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Summary. Hand-held laser scanners are used massively in industry for reverse engi-
neering and quality measurements. In this process, it is difficult for the human operator
to scan the target object completely and uniformly. Therefore, an interactive triangu-
lation of the scanned points can assist the operator in this task.

Our method computes a triangulation of the point stream generated by the laser
scanner online, i.e., the data points are added to the triangulation as they are received
from the scanner. Multiple scanned areas and areas with a higher point density result
in a finer mesh and a higher accuracy. On the other hand, the vertex density adapts to
the estimated surface curvature. To assist the human operator the resulting triangula-
tion is rendered with a visualization of its faithfulness. Additionally, our triangulation
method allows for a level-of-detail representation to reduce the mesh complexity for
fast rendering on low-cost graphics hardware.

1 Introduction

In industry, the scanning of surfaces of 3d objects is used for measurement and
analysis of manufactured objects and for reverse engineering. Most scanning de-
vices use a laser to sample points on the surface. Some scanners move the object
while others move the laser device. While some scanning devices measure the
sample points in a regular pattern, hand-held laser scanners have a movable
scanning device that is moved along the surface by a human operator. These
scanning devices generate a vast amount of data in very short time with very
high precision. To process and triangulate this data the used method must pre-
serve the precision while reducing the data to an adequate level, see Figures 1
and 2. Thus, it is necessary to allow for heterogeneous triangulations and point
densities, especially when areas are scanned multiple times. This is particularly
important for hand-held devices, where the operator most likely will scan the
object from different directions and with different speeds. This generates discon-
nected triangulation fragments with highly different point densities.

Since the local point density can become arbitrarily high by multiple scans,
the feature size that can be reconstructed is theoretically arbitrary small. Of
course, the measuring accuracy/error sets a lower bound for the feature size.

For these hand-held laser scanners, the operator has to cover the complete
surface of the object. Because the scanning may take a long time, it is difficult
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Fig. 1. A piggy bank. Original object (left), wire-frame (center), and smooth shaded
triangulation with uncertainty visualization (right).

(a) Original object. (b) Raw points. (c) Vertices and normals.

Fig. 2. Different levels of data reduction shown with a little bronze bird

for the operator to keep track of the already scanned area. Furthermore, there is
no feedback to tell the operator to re-scan a region to increase the point density
to improve the quality of the reconstructed surface. Therefore, a full-automatic
real time triangulation and visualization of the scanned points is crucial to assist
the operator to improve the scans in less time. Thus, the crucial constraints for
our triangulation task are:

Handling of large point sets,

handling of heterogeneous point densities of incoherently scanned regions,
handling of high precision point data with predefined measurement errors,
handling of point streams of arbitrary order, i.e., online triangulation,
triangulating full-automatically,

triangulating in real-time, and

assisting the human operator during the scanning process.
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In the rest of the paper we first discuss related work in Section 2 and describe
the principle of our method in Section 3. Subsequently we discuss various aspects
of our method in detail, i.e., in Sections 4—6 the neighborhood and normal cal-
culations and local triangulation, in Section 7 our octree-based data structure,
and in Section 8 local improvements of the approximation quality. In Section 9
we present a method to assist the human operator during the scanning process
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and in Section 10 the integrated level-of-detail representation. Finally we show
results of our method in Section 11 and close with an outlook on our future
research plans in Section 12.

2 Related Work

To contrast our approach to other methods for surface reconstruction from un-
organized point clouds, we briefly describe alternative methods and discuss their
pros and cons with respect to the constraints A.—G. given above.

One of the first methods in this field was proposed in [14]. Here, for every point
a surface normal is estimated from its k nearest neighbors and its orientation is
propagated from the orientation of one particular normal to all other normals
using a global minimal spanning tree of the points. This allows to estimate
tangent planes defining an estimated signed distance function to the surface. Its
zero-set is used to compute a triangulation of the surface using marching cubes.
This method can deal with surfaces with boundaries and holes, and no additional
information (such as surface normals) is necessary. On the other hand, it is not
capable of dealing with incremental insertion of data points, since the orientation
propagation is global, and the density of the points on the surface is pre-defined,
otherwise spurious holes are introduced. The minimum feature size that can be
reconstructed is fixed a priori by the edge length of the marching cubes algorithm
and increasing the density of points does not reveal more details. Therefore, at
least constraints B. and D. are not satisfied.

