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Summary. Anisotropic mesh adaptation is a key feature in many numerical simu-
lations to capture the physical behavior of a complex phenomenon at a reasonable
computational cost. It is a challenging problem, especially when dealing with time
dependent and interface capturing or tracking problems. In this paper, we describe a
local mesh adaptation method based on an extension of the Delaunay kernel for creat-
ing anisotropic mesh elements with respect to adequate metric tensors. In addition, we
show that this approach can be successfully applied to deal with fluid-structure inter-
action problems where parts of the domain boundaries undergo large displacements.
The accuracy and efficiency of the method is assessed on various numerical examples
of complex three-dimensional simulations.

1 Introduction

In the context of numerical simulations based on variational methods, adaptive
and anisotropic triangulations have proven to be very effective for solving com-
plex physical and biomedical problems described by a set of partial differential
equations; see for instance [19, 30, 32]. Actually, many applications (e.g., in solid
and fluid dynamics, combustion, heat transfer, etc.) require localized regions of
the computational domain to have a larger mesh density, i.e., closely-spaced ver-
texs, to capture the singular or nearly singular solutions that develop in such
regions and to resolve large solution variations sufficiently accurately. Solving
these equations with a uniform mesh would require a huge number of mesh ver-
texs, often out of reach of the current computer technology. Indeed, the aim of
mesh adaptation is twofold: improving the efficiency of the method for better
accuracy and stability at a lower computational expense.

On the other hand, dynamically evolving surfaces arise in numerous compu-
tational applications, such as free surfaces in multiphase flows or moving and de-
forming interfaces in fluid-structure interactions, biomedical surfaces, etc. These
applications require or involve potentially large displacements or deformations
of the domain geometry in time. Furthermore, this moving geometry is generally
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part of the solution of a set of partial differential equations and thus it is not
known by or described by an analytical model. Such surfaces can be success-
fully handled by level set formulations [29] or implicit surfaces. In many cases,
it is again more efficient to use anisotropic elements and to adapt the mesh to
capture the interface or to follow the severe deformations of the geometry. The
goal of this paper is to provide such mesh adaptation features for unstructured
simplicial meshes in view of time-dependent and geometry evolving simulations.

In general, anisotropic mesh adaptation aims at equidistributing the approxi-
mation error by adjusting locally the mesh density according to a metric tensor
field based on the Hessian of the numerical solution [16, 18]. It relies on the abil-
ity to control the size, the shape and the orientation of the mesh elements. In
addition to improving the accuracy of the solution, anisotropy allows to preserve
the order of convergence of the computational schemes [19]. It has already been
largely shown that highly stretched mesh elements can interpolate a smooth
function much more accurately than an isotropic mesh with regular elements
[3, 33, 34]. As we will emphasize here, anisotropic elements also have the ad-
vantage of introducing regularity in the approximation of interfaces between
physical domains.

The contributions of this paper are the following. First, it provides a general
context for anisotropic Delaunay-based mesh adaptation in three dimensions,
based on a local point insertion procedure. In this respect, it can be considered
as an extension of previous works on anisotropic meshing for complex domains
[7, 9, 12, 13, 22, 32]. It can also be related to computational geometry results on
Delaunay insertion of Steiner points in a triangulation, sometimes called point
placement methods [11, 26]. However, here we provide a straightforward and con-
vergent algorithm to locally adapt the mesh elements to any anisotropic metric
tensor. Furthermore, we show how a slight modification of the Delaunay kernel
allows us to prevent the generation of badly-shaped elements. Since our approach
is based on local mesh modifications, the termination of the algorithm is straight-
forward, although the resulting triangulation fulfill the Delaunay criterion only
locally. Second, this paper explains how to build an anisotropic metric tensor for
level set interface tracking, following the ideas of [14]. Then, we show how this
method can be efficiently used to resolve fluid-structure interactions and mov-
ing mesh problems where the computational domain geometry undergoes large
displacements. We demonstrate benchmark and simulation results on rigid-body
and on fluid dynamics simulations. For the sake of simplicity however, we will
assume in all these simulations that the initial surface mesh is not concerned by
adaptation. The local adaptation of surface meshes has been largely discussed in
other papers over the last years (surveys can be found in [17, 27], for instance).

