construction
of ideal triangles in N(q) that become near equilateral in M(p).

When Σ is a curved surface, each triangle of M(p) is placed on a different
plane. Therefore, it is not possible to define the feasible region associated to the
free node p. Nevertheless, the feasible region associated to node q is perfectly
defined in plane P and it is denoted as Hq. Furthermore, its associated objective
function has a barrier at the boundary of Hq (see [6]). This is a crucial reason
for working on P instead of on Σ.
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In the present work the curve C is defined as the image of a curve Q sited on
a plane P . Specifically, if we define a plane curve by the parametrization Q(u) =
(x(u), y(u)) and we consider that f (x, y) is the z coordinate of the underlaying
surface (the true surface, if it is known, or the piece-wise linear interpolation,
if it is not), then the curve C is given by C(u) = (x(u), y(u), f (x(u), y(u)))
(see Figure 1). We note that this type of parametrization can be straightforward
introduced in the new meccano method which has been recently developed by the
authors [4]. We remark also that, although the surface mesh smoothing process
can be carried out in different planes chosen in terms of M(p) [5], the particular
way in which C is defined in the present paper demands a unique plane. A
general parametric curve C(u) = (x(u), y(u), z(u)) will be considered in future
works.

Since the problem of getting a piecewise approximation of C by edges of TΣ

is translated to the plane P , the task to determine if a node q can be projected
onto Q and, that being the case, which is its optimal position, is undertaken by
an objective function derived from algebraic quality measures of the local mesh
N(q). This objective function incorporates the modifications proposed in [6] in
order to deal with tangled meshes. Obviously, a control of the allowed distance
between M(p) and M(p′) is done in the analysis of the movement of node q.

3 Smoothing and Untangling of Plane Triangulations

Firstly, we will focus our attention on finding an objective function to smooth
a valid plane triangulation. As it is shown in [8], [13], and [14] we can derive
optimization functions from algebraic quality measures of the elements belonging
to a local mesh. Let us consider a triangular mesh TP defined in R

2 and let t
be a triangle in the physical space whose vertices are given by xk = (xk, yk)T ∈
R

2, k = 0, 1, 2. To start with, we introduce an algebraic quality measure for t.
Let tR be the reference triangle with vertices u0 = (0, 0)T , u1 = (1, 0)T , and
u2 = (0, 1)T . If we choose x0 as the translation vector, the affine map that
takes tR to t is x = Au + x0, where A is the Jacobian matrix of the affine map
referenced to node x0, given by A = (x1 − x0,x2 − x0). We will denote this
type of affine maps as tR

A→ t. Let now tI be an ideal triangle whose vertices are
wk ∈ R

2, (k = 0, 1, 2) and let WI = (w1−w0,w2−w0) be the Jacobian matrix,
referenced to node w0, of the affine map tR

WI→ tI ; then, we define S = AW−1
I

as the weighted Jacobian matrix of the affine map tI
S→ t. In the particular case

that tI was the equilateral triangle tE , the Jacobian matrix WI = WE will be
defined by w0 = (0, 0)T , w1 = (1, 0)T and w2 = (1/2,

√
3/2)T .

We can use matrix norms, determinant or trace of S to construct algebraic
quality measures of t. For example, the Frobenius norm of S, defined by |S| =√

tr (STS), is specially indicated because it is easily computable. Thus, it is
shown in [15] that qη = 2σ

|S|2 is an algebraic quality measure of t, where σ =
det (S). We use this quality measure to construct an objective function. Let
x = (x, y)T be the position vector of the free node q, and let Sm be the weighted
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Fig. 2. The curve Q intersects the feasible region Hq (in gray) and, therefore, the node
q is projectable, being q′ its optimal position on the curve

Jacobian matrix of the m-th triangle of a valid local mesh N(q) composed of
M triangles, see Figure 2. The objective function associated to m-th triangle is
|Sm|2
2σm

, and the corresponding objective function for the local mesh is

|Kη|n (x) =

[
M∑

m=1

(
|Sm|2

2σm

)n

(x)