Alpha shapes were defined in [9,10]. For a given real number « > 0, the alpha
shape S, of a point set P is the set of all k-simplices T' C P (k < d) with vertices
lying on a sphere with radius « that does not contain any other point of P. The
alpha shape can efficiently be determined from the Delaunay triangulation where
a controls how many “details” of the point cloud are “cut” out of the convex hull
of P. If « is too large, details remain hidden under larger faces, if it is too small,
the object may be cut into disconnected pieces. Therefore, the choice of « is
crucial for the optimal reconstruction of a surface from a point cloud. If the
variation of the point density is too high, there may not even exist a suitable «
value, violating constraint B.

For the so-called weighted alpha shapes of [1] every point of P gets an associ-
ated weight. This permits using different values of « for different regions of P. The
weights have to be tuned to the point density very accurately to achieve a good
reconstruction of the underlying surface, making it difficult to achieve B. Another
extension was proposed in [20]. The sphere with radius « is deformed anisotrop-
ically into an ellipsoid, achieving a more accurate separation of surfaces close to
each other. But their approach relies on user input, violating constraint E.

All methods based on alpha shapes can be used to reconstruct surfaces with
borders and holes, an no additional information per vertex other than its posi-
tion is necessary. But, the correct choice of v or the point weights, respectively,
is crucial for the quality of the final triangulation, which is in contrast to con-
straint C. Furthermore, the computed triangulation is not guaranteed to be a
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2-manifold with border. It can contain edges with more than two adjacent faces,
or isolated edges and vertices. Therefore, a postprocessing clean-up step is nec-
essary, violating also constraint F.

The so-called power crust of [4] is based on an approximation of the medial
axis transform of the point set. It is computed from the Voronoi diagram and the
poles of the input points. From this, it calculates in an inverse transformation the
original surface using the power diagram of the poles and taking the simplices
dividing the interior and exterior cells of the power diagram from each other
as triangulation for the surface. The power crust approach produces connected
surfaces possibly with intentional holes. So, it is not suitable for online trian-
gulations (constraint D.) where the triangulation may consist of disconnected
fragments (constraint B.).

The eigencrust method proposed in [16] is specialized to produce high quality
surface reconstructions on noisy point clouds. It labels all tetrahedra in the 3d
Delaunay triangulation of the sample points as either being inside or outside the
surface based on a global optimization. The triangulation of the reconstructed
surface is the set of faces that are adjacent to one inside and one outside tetra-
hedron. Because of the global optimization step, the results are of high quality
even with the presence of noise and outliers. The final surface is always a 2-
manifold without border. Therefore, the eigencrust method cannot be used with
constraint D.

The geometric convection approach for surface reconstruction described in [6]
starts with a Delaunay triangulation of the point set, and shrinks the bound-
ary surface by removing tetrahedra containing a boundary triangle that does
not fulfill the oriented Gabriel property, i.e., the half-sphere centered at the
triangle’s circumcenter and oriented to the inside contains point of the point
set. This procedure is repeated until all boundary triangles fulfill the oriented
Gabriel property. In some cases, cavities are not opened by this algorithm, so
another property has to be defined to remove the involved tetrahedra. The ap-
proach requires the Delaunay triangulation of the complete point set, therefore
it contradicts constraint D.

An extension of [6] for streams of point sets is proposed in [3]. The point set is
divided into slices, and only a limited number of slices is kept in memory. A slice
that cannot have impact on the current slice can be removed from memory, storing
the triangles found for that slice. For the division into slices, all points have to be
known in advance, because they have to be ordered according to one of the spatial
coordinates. Therefore, this method is not suitable for constraint D.

A method suitable not only for surface reconstruction but also for re-meshing
of an existing mesh is presented in [18]. Using an advancing front approach,
triangles are constructed that fulfill two user-defined constraints: the maximum
edge length with respect to the curvature, and ratio bounds of adjacent edges.
For surface reconstruction, a projection operator P and a guidance field g have
to be defined, contradicting constraints B., D., and F.