The remainder of this paper is organized as follows. In Section 2, we review the
main issues of anisotropic mesh adaptation based on Riemannian metric tensors.
This notion of an anisotropic metric tensor has been described in a general
purpose book [18] and in many research papers. In particular, we outline the
definition of a metric tensor, the notion of metric intersection and interpolation.
In Section 3, we show how the classical Delaunay mesh generation procedure can
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be extended to the anisotropic context. In particular, we show how to compute
the Delaunay kernel used for point insertion in the Bowyer-Watson approach to
mesh generation. In Section 4, we describe our local mesh adaptation algorithm.
Numerical examples of simulations are given in Section 5 to show the efficiency
of the approach.

2 Anisotropy and Metric Related Issues

As pointed out already [18, 23], anisotropic meshing is closely related to differen-
tial geometry concepts and numerical error estimates. Here, we will briefly review
the theoretical material (curvature estimates, metric tensor field, mesh quality)
for anisotropic meshing strictly required to understand our approach, as it has
already been thoroughly described in various papers [1, 3, 7, 12, 13, 15, 22, 19].

2.1 Basic Definitions

We introduce the following notations: Ω denotes a simply connected open
bounded domain in R

3, Ω is the closure of Ω and |Ω| is the d-dimensional mea-
sure or the volume of Ω. We suppose we are given a conforming triangulation
Th on Ω, h representing the characteristic element size. Each element K ∈ Th is
a closed subdomain of Ω and we assume that Ω =

⋃
K∈Th

K and that the usual
finite element requirements are satisfied (i.e., non-overlapping and intersecting
elements are disallowed).

A uniform mesh of Ω is then a mesh in which all elements are equally-sized
and regular. In such case, if |Th| represents the number of mesh elements and
hK = diam(K) the diameter of K, the size h = max

K∈Th

hK is given by the relation:

hK ≈
(
|Ω|
|Th|

)1/d

∀K ∈ Th .

A quasi-uniform mesh is a mesh for which (i) there exists a constant τ such that

hK

ρK
≤ τ ∀K ∈

⋃
h

Th ,

where, for any open ball Bi ⊂ K, ρK = supi{diam(Bi)} is the in-diameter of
K and (ii) the variation of h is bounded by a constant. Notice that this notion
does not assume a constant mesh size over the domain.

2.2 Metric Tensors

Essential to mesh adaptation is the ability to control the size, the shape and
the orientation of mesh elements. This specification is usually based on an er-
ror estimate or an error indicator. Typically, it uses a matrix-valued field for
anisotropic mesh adaptation.
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On the continuous level, it is suitable to consider that mesh elements are
represented by ellipsoids. In this geometric representation, the size of the element
is its volume, the shape is associated with the ratio of the lengths of its semi-axes
and the orientation is provided by its principal axis vectors. Then, their control
can be achieved by specifiying a metric tensor M(x) to indicate the size, shape
and orientation of mesh elements on the whole domain. Here, M(x) is a 3 × 3
symmetric positive definite matrix, sometimes referred to as a monitor function
[23]. The function ρ(x) =

√
det(M(x)) is called the adaptation function. This

metric tensor is used to generate a quasi-uniform mesh of Ω in the metric related
to M . The volume of an element K ∈ Th is unitary:∫

K

√
det(M(x)) dx =

∫
K

ρ(x) dx = 1 , ∀K ∈ Th

and corresponds to the discrete formulation:

|K|
√

det(MK) = 1 , ∀K ∈ Th ,

where MK is an average of M(x) on K. By extension, the length of a curve γ in
a metric M given by M(x) for any x ∈ Ω is defined as:

|γ|M =
∫ 1

0

√
〈γ′(t),M(γ(t))γ′(t)〉dt ,

where γ(t) : [0, 1] → R
d is a parametrization of γ. By analogy, the length of a

mesh edge e is defined as:

lM (e) =
∫ 1

0

√
etM(t)e dt .

The edge length value represents also the number of subdivisions of the edge
required to match the mesh size prescribed by the metric tensor. Since the met-
ric tensor M(x) is supposed a symmetric positive definite matrix, the spectral
decomposition theorem allows to decompose M as:

M = P ΛP t =
d∑

i=1

λieiei
t ,

where the normalized eigenvectors of M are the columns of matrix P =
[e1, . . . , ed] such that P P t = P t P = Id and Λ is the diagonal matrix of the
eigenvalues λi = hi

−1, where the hi are the sizes in each eigendirection. It is
obvious to see that the matrix P prescribes the orientation, and the matrix Λ
prescribes the size and shape of any element K.