] 1
n

(1)

being n an integer number, typically n = 1 or n = 2.
The feasible region for the local mesh is defined as the interior of the polygonal

set Hq =
M⋂

m=1
Hm, where Hm are the half-planes defined by σm (x) ≥ 0. We say

that a triangle is inverted if σ < 0. The objective function (1) presents a barrier
in the boundary of the feasible region. This barrier avoids the optimization
method to create a tangled mesh when it starts with a valid one, but, on the
other hand, it prevents the algorithm to untangle it when there are inverted
elements. Therefore, this objective function is only appropriate to improve the
quality of a valid mesh, not to untangle it. To construct an objective function
applicable to deal with tangled meshes we propose to modify it following the
criteria developed in [6]. This modification lies in substituting σ in (1) by the
positive and increasing function

h(σ) =
1
2
(σ +

√
σ2 + 4δ2) (2)

where the parameter δ = h(0) is an appropriate small value.
In this way, the barrier associated with the singularities of |Kη|n (x) will be

eliminated and the modified objective function will be smooth all over R
2
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∣∣K ′
η

∣∣
n

(x) =

[
M∑

m=1

(
|Sm|2

2h (σm)

)n

(x)

] 1
n

(3)

This new objective function strongly penalizes the negative values of σ, so
that the minimization process of (3) leads to the construction of a local mesh
N(q′) without inverted triangles, provided it is possible. Note that the minimum
of original and modified functions are nearly identical when Hq �= ∅ and δ tends
to zero. With this approach, we can use any standard and efficient unconstrained
optimization method to find the minimum of the modified objective function,
see for example [2].

4 Alignment of Plane Triangulations

Node movement provides the mesh with the ability to align with an arbitrary
curve. Suppose that Q is a curve defined on a 2-D triangulation TP , our objective
is to move some nodes of TP , projecting them onto Q, to get an interpolation
of Q by linked edges of TP . To achieve this objective we have to decide which
nodes of TP can be projected onto Q without inverting any triangle of its local
mesh. More accurately, we say that the free node q is projectable onto Q if there
are points of this curve belonging to the feasible region Hq (see Figure 2).

In general, if q is projectable, its possible placement on Q is not unique. The
projecting/smoothing method must determine if q can be projected onto Q and,
if so, which is its optimal position. The last question can be answered by using
the objective function (3) subject to the constrained x ∈ Q. Thus, the problem
of finding the optimal position to project the free node onto the curve is

minimize
∣∣K ′

η

∣∣
n

(x) , subject to x ∈ Q (4)

If x̄ is the position vector of the minimizing point q′ of (4) and σ (x̄) > 0
for all triangle of N(q′), we conclude that q is projectable onto Q and x̄ is its
optimal position. Otherwise, we say that node q is not projectable.

4.1 Curve Definition

The previous criterion allows us to determine whether q is projectable onto Q
or not, but it involves a high computational cost because it needs to solve the
constrained minimization problem (4). Nevertheless, it is clear that most nodes
of TP are not projectable because they are very far from any point of the curve.
Therefore, it is convenient to have an efficient method to select those nodes,
close to some segment of Q, expected to be projectable.

In many situations of practical interest we do not have an analytical repre-
sentation of Q, but Q is approximately known by a sequence of interpolating
data points. Among the options to define an interpolating curve, we have chosen
a parametric cubic spline as it has many desired properties: it is a C2 continuous
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function, it has a very simple local form, small oscillations, etc. Moreover, each
segment of the spline is a degree 3 Bézier curve that lies within the convex hull
of its four defining control points (see, for example [1]). We will use this property
in order to know if a given node is close to some segment of Q.

Let {P0, P1, . . . , Pm} ⊂ R
2 be a set of interpolating points belonging to plane

P . The parametric cubic spline

Q(u) = (x(u), y(u)), where u ∈ [u0, um] (5)

is an interpolating curve that satisfies Q(ui) = Pi for i = 0, . . . ,m and two
additional constraints in order to be fully defined. Usually, these constraints
are imposed at the ends of the curve. For example, it is well known that the
conditions Q′′(u0) = 0 and Q′′(um) = 0 define a spline known as natural.