A common problem of the methods [10,1,20,4,16,6,3] is their computational
complexity, which is too high for real-time applications (constraint F.). Another
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disadvantage of these methods is the fact that the sample points or the same
number of points are used to create the surface mesh. Thus, the complexity of
the meshes increases rapidly while scanning, and the measurement errors are
not corrected. Furthermore, if a region is scanned multiple times, the additional
vertices decrease the area of the mesh faces, but the noise remains constant,
leading to a bumpier surface after every scan pass. These aspects are in contrast
to constraints A. and C.

In [5] an interactive online triangulation method is proposed. The sampled
points are processed in a pipeline. In the first stage the number of points is
reduced by dropping every point that is closer than a specified radius from an
already existing point. In the second stage, the normal at the point is estimated
using the points in a local neighborhood. After another reduction stage with
a larger radius, the points with a stable normal are inserted into the surface
mesh which is re-triangulated locally with a shortest edge criterion to decide
which edges to keep. This approach works well and is fast, but has some major
drawbacks:

e A large fraction of the input is ignored and not used to reduce the noise of
the input data, violating C.
The size of the smallest features that can be modeled is fix, violating C.
The size of the mesh triangles is not adapted to the density of sample points
or the curvature of the surface, violating B. and E.

The method proposed in this paper uses some of the ideas of the approach
of [5], but satisfies all constraints A.-G.

3 Online Triangulation

Our method is based on a laser scanner like the FARO Laser ScanArm [11] as
described in Section 11. Scanners of this type generate a stream D = (dy,ds, .. .)
of data points d;. Each data point is a pair d; = (p;, h;) € R3 x R? of a raw point
pi, that is measured by the scanner on the scanned object, and the scan position
h; of the laser scanner at the moment of scanning p;.

A laser scanner of this kind scans an object line by line measuring a certain
number of data points per scan line. The scanner we used scans up to 30 lines
per second measuring up to 640 data points per scan line, see e.g. Figure 2(b).
These scan lines are arranged in scan passes that the human operator triggers
by pressing a button. The pauses between two scan passes are usually used by
the operator to reposition the scanner for a different scan direction.

In order to triangulate this huge data stream online, the data points need to
be reduced. For this the data points are classified by their distance and added
to so-called neighborhood balls b; that represent a subset of data points within
a certain radius and similar scan positions. The radius depends on the point
density and estimated curvature. Subsequently only the averages of data points
of the neighborhood balls are used as vertex positions in the triangulation 7'
approximating {p1, ps, ... }. So, the overall process is described schematically as
follows (for the used data structure see Section 7)
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ONLINE-TRIANGULATION(dy, d3, . . . )

Input: Data point stream D = (di,d2,...);
Output: Triangulation T approximating {p1, p2, ... }.

1: while (D not terminated) do {

2:  ADD-TO-NEIGHBORHOOD-BALLS(d;); \\ see Section 4
3:  Update normals of affected neighborhood balls; \\ see Section 5
4:  Update local approximation; \\ see Section 8
5:  Triangulate area of affected neighborhood balls; \\ see Section 6
6:  Render triangulation with uncertainty visualization; \\ see Section 9
7}

4 Neighborhood Balls

A bounding cube of edge length R enclosing the maximal scanning range is
0= [(Emirn Tmin + R] X [ymin7 Ymin + R] X [Zmin7 Zmin + R]7

i.e., p; € O for all 5. Furthermore, a ball with center ¢ € R3 and radius r € R, r >
0, is for the Euclidian norm || - || defined as the set

Ble,r) ={zeR3: ||z —c|| <rl}.

As in [5] we use neighborhood balls b; = (cj,rj, D;) to represent a set of n;
data points D; = {dj1,...,djn,} C D contained in the ball 3; = B(c;,7;).
Every neighborhood ball corresponds to a local estimate IV; for the oriented
surface normal, which might be undefined (cf. Section 5), and a vertex v; of T
Thus, neighborhood balls can intersect and serve three purposes:

e Collecting n; data points to reduce the number of visualized data points.
e Estimating a local oriented surface normal.
e Averaging its data points gives the position of a vertex of the triangulation.