Metric intersection and interpolation

Metric intersection

Suppose that two metric tensors are specified at a vertex p ∈ Th. For mesh gen-
eration purposes, we would like to deal with a single metric at the vertex. To
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this end, we define a metric intersection procedure. Geometrically speaking, it
consists in defining the largest ellipsoid E included in the intersection of the two
ellipsoids E1 and E2 associated with the two metric tensors. From the algebraic
point of view, we use the simutaneous reduction of the two underlying quadratic
forms to find a basis of the vector space in which the matrices M and N as-
sociated with E1 and E2 are represented respectively by I3 and D, a diagonal
matrix of M3(R).

Denoting by P =
(
e1 e2 e3

)
the invertible matrix of GL3(R) formed by the

eigenvectors ei, i = 1, 3 of the matrix N ′ = M−1 N leads to define the intersec-
tion matrix M∩ as: M∩ = (P t)−1 ΛP−1, where Λ is the diagonal matrix with
the coefficients max(λi, µi).

Metric interpolation

Consider a parametrization of a mesh edge pq as c : [0, 1] → R
3, c(t) = (1−t)p+tq

and two metric tensors Mp and Mq associated with the endpoints. We are looking
for the metric tensor at t, hence for a matrix M(t) defined along the segment
c(t) for any value of the parameter t ∈ [0, 1]. The definition of this matrix M(t)
involves the interpolation of the eigenvalues of the matrices Mp and Mq. This
procedure allows one to define a continuous metric field along the segment. To
this end, we suggest the following linear interpolation scheme:

M(t) =
(
(1− t)M− 1

2
p + tM

− 1
2

q

)−2

, 0 ≤ t ≤ 1 . (1)

Finding the interpolated metric tensor Mt requires us to express the two matrices
in a basis {ei} in which both are congruent to a diagonal matrix and then to
deduce the metric tensor at point t. In other words, this scheme is similar to
reducing simultaneously the two quadratic forms associated with the metrics.

2.3 Mesh Quality Measures

There are several reasons for assessing a mesh and controlling its quality. In
particular, it is useful to know if the mesh elements are aligned with the physical
solution, especially in the anisotropic context. Then, in the adaptive context, it
is important to know how closely the equiditribution and alignment conditions
are satisfied by the mesh. Finally, in three dimensions, a quasi-uniform mesh
is not easy to produce if only controlling the lengths of mesh edges. It is well
known that slivers (null volume) elements may occur and their creation cannot
be prevented by simply checking the their edge lengths.

The topics of mesh quality and mesh assessment have been studied in the
context of finite element methods in numerous papers. We refer the reader to [2]
and the references therein for more details on the related issues. Classical quality
measures include minimal angle condition [35] or maximal angle condition [4]
as well as aspect ratio considerations. Other works include error estimates to
account for the shape of the element and the solution behavior [6]. The adequacy
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between anisotropic elements and the anisotropy of the solution can be measured
by a matching function [25].

Given a metric tensor field M(x), it is natural to define critera to measure how
closely the mesh elements are aligned and equidistributed with respect to M(x).
For practical reasons, we introduce a single measure to evaluate the quality of
an element K (given here in dimension d):

Qani(K) = αd

(
k∑

i=1

〈ei,MKei〉
)d

|K|
√

det(MK)
,

where ei represents any of the k egdes of K and αd is a normalisation constant
such that Qani(K) = 1 for a regular element. Notice that Qani ≥ 1 for all K ∈ Th

and thus the larger max
K

Qani(K) is, the less the triangulation Th matches the

metric specifications. This quality measure is able to indicate how well a mesh
element match the metric specification, both in terms of size (edge lengths) and
of shape (aspect ratio).

In addition, we define an efficiency index τ that provides a single scalar value
to evaluate how well a mesh complies with the metric requirements:

τ = exp

⎛⎝ 1
ne

∑
1≤i≤ne

�M (ei)

⎞⎠ , �M (ei) =

{
lM (ei)− 1 if lM (ei) < 1

l−1
M (ei)− 1 else

(2)

and ne denotes the total number of mesh edges. The objective is to generate
meshes for which the efficiency index is close to the optimal value of one. In the
simulations, a value τ ≥ 0.85 will be considered as an acceptable lower bound.