Every segment of the spline delimited by two consecutive interpolating points
is a degree 3 polynomial. Suppose that Qi(t) = ai+bit+cit2+dit3, with ai, bi, ci

and di in R
2, is the polynomial associated to the segment Qi (i = 0, 1, . . . ,m−1)

that runs from Pi to Pi+1, being t ∈ [0, 1] the local parameter, see Figure 3. This
one is related with the parameter of the entire curve by t = (u− ui) / (ui+1 − ui).

4.2 Node Projection onto the Curve

The Qi segment also is a degree 3 Bézier curve, given by Qi(t) =
∑3

j=0 ui
jB

i
j (t)

with t ∈ [0, 1], where Bi
j (t) are the Berstein polynomials and ui

j ∈ R
2 are the

control points. The relation between the polynomial coefficients and the control
points are given by ⎛⎜⎜⎝

ui
0

ui
1

ui
2

ui
3

⎞⎟⎟⎠ =
1
3

⎛⎜⎜⎝
3 0 0 0
3 1 0 0
3 2 1 0
3 3 3 3

⎞⎟⎟⎠
⎛⎜⎜⎝

ai

bi

ci

di

⎞⎟⎟⎠ (6)

As we have already said, an interesting property of the Bézier curves estab-
lishes that the Qi segment lies within the convex hull of its control points. If
CH denotes the convex hull of a set of points, we have Qi ⊆ CH

(
ui

0, . . . ,u
i
3

)
.

Note that a necessary (but not sufficient) condition for the node q to be pro-
jectable onto Q is that its feasible region Hq intersects the convex hull of some
segment of the curve. In other words, it must exist a segment Qi such that
Hq ∩ CH

(
ui

0, . . . ,u
i
3

)
�= ∅. This property allows us to know beforehand which

nodes are not projectable, because they yield an empty intersection for all seg-
ments of the curve. Nevertheless, calculating the set Hq and, moreover, its in-
tersection with a convex set, is not a trivial problem, so it is more advisable to
deal with a simplified version.

Let Rq and RQi be the minimal rectangles, with sides parallel to the axes,
enclosing the sets N(q) and CH

(
ui

0, . . . ,u
i
3

)
, respectively. Then, due toHq ⊂ Rq,

it is clear that q is projectable onto Qi only if Rq ∩RQi �= ∅ (see Figure 3). The
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Fig. 3. The figure shows the situation in which Rq ∩ RQi �= ∅, but node q is not
projectable because the optimal position for the free node, q′, is outside the feasible
region

computation of this intersection allows us to take a quick decision about if a
node is candidate to be projected onto the curve.

The algorithm to determine if q is projectable onto Q and, if it is so, which
is its optimal position, can be summarized as follows. For each segment of the
curve analyze Rq ∩ RQi and, if this set is not empty, solve the minimization
problem

minimize
∣∣K ′

η

∣∣
n

(Qi (t)) , for t ∈ [0, 1] (7)

Let t̄ be the global minimum of (7) and x̄i = Qi (t̄) the corresponding position
of the free node q on the segment Qi. We say that x̄i is an admissible optimal
position for the free node if σm (x̄i) > 0 for m = 1, . . . ,M . In order to determine
the optimal position of the free node on Q, we take x̄opt as the best admissible
position for all segments Qi. Obviously, if no admissible position exists, the
conclusion of previous algorithm is that node q is not projectable onto Q.

Take into account that an admissible projection of a free node on Q can
give rise to a local mesh with very poor quality. Although this effect is partly
palliated after smoothing the remainder nodes, following the procedure described
in section 3, it is appropriate to tighten the condition σm (x̄i) > 0 enforcing
σm (x̄i) > ε, with ε > 0 a prescribed tolerance. Nevertheless, this more restrictive
condition makes it difficult for the nodes to be projected onto the curve and it
could produce situations where some sections of the curve are not interpolated
by edges of TP . This drawback will be studied in the next subsection but, for
that purpose, it needs further clarification.