The minimal ball radius Ry,i, = 0.75 mm prevents ball sizes below scanner ac-
curacy. A neighborhood ball may contain up to ngpiir = 40 data points. Later this
value is depending on curvature, see Section 8.2. The set of all neighborhood balls
b; is denoted by B. It is initialized with the first data point B = {(p1, R, {d1})}.
Then new neighborhood balls are generated by adding one data point after the
other with ADD-T'0-NEIGHBORHOOD-BALLS(d;), using the following steps:

1. To add data point d; = (p;, h;), first all k£ neighborhood balls b; = (¢;, r;, D;)
are determined that contain p; € 3; with normals N; aligned to the scanning
direction, i.e.

N7T <(hi —p;) >0 (if Nj is defined). (1)

a) If k=1, d; is added to D;.
b) If k > 1, d; is added to D; of the neighborhood ball b; with largest radius
and smallest distance ||c; — p;]|.
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c) If & = 0, a new neighborhood ball b = (p,r, {d}) is generated, with
radius r = 27#R where pu is the smallest integer such that 5(p,r) does
not contain the center of any other b;. The new ball b is added to B.

2. If in cases a) and b) n; equals ngpie after d; is added and r > Ruyin, the
neighborhood ball b; is removed from B and all data points in D; are added
using Step 1. If in this process a data point d; € D; is not contained in
any other neighborhood ball of B\ {b;}, a new ball b = (p;,7;/2,{di}) is
generated and added to B.

Remark 1. This definition of neighborhood balls has two advantages over the
method of [5]: First all data points are collected in neighborhood balls and not
only the first one to support C. (see Sections 5 and 8.1), and second the radii
of the balls can be adapted to the density of the data points and the estimated
curvature of the surface to support B. and E. (see Section 8.2).

For later triangulation we use the average of a neighborhood ball b;

_ 1
bj = ;ijm

7 1=1

as position of vertex v; representing b; in the triangulation, see Figure 2(c).

5 Normal Estimation

For every neighborhood ball b; an estimated surface normal N; is calculated.
First all n; data points d; contained in ﬁ(5j72rj) S p; are determined. This
provides a more stable normal estimation than using only the data points in
D;. These data points are used for a principal component analysis as in [5,15].
Computing the eigenvalues 0 < e; < e3 < eg of the 3 X 3 covariance matrix

C=> (—"b)p—b)"
l

using [19], yields for N; the direction of the eigenvector v., of C' corresponding
to the smallest eigenvalue e;

Nj = UG1/||UG1 ”

To get a stable normal estimate it is necessary that ey > 2e;. Otherwise b; does
not have a normal estimate and all subsequent computations requiring a N; are
rejected. Thus, highly curved regions with too low point density are either not
triangulated or marked as regions that need a further scan pass, see Section 9.
This ensures a locally rather planar point distribution. To get the orientation of
Nj, the average scan direction of all determined d;

55 = L Z(hl —p1)-

n
L
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is used. The normal orientation is correct if V. T-Ej > 0. Otherwise the orientation
is inverted. Finally, all data points of D; that do not satisfy (1) are removed from
D; and re-inserted using ADD-T0O-NEIGHBORHOOD-BALLS. Figure 2(c) shows
the estimated normal of each neighborhood ball.

6 Local Triangulation

Because every neighborhood ball corresponds to one vertex in the triangulation,
the latter is updated in five steps if a neighborhood ball is added or removed
from B:

1. Collect potential neighbor vertices in a set Vj. (see Section 6.1)
Project V; onto the estimated tangent plane. (see Section 6.2)
Adapt the border of V;. (see Section 6.3)
Determine the triangulation Tj of V. (see Section 6.4)
Insert Tj into the triangulation T'. (see Section 6.5)

Gt oD

6.1 Collecting Potential Neighbor Vertices

Every neighborhood ball b; corresponds to a vertex v; in T' with position Ej.
Thus, if b; is added or removed from B, the corresponding vertex v; is added
or removed from 7. In both cases the local neighborhood of v; needs to be
re-triangulated. To determine the geometric neighbors of v; we define a ball

n;(r) = {z € R? : [[(z = b)) + (& = b;) " N;) (fy — YN[ < 7}

of radius r around l_)j flattened along the normal N; by f, to provide a better
separation of close parallel surfaces sheets. Then, the geometric neighbors are
all by with b, € n;(5r;) for f, = 3 and N, - N; > 0.5. This yields a set V; =
{vj,,...,v;, } CV U{v;} of vertices that will be re-meshed.