2.4 Error Estimates

A function e(h, uh, f) is called an a posteriori error if it provides an upper bound
on the approximation error: ‖u−uh‖W ≤ e(h, uh, f). In the context of numerical
simulations, the aim is to obtain an anisotropic bound where the physical deriva-
tives are related to the size, the shape and the orientation of mesh elements. Re-
search has been very active these recent years to develop mathematically-based
error estimates and several references are provided in the bibliography section
of this paper. From the numerical point of view, it is interesting to obtain es-
timates for the classical L1 and L2 norms or the H1 seminorm. Such estimates
have been provided for the interpolation error on linear Lagrange finite elements
and involve the eigenvalues and eigenvectors of the Jacobian matrix of the affine
mapping between the reference element and a mesh element [15, 31] or are based
on the Hessian matrix of the solution [18, 1]. A local error model can be defined
at a mesh vertex p as follows:

eM (p) =
d∑

i=1

h2
i

∣∣∣∣ ∂2u

∂α2
i

∣∣∣∣ ,
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where the αi are the coefficients of the diagonal matrix Λ (see above) and the
hi indicate the local sizes in the directions of the eigenvectors of the Hessian
matrix. For our purposes, we define a local error indicator the L∞ norm as:

eK = ‖u− Phu‖∞,K ≤ C max
y∈K

max
c⊂K

〈v, |D2u(y)|v〉 ,

where D2u represents the Hessian matrix of the function u and C is a constant
independent of h.

3 Anisotropic Delaunay Mesh Adaptation

Our approach suggests a modification of the classical point insertion procedure
in a Delaunay triangulation to account for the anisotropic metric specifications.
At first, we briefly recall the Delaunay kernel in the isotropic context, and then
we introduce the modifications in the anisotropic context and for local mesh
adaptation.

3.1 The Delaunay Kernel

In the classical isotropic context, mesh points are inserted in an existing De-
launay triangulation using the so-called Delaunay kernel [18]. This incremental
yet practical method provides an efficient means for constructing a Delaunay
triangulation.

Theorem 1. (Delaunay kernel) Let Ti be the Delaunay triangulation of the
convex hull of a set of points S ⊂ R

d, and let p /∈ S be a vertex enclosed in Ti.
The Delaunay kernel procedure can be written as:

Ti+1 = Ti \ C(p) + B(p) , (3)

and provides Ti+1, a Delaunay triangulation of the convex hull of S ∪ {p}.

The proof is obtained by duality with the Voronöı diagram and can be found in
[21, 18]. In this fundamental result, C(p) stands for the cavity of point p: the set
of simplices in Ti such that their circumspheres contain point p and B(p) denotes
the ball of point p: the set of simplices formed by joining p to the external faces
of C(p). Practically, this result ensures that the cavity C(p) is a star-shaped
polytope with respect to point p.

However, in numerical simulations, at least two specific problems arise, related
to the necessity of:

i) inserting specific entities in the triangulations (a given set of edges defining
the domain boundary, for instance) and

ii) creating additional vertices in the triangulation that are not part of the initial
set S (for instance internal vertices during mesh adaptation).

Regarding the last requirement, the following result provides the existence of a
triangulation:
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Lemma 1. Let Ti be an arbitrary triangulation and let p ∈ R
d be a point enclosed

in Ti, p not being a vertex of Ti. Then, a valid conforming triangulation Ti+1

having p as vertex can be created using the Delaunay kernel, Theorem 1.

The proof relies on the star-shaped character of the region C(p) with respect to
point p [18]. This is only possible if the cavity is created incrementally from a
seed tetrahedron (see above). Notice that due to this restriction, the resulting tri-
angulation Ti+1 may not be a Delaunay triangulation, although it is conforming
to finite elements requirements [10].

Point insertion issues

Defining the cavity C(p) of a point p requires identifying all simplices having
a circumsphere that contains point p. The radius of the sphere circumscribed
to a simplex K corresponds to the distance between any vertex pi of K and
the circumcenter O of K: rK = d(pi, O) = ‖Opi‖. The circumcenter O can be
computed as the solution of a linear system of the form:

‖Op1‖ = ‖Opi‖ , ∀pi ∈ K , pi �= p1, i = 2, . . . , d .

Hence, given a point p, an element K belongs to the cavity C(p) iff the following
relation holds:

α(p,K) =
‖Op‖
rK

< 1 ,

where α(p,K) is the Delaunay measure of point p with respect to the simplex K.
First, we have to find the simplex or, in some peculiar cases, the set {K ∈ Th , p ∈
K} of all simplices containing p the point to be inserted. Then, by incorporating
all adjacent simplices Ki such that α(p,Ki) < 1, the set C(p) is obtained. Each
time a new simplex Ki is added to C(p), the star-shapedness of this set is checked
and the simplex is eventually removed if C(p) loses its property.

In addition, to avoid the generation of badly-shaped elements like slivers,
we introduced a minimal volume requirement: all new simplices obtained by
connecting p to the external faces of C(p) must have a measure larger than a
given lower bound: |K| > ε, with ε set to 1.10−5 in the numerical experiments.
This simple check has revealed especially and quite surprinsingly efficient in
preventing the generation of most of the slivers, thus impacting favorably the
optimization stage and the mesh quality histograms (cf. Section 4).