Up to now, we have accepted that parameter t pertains to the closed inter-
val [0, 1] and, in consequence, the problem (7) admits a global minimum. But,
with this consideration, the ends of the consecutive segments are shared and,
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therefore, a projected point can belong to two segments at the same time. In
order to avoid this ambiguity, we will assume that each segment Qi (t) is defined
for t ∈ [0, 1), except the last one, that it is for t ∈ [0, 1] if the curve is open. In
this way, each point of the curve belongs to a unique segment.

4.3 Discontinuities of the Mesh Alignment with the Curve

It can happen that, after repositioning all the nodes of the mesh, the piecewise
approximation of Q by edges of TP is not continuous. We can detect this dis-
continuity if we take into account that the projected nodes are arranged in the
curve. Thus, a section of the interpolated curve among two consecutive projected
nodes is discontinuous if they are not connected by an edge of TP .

As the parameter t ∈ [0, 1) induces an order relation in each segment of the
curve and, in turn, each segment is ordered by its subindex, we can say that the
node p ∈ Qi precedes p′ ∈ Qj if i < j or, in case of i = j, if the corresponding
parameters satisfies tp < tp′ . A possibility to correct a detected discontinuity
in the piecewise approximation of Q is to relax the condition σm (x̄i) > ε, by
decreasing the value of ε. However, there are situations in which, even taking
ε equal to zero, there are discontinuities impossible to avoid without removing
some of the projected nodes. The Figure 4(a) shows a scheme of this problem.
It can be seen that it is impossible to project the node q (neither r) without

r

Q
a

b

c

q

(a)

r

Q

c

b

a q

(b)

r

q Q

a
b

c

(c)

Fig. 4. The dashed line is non-recoverable without tangling the mesh (a). The free
node q is enforced to be projected (b). The tangled triangle abq is untangled and the
node c is also projected (c).
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tangling the mesh. We propose a solution to this conflict by enforcing the free
node q to be projected, even if a tangled mesh is created. The Figure 4(b) shows
how the movement of q produces the tangled triangle abq.

Afterward, the position of q is fixed for subsequent iterations of the project-
ing/smoothing algorithm, but the surrounding nodes are free to move in search
of their optimal positions that untangle the mesh and complete the interpola-
tion of the curve (see 4(c)). So, the algorithm extracts nodes from the curve
if their current positions are not admissible (see the new position of node a in
figure 4(c)).

Sometimes the curve represented by splines has sharp features that we want to
preserve in the piecewise interpolation. To reach this objective we select, from the
interpolating points, a set of prescribed points sited in strategic locations. Once
the projecting/smoothing process has finished, the algorithm searches among
the nodes projected on Q, which one is the optimal candidate, say q, to be
relocated in the position of each prescribed node. If xpres is the position of
certain prescribed point, the node q is chosen, among the nodes projected on
Q and close to xpres, as the one that maximizes the quality of N (q) when q
is enforced to take the position xpres. Obviously, if N (q) is not valid after the
relocation of q, a new iteration of the projecting/smoothing procedure must be
done.

5 Extension to Curved Surfaces

We are interested in extending the projecting/smoothing method to curved sur-
faces. As we pointed in section 2, the original problem on Σ is transformed into
another one on the plane P . The more significant difference with respect to the
former method lies in searching ideal triangles in N(q) that become equilateral
in M(p). Due to restriction of the extension of this paper, we summarize in this
section our main result relative to this aspect. A detailed analysis can be carried
out in the surface mesh smoothing procedure that is presented in [5]. Its con-
nection with the problem of surface mesh aligning with curves could be easily
implemented.