6.2 Projection onto the Estimated Tangent Plane

Because the triangulation of the area around b; is computed in the plane per-
pendicular to N; all vertices v;, € V; are projected along N; onto this plane,
i.e. bj, is projected to t;,. Then, because of the one-to-one correspondence of v;,
to t;,, triangulating the ¢;, is equivalent to triangulating the v;,. Therefore, we
will speak of a triangulation of V; although the triangulation is computed in the
local estimated tangent plane.

6.3 Adapting the Border of the Local Triangulation

Triangulating V; yields a triangulation 7} of the local neighborhood of wv;.
Because most vertices in 7 are also in 7', the edges in 7T} should match
edges in T'. Thus, the border 0T; of T; has to match edges in 7". The border
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OTj = (Vzy,-..,Vs,, ) is represented as a counter-clockwise oriented, ordered se-
quence of n, border vertices vy, € Vj, I = 1,...,n; — 1 with v; = v, _, ie,
the index of border vertices is understood modulo n,. Every pair (v, vg,,,) is
a so-called border edge and the border 07} is initialized as the convex hull of V}
using “Jarvis’ March” [7]. Subsequently V; and 0T} are modified until the border
edges match edges in T" as good as possible.

If a border edge e, = (Vz),, Voy ., )
does not match any edge in T, de-
termine the edge e; = (vy,, vs) Or
ez = (s, Vg, ) €V x V;in T in-
side 0T} with smallest angle ¢ to
ep. Then v, is inserted to 97} be-
tween v, and vy, , if e; respec-
tively ez is either an inner edge or
© < 20° and if this does not cause
proper intersections of the interior
of two edges of 97} or any loops
containing more than two border
edges, see Figure 3. This approach
can lead to a border of the form
(cevs Vs Vo s Vapins - - - ) With vy, = vg,,,, see Figure 3, which is handled by
removing vy, and vg,,, from 07} and v,,, from V.

Repeating these operations until there are no more edges that can be removed
results in a border that fits the existing triangulation 7" better. This process
terminates because the border shrinks monotonically in each step.

Fig. 3. The border 97} before (blue) and after
(red) the modification

6.4 Triangulation of the Border

To triangulate Vj first 071 is split into monotone sub-polygons which are tri-
angulated individually, see e.g. [7]. This determines a triangulation 77 of JT}.
Second all vertices of v; € V; \ 9T} are added to T} successively by splitting the
triangle of ij that contains ¢; at ¢; into three new triangles. This is repeated
for every vertex of V; \ 0T} yielding a triangulation T}'. Finally, the Delaunay
criterion [13] is applied repeatedly constrained by 0T} to improve the triangle
quality generating a triangulation 7} of V;.

6.5 Insertion of the Local Triangulation

Before T); can be inserted into T', the triangles of 1" in conflict with 7); must be
removed. We first remove all triangles of T" incident to a vertex of V; \ 97T}.

Remark 2. Note that this also removes triangles from vertices in V; \ 97} to
vertices in V' \ V; outside of n;(5r;). Thus, the global topology of the surface is
corrected due to the increased local point density.

At this stage T contains no triangles connected to vertices of V;\0Tj. All triangles
remaining in 7" conflicting with 7 involve only vertices on 97};. For such a vertex
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Fig. 4. Topologically preparing the border 97T; (red) for the new triangulation T; by
deleting the blue faces. All triangles shown in the figures are in T, T} is not shown.

vy € 0T with border edges e1 = (v;—1,v;) and ea = (v, vi41), all faces potentially
pointing to the inside of the border are deleted. Thus, there are three different
cases that are solved topologically:

1. If both edges e; and es belong to T, all faces of the one-ring of v; are removed
if they are left of e; or es or if they are not connected to the right faces of
e1 or ey. This removes triangulated areas of 1" that are also covered by T}
and reduces the complexity of the one-ring, see Figure 4 (left).