3.2 Anisotropic Delaunay Kernel

As expected, the extension to the anisotropic case consists of introducing a metric
tensor, hence a symmetric positive definite matrix Mp at each point p ∈ R

d. This
will allow us to consider the Euclidean norm of any vector in R

d given the inner
product 〈·, ·〉M . Hence, all distance checks involved in the Delaunay measure will
be replaced by length checks according to the given matrix Mp, namely:

αMp(p,K) =
‖Op‖MP

(rK)Mp

< 1 .
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The Delaunay kernel (Theorem 1) relies on distance evaluations to define the
cavity of the point p to be inserted in an existing Delaunay triangulation. Using
the Delaunay measure αMp , it is possible to define a valid the cavity i.e., star-
shaped with respect to p. In [21, 18], we have the following result:

Lemma 2 (anisotropic Delaunay kernel). Given a metric tensor Mp at a
point p ∈ R

d, the anisotropic Delaunay measure, αMp(p,K) < 1, provides a valid
anisotropic Delaunay kernel.

Again, the proof of the validity relies on the definition of a cavity, star-shaped
with respect to p. Notice however that the resulting triangulation Ti+1 may not
be a Delaunay triangulation [26], but it is still conforming to finite elements
requirements. In this respect, this result provides a practical way of inserting a
point in an anisotropic triangulation.

Numerical issues

Obviously, taking into account only the metric tensor at the given point p is not
sufficient and accurate in many applications as the mesh element size may change
rapidly from one point to another in space. Therefore, we advocate considering
all metric tensors related to the vertices of element K [20]. But doing so however,
leads to solving a nonlinear system of equations. The center OK of the topological
sphere circumscribed to tetrahedron K = {p1, . . . , p4} is the solution of a set of
equations:

lMp(OK , p1) = lMp(OK , pi) i = 2, . . . , 4 ,

where the length of the edge OKpi in the metric Mp is given by:

lMp(OK , pi) = 2m12 (xi −Ox)(yi −Oy) + m11 (xi −Ox)2

+ 2m13 (xi −Ox)(zi −Oz) + m22 (yi −Oy)2

+ 2m23 (yi −Oy)(zi −Oz) + m33 (zi −Oz)2,

with pi = (xi, yi, zi)t, OK = (Ox, Oy, Oz)t, and Mp = (mij)1≤i,j≤3. Finding the
center OK simply leads to solving the following linear system:⎛⎝ a2 b2 c2

a3 b3 c3
a4 b4 c4

⎞⎠⎛⎝Ox

Oy

Oz

⎞⎠ =

⎛⎝d1

d2

d3

⎞⎠ ,

with the coefficients:

ai = 2 (m11 (xi − x1) + m12 (yi − y1) + m13 (zi − z1)),
bi = 2 (m22 (yi − y1) + m12 (xi − x1) + m23 (zi − z1)),
ci = 2 (m33 (zi − z1) + m13 (xi − x1) + m23 (yi − y1)),
di = m11 x

2
i + 2m12 xi yi + 2m13 xi zi + m22 y

2
i + 2m23 yi zi + m33 z

2
i

−(m11 x
2
1 + 2m12 x1 y1 + 2m13 x1 z1 + m22 y

2
1 + 2m23 y1 z1 + m33 z

2
1).

Furthermore, numerical experiments revealed that it is interesting to account
for all metric tensors at the vertices pi in order to define the cavity. We found
efficient to assess the cavity with two inequalities:
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αMp(p,K) < 1,

4∑
i=1

αMpi
(p,K) + αMp(p,K) < 5.

(4)

Like in the generic case, we avoided the creation of most slivers by introduc-
ing a minimal volume requirement |K| > ε, the measure of the element being
computed in the relevant metric.

4 Local Anisotropic Mesh Adaptation

Adaptive meshing methods belong to one of two categories depending on whether
they proceed by global or local remeshing of the computational domain at each
iteration. Global remeshing techniques consist in constructing a new mesh of
the domain at each iteration, to ensure that the elements are in good agreement
with the anisotropic metric-related prescriptions. The latter are supplied at the
vertices of the previous mesh that is then acting as a control space. Obviously,
the order of complexity of the meshing method remains the same throughout the
whole adaptation scheme. In steady-state adaptative simulations, the number of
modifications usually decreases with the iterations since a fixed point of the
pair (mesh,solution) is targeted. In other words, once mesh features have been
identified and captured by adjusting the local vertex density, numerical accuracy
is only a matter of introducing a few more vertexs in critical regions while most
of the mesh is kept unchanged. Hence, remeshing at each iteration the whole
domain results in a loss of efficiency (even if improvements have been proposed
[9, 19]). It seems more advantageous that fewer vertices are inserted in critical
regions over time, as this will help to minimize the run time of the algorithm
while at the same time converging to a solution. Hence, in our approach, we
perform local mesh modifications.