Consider that triangle t ∈ N(q) (located in plane P ) is the orthogonal pro-
jection of triangle τ ∈M(p) (located in plane π), see Figure 5. Let tR and τR be
the references triangles defined in planes P and π, respectively. Suppose that we
chose as ideal triangle in π the equilateral one (τI = τE). Our goal is to find the
ideal triangle tI ⊂ P , moving q on P , such that tI is mapped into an equilateral
one, τE ⊂ π. For this purpose, the following similarity transformation between
the matrices S and SI was proved in [5]

S = S−1
E SISE (8)

where S is defined on the plane π as the 2× 2 weighted Jacobian matrix of the
affine map that transforms the equilateral triangle into the physical one, that is,
τE

S→ τ , SE is defined on plane P as the equilateral-weighted Jacobian matrix
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Fig. 5. Local surface mesh, M(p), and its projection, N(q), on plane P

of the affine map tE
SE→ t and SI is defined on plane P as the ideal-weighted

Jacobian matrix of the affine map tI
SI→ t.

Matrices S may be used, as it is defined in (8) for any triangle τ ∈ M(p),
to construct the objective function associated to M(p) and, then, solve the op-
timization problem. Nevertheless, this procedure has important disadvantages.
First, the optimization of M(p), working on the true surface, would require the
imposition of the constraint p ∈ Σ. It would complicate the resolution of the
problem because, in many cases, Σ is not defined by a smooth function. More-
over, when the local mesh M(p) is on a curved surface, each triangle is sited
on a different plane and the objective function, constructed from S, lacks bar-
riers. It is impossible to define a feasible region in the same way as it was done
at section 3. Indeed, all the positions of the free node, except those that make
det(S) = 0 for any triangle, produce correct triangulations of M(p). However,
there are another unacceptable positions of the free node.

To overcome these difficulties we proposed in [5] to carry out the optimization
of M(p) in an indirect way, working on N(q). With this approach the movement
of the free node will be restricted to Hq ⊂ P , which avoids unacceptable surface
triangulations to be formed. Then, the original smoothing problem is trans-
formed in a two-dimensional approach on P . The algorithm to determine the
optimal projection of a free node p ∈ Σ onto the curve C is reduced to the
one presented in section 4 for reaching the optimal projection of q onto Q. If
x̄opt is the optimal projection of the free node q onto Q, then the corresponding
position on the surface is given by ȳopt = (x̄opt, f(x̄opt))T , where f(x) is the
z coordinate of the underlaying surface. If this one is not known analytically,
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we take the initial triangulation as reference surface. The algorithm follows the
usual smoothing procedure when the free node is not projectable on C. The dis-
continuities of the mesh alignment with the curve are solved by using the same
idea of section 4.3.

In order to prevent a loss of the details of the original geometry when we
are smoothing the mesh, our algorithm evaluates the difference of heights ([∆z])
between the centroid of the triangles of M(p) and the reference surface, every
time a new position of the free node is calculated. If this distance exceeds a
threshold, ∆(p), the movement of the node is aborted and the previous position
is stored. This threshold ∆(p) is established attending to the size of the elements
of M(p). That is, the algorithm evaluates the average distance between the
free node and the nodes connected to it, and takes ∆(p) as percentage of this
distance. Other possibility is to fix ∆(p) as a constant for all local meshes. In
the particular case in which we have an explicit representation of the surface
by a function f(x, y), ∆(p) can be established as a percentage of the maximum
difference of heights between the original surface and the initial mesh.

6 Applications

In this section we present an application that shows the satisfactory behav-
ior of the projecting/smoothing technique. In particular, we have applied the
projecting/smoothing technique to the Igea surface triangulation (see Figure 6)
obtained from http://www.cyberware.com/. The mesh contains 67170 triangles
and 33587 nodes.

Our goal is to obtain a new triangulation (maintaining the initial mesh topol-
ogy) after applying the projecting/smoothing procedure to reach the alignment
of the new mesh with the contours of a mask and of a star drawn on the face
of Igea. These curves are defined by the spline piece-wise interpolation of a few
points that are placed on a front view of Igea. In Figure 7 we show the poly-
lines that connect the fixed points for the definition of the mask and the star.
Moreover, we construct several reference windows to define surface patches and
to evaluate the coordinate transformation from the image parametric space to
the physical one. In order to keep the sharp angles of the star drawing, we have
prescribed 10 points as the extremes of 10 splines. We propose the following
strategy to get our objective.