2. If only e; belongs to T', the face of the one-ring of v; left of e; and all faces
not connected to the right face of e; are deleted, see Figure 4 (middle).

3. If both e; and ey do not belong to 1" and v; has a closed one-ring, the face
pointing the most inside the triangulated area is removed, which is e.g. the
triangle of the one-ring of v; intersected by the bisector of e; and eg in the
local estimated tangent plane, see Figure 4 (right).

Finally, if there are two vertices
vy, and vy, from 0T} that are con-
nected by an edge e that does not
belong to T} and lies inside of the
polygon spanned by 97}, the cor-
responding triangles are removed.
To test if such an edge is inside the 154 B
polygon spanned by 97} the angle
[, the inner angle of the polygon
at v, , must be larger than the an-  pig. 5. Border OT; (black) with edges (red)

gle a between the incoming border not connected by faces to the border
edge at v;, and e, see Figure 5.

a7,

Remark 3. This also changes the global topology of the surface.

7 The Octree

To support the geometric neighborhood searches in Sections 5 and 6.1 efficiently
we use an octree data structure to manage the neighborhood balls. The root
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node of the octree represents the cube O. Every node in the tree represents a
sub-cube

o=[z,x+68] X [y,y+ 6] X [2,2+ 6]

of O and has no or exactly eight
child-nodes holding the eight sub-
cubes 01,...,08 with side length
6/2, see Figure 6. To accelerate
searches in the local neighborhood,
every node stores additional links
to the 26 face-, edge- and corner-
neighbor nodes o0y,,...,0n,, on
the same level, as in [5].

05-

Fig. 6. The cube o of an octree node and its

Remark 4. The main advantage of child-node’s sub-cubes o1,..., 0

using an octree instead of a grid as
in [5] is the use of different levels of detail corresponding to the levels of the
octree to create a finer triangulation in regions with higher point density.

Every neighborhood ball b; belongs to one cube in the octree which contains its
center point ¢;. The radius r; equals the edge length of the cube. Every cube in
the octree has a list of the neighborhood balls it contains.

Every data point d; = (pj, h;) is inserted into the octree by searching for
the neighborhood ball b; containing the raw point p; € §; and, if b; is found,
inserting it to that ball as in Section 4. To search for b; the octree is descended
from the root node O traversing on any level of the octree the cube o containing
pj. For the traversal all 26 neighbor cubes are tested to find the ball with ¢;
closest to p;. If no b; is found, the search descends one level in the tree and
repeats the neighbor traversal. This is repeated until a ball is found or the leaf
nodes are searched unsuccessfully. In the latter case a new neighborhood ball b
containing d; is created in leaf node cube containing p;, see Section 4.

To make b as large as possible the highest level in the octree with sufficient
space is determined, such that the ball 3; does not contain the center of any
other ball of B. These centers can only be in the siblings of the 26 indirect
neighbor cubes, which share at least one corner with the actual cube o. The set
of these cubes is denoted by S(0). In S(0) the center ¢ that is closest to p; is
determined with A := ||y, — pj].

1. If A is smaller than the radius of b, i.e. the edge length /¢ of o, the cube o is
split into sub-cubes until the radius of b is small than A. Thus, b is added
to a sub-cube o’ that is [logy(¢/A)] levels below the node of o in the octree.

2. If A is larger than the radius of b, it can be added to the cube o or one of
its ancestors. Thus, the ancestors o’ of o are tested if their siblings of S(0’)
contain a center too close to p;. Finally, b is added to the highest ancestor
above o for which this test is negative.
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8 Improving the Approximation

For every neighborhood ball b; a least square fit f; for its raw points is computed
to smooth the triangulation and to reduce noise in the raw points. The fit f; is
a cubic approximation of the raw points of b; parametrized over the estimated
tangent plane of b; as in [2] computed by a singular value decomposition. It
serves two purposes:

e correction of vertex positions and
e curvature dependent ball sizes.