4.1 Mesh Modification Operations

Mesh modification are either geometrical (edge split, edge collapse, vertex relo-
cation) or topological (edge flip). In the anisotropic context, we assume that a
metric tensor field is provided at the mesh vertices of a given triangulation. The
objective is then to modify this triangulation iteratively by local operations in
order to obtain a quasi-uniform triangulation wih respect to this field. An im-
portant feature consists in modifying the metric specifications to account for a
desirable (i.e., user-specified) mesh gradation. This procedure is fully described
in [8] and is used here as such.

Our approach is based on the analysis of the edge lengths. Given a metric field
prescription, all mesh edges have to belong to the interval [lmin, lmax] and the
mesh element quality has to be close to the optimal unit value. Theoretically,
a quasi-uniform triangulation is characterized by the fact that all edges have
a unit length, i.e., lmin = lmax = 1. However, it is easy to understand that
such restriction is highly improbable and we suggest to set the lower and upper
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bounds of the edge lengths to the values lmin =
√

2
−1

and lmax =
√

2. All local
mesh modifications can be simulated in order to check whether the resulting
configuration is better than the previous one. A configuration is considered as
improved if the mesh quality of all the elements involved is better (or almost
identical in the case of an edge collapse) than the original configuration.

Short edges lM (e) < lmin are simply collapsed by merging the two endpoints
of such edge at one of the endpoints. All mesh elements surrounding this edge
are then removed. If a short edge cannot be collapsed, an edge flip operation
attempts to solve the problem. The edge swap consists in remeshing the set of
elements surrounding the edge by changing the vertex connectivity. This is an
expensive modification as it requires the computation of a large (combinatorial)
number of quality measures. For such reason, no edge flip will be checked if the
set of elements contains more than 7 elements.

Long edges lM (e) > lmax are normally removed by splitting them into unit
subsegments with respect to the metric specification. This consists in introduc-
ing the new vertices using the anisotropic Delaunay kernel. The main advantage
of this approach is that the set of elements concerned by the vertex insertion
(the cavity) is usually much larger than the set of elements strictly surround-
ing the edge (the initial cavity). Computationally, it revealed more efficient to
proceed like this and the quality of the resulting mesh is better than with the
classical edge split operation. Furthermore, the creation of slivers is explicitely
checked and prevented during this stage. Sometimes, in peculiar cases, an edge
flip operation can be used to remove a long edge.

In addition, a mesh optimization stage involves a vertex relocation procedure.
This procedure aims at equidistributing the edge lengths, with the objective of
improving the efficiency index. Given a mesh vertex p, the objective is to im-
prove the lengths of all edges connected to p. To this end, the vertex is moved in
the direction of an optimal vertex location corresponding to the average optimal
positions along each edge. This operation does not affect the mesh topology,
nonetheless optimal vertex positions have to be checked to prevent invalid con-
figurations.

All mesh modification operations are described in details in the general pur-
pose book [18].

4.2 Mesh Adaptation Scheme

Our mesh adaptation algorithm can then be described as follows: we assume
given a triangulation T and a metric tensor field M defined at the mesh vertices,

Enforce the desired h-gradation,
do

1. loop over mesh edges /* edge analysis */
compute lM (e) for every edge e
if (lM (e) < lmin) then

collapse e
else if (lM (e) > lmax) then
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split e and insert new vertex (Delaunay kernel)
endif

while ( T is modified )
2. loop over mesh elements /* quality optimization */

perform edge flips
perform vertex relocation

end for
while ( triangulation T is modified ).

Notice that this algorithm (composed of two levels of imbricated loops) al-
ways terminates in a finite number of iterations. Indeed, mesh modifications are
only applied if they result in the mesh quality improvement. An infinite loop
could potentially occurs between several configurations if the analysis is based
on the edge lengths only. For instance, if the values of lmin and lmax are too
close, the edge split and the edge collapse operations could possibly lead to a
previous configuration. However, since we apply the mesh modification if the
quality is strictly improved, this case cannot happen in our scheme. In addition,
for efficiency purposes, we have restricted the overall number of iterations to a
maximum value.