Initially, we apply the smoothing technique [5] to the whole triangulation.
In this case, the projection plane is chosen in terms of the local mesh to be
optimized. The resulting mesh, after 4 iterations of our optimization procedure,
is shown in Figure 8. The value of the average mesh quality (measured with
the algebraic quality metric based on the condition number proposed in [8])
increases from 0.794 to 0.913. A more significant data is that average quality of
the worst 100 triangles increases from 0.379 to 0.575. We have fixed ∆(p) as 10%
of average distance between the free node and the nodes connected to it. More
details about this application can be seen in [17].
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Fig. 6. Original mesh of Igea obtained from http://www.cyberware.com/

Fig. 7. Point input data for the definition of the curves, approximation of the splines
as polylines and reference windows
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Fig. 8. Optimized mesh of Igea after 4 iterations of our smoothing procedure

Fig. 9. Aligned and optimized mesh of Igea after 12 iterations of the local project-
ing/smoothing procedure
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(a)

(b)

Fig. 10. Detail of the initial mesh of Igea with marked edges before projection (a).
The same edges are remarked after the algorithm has projected them onto the contours
of the mask and the star (b).

In order to reduce the computational cost of the alignment step, the project-
ing/smoothing process is carried out on the surface patches associated to the
mask and to the star. For this purpose, we select the set of triangles whose cen-
troids are included in the reference windows of the mask and of the star. Then,
we apply the projecting/smoothing procedure to these two sets separately. We
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note that, in the former process, the boundary of each patch triangulation is
fixed. So, we obtain an appropriate connection of the modified local meshes with
the rest of the surface triangulation. These ideas could be used for a parallel
implementation of the simultaneous aligning and smoothing local technique.

In Figure 9 it is presented a general view of the surface triangulation of Igea
after applying 12 iterations of the aligning and smoothing procedure. The ap-
proximation of the contours by edges of the resulting triangulation is marked.
After the application of our algorithm the values of minimum and average qual-
ities become 0.100 (same value than in previous meshes) and 0.911, respectively.
The average quality of the worst 100 triangles is 0.519. Therefore, the mesh
qualities are similar before and after the application of the projecting/smoothing
technique.

Two details of the initial and final meshes (Figures 8 and 9) are shown in
Figures 10(a) and (b), respectively. We represent the same marked edges before
and after the local projecting/smoothing process. We note that it is very difficult
to determine a priori which are the best edges for a suitable approximation of
the contours of the mask and the star. However, the algorithm finds appropriate
nodes (and consequently edges) automatically.

7 Concluding Remarks and Future Research

In this paper we have introduced the projecting/smoothing technique which is
able to align a surface triangulation with arbitrary curves without producing, in
general, a significant decrease in the minimum quality of the mesh. Indeed, the
average quality is increased in many cases as the remainder part of the mesh
undergoes a smoothing process.

In present work the curves have been defined by splines whose interpolating
points are fixed on a plane. Applications of this technique can be done in a
straightforward manner, for example, in environmental modeling [16, 18] for
aligning topographic surface meshes to significant contours, as coastlines, river
banks, etc. In addition, this particular curve definition can be applied on different
patches of a more general surface.

Our method for aligning and smoothing of surface triangulations could be
generalized by using a global parametric space (in similar terms as it is pro-
posed in [7, 20]) which makes the projection on a plane unnecessary. So, general
parametric curves embedded on the surface will be considered. Another more
ambitious generalization lies in extending the present method to align a tetra-
hedral mesh with interior surfaces. This is an open problem. It is clear that the
mesh alignment problem is not always possible to solve. Generally, the existence
of an admissible solution can not be assured. Moreover, several admissible solu-
tions may exit. Obviously, the existence of solution of the problem depends on
size, quality and topology of the initial mesh and regularity of the embedded
curves or surfaces.
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