8.1 Correction of Mesh Points

The position of a vertex v corresponding to a neighborhood ball b; is approxi-
mated by the arithmetic mean of all its raw points b;. On curved surfaces this
results in a displaced position. In local coordinates of the estimated tangent
plane b; has coordinates (0,0,0)T. Thus, the point b; with local coordinates
(0,0, £:(0,0))T is a better approximation of the raw points. In order to guaran-
tee that the vertices of 1" are within scanner precision the raw point p; closest to
b; is determined. If € is the scanner precision and b; is not contained in B(pj,e),
b; is projected onto 3(p;,€) in direction p; — b;. This new point is the position
of the corresponding vertex v;.

Remark 5. Because the laser scanner has different precisions in different direc-
tions, i.e. along the scan line, between scan lines, and in laser beam direction, b;
is projected onto an ellipsoid around p; .

8.2 Curvature Dependent Ball Size

The fits f; are also used to estimate the curvature of 7" in the vertex v;. Then
the size of the neighborhood balls is controlled by the curvature measure C; :=
(|k1] + |#2])/2 at v;, where k1 and ko are the principle curvatures of f; at b;
before the projection onto 3(p;, ). A small value of C; indicates that the region
is rather flat. So, for each neighborhood ball with a valid normal the curvature
C; is computed and the neighborhood ball is split if

arctan (4r;C;) - 2n; /™ > ngplit.

This results in larger triangles in flat regions.

9 Uncertainty Visualization

Regions with a high uncertainty in the triangulation should be highlighted, to
enable the operator of the laser scanner to increase the point density by multiple
scan passes. To measure the uncertainty, the stability of the normal estimation
is used. It can be calculated for each neighborhood ball b; by the two smallest
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eigenvalues e; and es of the principal component analysis in Section 5. The
uncertainty u; is defined as

u; = arctan ((ea/e; —2) /20) - 2/m.

It is restricted to [0, 1] and visualized by coloring the vertices using a transition
from red (u; = 0), yellow (u; = 0.25), green (u; = 0.5) to white (u; > 0.75).

10 Level of Detail

For very complex or large objects it may be necessary to use a further reduced
mesh for fast rendering on low cost graphics hardware. The octree contains
different levels, each containing neighborhood balls b; of a certain size. These
levels can be used for a reduced level of detail on the mesh.

To make use of the levels in the octree, the data points d; are also added
to so-called LOD balls b%OD on the levels above the enclosing neighborhood
ball. These LOD balls b%OD are modified neighborhood balls containing all data
points d; of the neighborhood balls b; on the levels below. Each data point d;
belongs to one neighborhood ball b; = (c;,27'R, D;) on the level [ and one LOD
ball bI,;OD = (¢, 27 R, Dy) for all 0 < \ < [ in each level above.

The global level of detail 1P is the depth of the deepest level in the
octree used to determine 7. If [*OP changes, the complete mesh has to be
re-triangulated. First all faces of the mesh are deleted. Then the neighbor-
hood balls or LOD balls necessary for re-triangulation are selected according
to their depth in the octree. An or-
dinary neighborhood ball is used
if its depth is less or equal to
[“OD _If the depth of a neighbor-
hood ball is larger than I“OP its

corresponding LOD ball on level (@ O \ Q)lLOD —1

I“OD is used. With these balls the

triangulation is computed as de- OSéL \OO JLOD _ o
scribed above. Figure 7 shows a T\ o
schematic illustration of neighbor- I

hood balls (white) and LOD balls
(gray) used for re-triangulation on

> . Fig. 7. Schematic illustration of the level of
different levels of detail.

detail re-triangulation in the octree

11 Results

We used a hand-held laser scanner “Laser ScanArm” from Faro [11] (Figure 8).
That is a measurement arm with seven joints and an assembled laser scanner
“Laser Line Probe”. The scanner driver provides 3d point data relative to the
foot of the measurement arm. Lines of up to 640 points can be scanned up to 30
times per second. For each of these lines the position and the viewing direction
of the laser scanner is tracked.
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In Figure 1 a scanned piggy
bank is shown, while Figure 11
shows the result of scanning
the bronze bust “Bildnis Theodor
Heuss” by Gerhard Marcks. The
uncertainty visualization in the
wire-frame and smooth shaded
representations reveal the regions
that can be improved by additional
scan passes.