The complexity of the algorithm is related to the number of loops that are
performed. The inner loops are in O(nt), where nt is the number of mesh ele-
ments. Since we limit the nmber of outer loop to a maximum value c, the overall
complexity is cO(nt), i.e., linear in number of mesh elements.

4.3 Application to Large Displacements Problems

As pointed out in the introduction, our local anisotropic mesh adaptation ap-
proach allows us to handle rigid-body displacement problems without difficulty.
Fluid-structure interactions involves a moving structure, rigid or deformable,
and a fluid in flow around a part or the whole structure. The domain boundary
is moving, however moving only boundary vertices would quickly result in an
invalid mesh. Therefore, internal vertices are also relocated using a linear elas-
ticity analogy [5]. Actually, the whole procedure is straightforward and can be
decomposed in three successive stages: given a field of displacements prescribed
at the domain boundaries, e.g., resulting from a fluid calculation, (i) solve a lin-
ear elasticity equation as suggested by [5] to define a discrete displacement field
at all mesh vertices and (ii) move the mesh vertices to the positions prescribed
by this field and (iii) optimize the resulting mesh.

This boundary value problem assumes that part of the boundary remains
fixed as another part is moving. It reads:⎧⎨⎩−divσ(u) = f in Ω

u = 0 on Γfixed

σ(u) · n = 0 on ∂Ω\Γfixed
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and the Hook’s law gives the relation between the stress tensor σ and the lin-
earized strain tensor e as: σ = 2µe(u)+λtr(e(u))I3 , with e(u) = 1

2 (∇u+∇ut),
λ and µ are the Lamé coefficients describing the mechanical properties of the
material. The variational formulation is solved using affine P1 Lagrange finite
elements. The Lamé coefficients have been set experimentally in our simulations.
The linear system is solved using a conjugate gradient routine with a LDLt pre-
conditioning step. The convergence of the linear system is not affected too much
by the anisotropy of the mesh, indicating that the condition number does not
degrade too much with the anisotropy.

Notice that our approach preserves the number of mesh vertices during this
stage and involves vertex relocation and edge flips only. However, edge splits and
edge colapses can also be used to achieve a better efficiency in large displacement
problems.

5 Application Examples

Our approach has been tested on numerous test cases and is currently used by
several research groups. We provide here a set of numerical examples to assess
this method.

5.1 An Analytical Metric

This first test case is provided to illustrate our mesh adaptation scheme on a
steady-state problem where the size, the shape and the orientation of the mesh
elements are prescribed using the following analytical metric:

M =

⎛⎝h−2
1 0 0
0 h−2

max 0
0 0 h−2

max

⎞⎠ with
{
h1 = hmax|1− e−|x−0.5||+ 0.003
hmax = 0.2

(5)

This metric simulates the capture of a planar shock in the computational domain:
Ω = [−1 , 1]3. We started with an initial surface-adapted mesh T0 containing no
internal vertex containing 4, 399 vertices and 13, 978 tetrahedra (Figure 1). The
final adapted mesh after 5 iterations contains 51, 440 tetrahedra and its efficiency
index is 0.87. Regarding the mesh quality, 99.96 percents of the elements have a
quality measure between 1 and 3.

5.2 Interface Capturing

Our approach has also proven useful in accurately tracking and approximating
a dynamically evolving interface [14]. In this approach, the metric tensor field
is related to the intrinsic properties of the manifold of codimension one that
correspond to the interface. We consider an implicitly-defined, scalar valued
function u on a domain Ω ⊂ R

3 and we denote by Γ the surface associated
to the isovalue u = 0. The objective is to produce a mesh where the density
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Fig. 1. Initial surface-adapted mesh (left), cut though the final adapted mesh (middle)
and local enlargment (right)

Fig. 2. Example of mesh adaptation to capture an implicitly defined surface: cutting
plane through tetrahedral elements (left) and isosurface reconstruction (right)

is high in the vicinity of the isosurface so as to minimize the piecewise affine
approximation of this interface. To this end, we defined the following metric
tensor at the vertices of all mesh elements intersected by the manifold:

M = R

⎛⎝ 1/ε2 0 0
0 |λ2|/ε 0
0 0 |λ3|/ε

⎞⎠ tR,

with R =
(
∇u v1 v2

)
, where (v1, v2) is a basis of the tangent plane to the

surface and λi are the eigenvalues of the Hessian of u. At all other vertices, we
define the metric αI3 with α ∈ R

+. We consider the analytical surface defined in
spherical coordinates as: r = 0.45+0.3 sin(3φ), with θ ∈ [0; 2π] and φ ∈ [−π

2
;
π

2
].

We started from an initial uniform mesh of size h = 0.2 (Figure 2). The final
mesh after 8 iterations contains 105 vertices for a minimal element size h = 10−3.
The approximation error in the L∞ norm between the surface and its piecewise
affine discretization is lesser than 10−4.
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Fig. 3. Two moving spheres are crossing an anisotropic field

5.3 Moving Spheres in Anisotropic Field

We consider two spheres of different radii moving in a computational domain
Ω = [−2 , 2]× [−2 , 6]× [−10 , 1.5] (Figure 3). The initial mesh is adapted to a
planar shock corresponding to a metric specification very similar to that given
by Equation (5). The main difficulty is to preserve the anisotropic refinement
throughout the simulation. To this end, we have allowed edge split and edge
collapse operations in addition to vertex relocation and edge flips. Nevertheless,
the number of vertices remains almost constant: 12, 200 for he inital mesh and
11, 282 at the 34th time step. The efficiency index is also constant τ = 0.86.

5.4 Airflow around a Rotating Helicopter Propeller

The flow is governed by the classical compressible Euler equations of the fluid
dynamics and the numerical resolution uses the software Fluidbox based on
finite volume and Arbitrary Lagrangian Eulerian (ALE) method [28] that im-
poses a constant number of vertices and the connectivity to remains identical
to that of the initial mesh. The solver uses implicit time stepping scheme. Fur-
thermore, we consider that the propeller turns with a constant angular velocity
θ = 3.6deg, i.e., 10 full rotations per second. One mesh is generated at each time
step dt = 1/6, 000 seconds and 100 meshes are needed to achieve a complete rev-
olution. However, the constant topology and number of vertices constraints have
been relaxed: a few edge flips were introduced to remove badly-shaped elements
and the solution had then to be interpolated on the optimized mesh (Figure 4).
All meshes contain about 3.105 elements for an efficiency index close to 0.85
(more than 98 percent of the elements have a quality better than 3).
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Fig. 4. Airflow simulation: adapted meshes at iterations 1, 99 and 500 (top); stream-
lines and velocity modulus (bottom)

6 Conclusions and Perspectives

In this paper, we have presented an efficient method for obtaining anisotropic
adapted meshes based on Riemannian metric specifications. This approach is
based on a modification of the classical Delaunay kernel and involve local mesh
modification operations. The results obtained so far in the numerical simula-
tions are promising and confirm the cogency of the local modification strategy.
The next stage will be to handle dynamically evolving domains where both the
geometry and the topology of the domains change in time.
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4. Babuška, I., Aziz, A.K.: On the angle condition in the finite element method. SIAM
J. Numer. Anal. 13, 214–226 (1976)

5. Baker, T.J.: Mesh Movement and Metamorphosis. Eng. Comput. 18(3), 188–198
(2002)

6. Berzins, M.: A solution-based triangular and tetrahedral mesh quality indicator.
SIAM J. Sci. Comput. 19, 2051–2060 (1998)

7. Bossen, F.J., Heckbert, P.S.: A pliant method for anisotropic mesh generation. In:
Proc. 5th Int. Meshing Roundtable, pp. 63–74 (1996)

8. Borouchaki, H., Hecht, F., Frey, P.: Mesh gradation control. Int. J. Numer. Methods
Engng. 43(6), 1143–1165 (1998)

9. Castro-Diaz, M.J., Hecht, F., Mohammadi, B., Pironneau, O.: Anisotropic unstruc-
tured mesh adaption for flow simulations. Int. J. Numer. Meth. Fluids 25, 475–491
(1997)

10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland,
Amsterdam (1978)

11. Chernikov, A., Crisochoides, N.: Three-dimensional semi-generalized point place-
ment method for Delaunay mesh refinement. In: Proc. 16th Int. Meshing
Roundtable, Seattle, pp. 25–44 (2007)

12. Dolejsi, V.: Anisotropic mesh adaptation for finite volume and finite element meth-
ods on triangular meshes. Computing and Visualisation in Science 1, 165–178
(1998)

13. Dompierre, J., Vallet, M.-G., Bourgault, Y., Fortin, M., Habashi, W.G.:
Anisotropic mesh adaptation: Towards user-indepedent, mesh-independent and
solver-independent CFD. Part III: Unstructured meshes. Int. J. Numer. Meth.
Fluids 39, 675–702 (2002)

14. Ducrot, V., Frey, P.: Contrôle de l’approximation géométrique d’une interface par
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