The reduction of the input
points is demonstrated in Figure 2,

Fig. 8. The measuring arm “FaroArm” with
laser scanner “Laser Line Probe” [11]

B RV

Fig. 9. Flat shading (top) and wire-frame (bottom) of triangulation of a license plate
after 250, 2000, 5000, 9000 scan lines with uncertainty visualization

Fig. 10. Smooth shading and wire-frame representation of triangulation of a sheet of
paper with holes after 585, 1895, and 3149 scan lines
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Fig. 11. Gerhard Marcks - Bildnis Theodor Heuss, [17]. Original object (left), wire-
frame (center), smooth shaded triangulation with uncertainty visualization (right)

Fig. 12. Flat shaded mug with different levels of detail (top row) and wire-frame
(bottom row)

where Figure 2(b) shows the data generated by the scanner, and Figure 2(c)
shows the averages l_)j of the neighborhood balls, together with the estimated
normal for every ball.

Figure 9 shows how the triangulation is adaptively refined for several scan
passes of the same region. The edge of the protruded digit becomes more pre-
cise after each scan pass. Furthermore, the wire-frame representation (bottom
row) shows that the triangles near the protruded edge are smaller, because the
neighborhood balls are dissolved earlier in this region of higher curvature.

Another example of increasing accuracy for multiple scan passes is shown in
Figure 10. The reconstructed surface of a piece of paper with holes of different
size is shown after the first, the second and the third scan pass. While after the
first scan pass two small holes are still closed by the triangulation procedure,
after the third scan pass all holes are correctly detected.
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Four levels of detail of a scan of a mug are shown in Figure 12. The number of
triangles is 20,758 for the finest level of detail (left), 17,678 for the next coarser
level, and 11,277 and 3,584 triangles for the two subsequent levels. Choosing a
coarser level of detail reduces the complexity of the triangulation, but can result
in more reconstruction errors, especially at sharp edges.

All examples are computed on an Intel Core2 Quad Q6600, 2.4 GHz computer
with 4 GB RAM. To demonstrate the efficiency of the proposed method we list
in Table 1 the sizes of the models on the fines level in terms of data points
d; and vertices v; and the times spend for the different computations: number
of data points processed per second, number of vertices processed per second,
and the overall times for the computation of the triangulation and the scanning
process. The times for the scanning process do not include the pauses between
scan passes. It is apparent from Table 1 that our method works in real time even
for complex objects. A video of a live scanning process is available at [8].

Table 1. Table of number of data points d; and vertices v; in the final triangulation,
times for processing data points and vertices, overall time for the computation of the
triangulation and the scanning process for all models presented in this paper.

Data |Vertices||Data points|Vertices||CPU time|Scan time
Fig.|| points per second |per sec. [sec] [sec]

Piggy bank 1 |[1280387| 30130 4198 98.9 304.6 318
Bronze bird 2 181731 6247 44321 152.0 41.1 143
License plate 9 ||1866413| 29703 4392 69.9 424.8 504
Sheet of paper | 10 || 478900 2538 7483 39.9 63.6 105
Theodor Heuss| 11 ||2451014| 35412 4300 62.1 570.0 623
Mug 12 || 358232 8866 5778| 143.7 61.7 105

12 Conclusion and Outlook

Our experiments show that the proposed method is suitable to assist the op-
erator of a hand-held laser scanner to produce fast and complete high quality
triangulations satisfying all constraints A.—G. of the Introduction. The online
visualization helps to reduce the time for the scanning process significantly. The
final surface mesh is a correct triangulation that can be used without further
postprocessing for measurement, surface analysis or reverse engineering.

The robustness of our method is derived from the fact that the human operator
can increase the point density by additional scan passes in regions that are not yet
reconstructed topologically correct, or where important features are still missing.

Nevertheless, there are some requirements for the proposed method to work
satisfactorily. Only those parts of the object that are covered by scan lines can
be reconstructed. Because of the interactive rendering the human operator can
easily detect uncovered regions, fill the remaining holes and scan a topologically
correct reconstruction of the target object. Regions of the object that cannot
be scanned, because of occlusions or limitations of the scan arm, cannot be
reconstructed and remain as holes in the triangulation.
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Some extensions to improve the usability are worth further investigation. The
detection of sharp features and surface borders could improve the final mesh.
The method of [12] can be used to detect sharp features within the scan and
move the vertices onto these features.

Experiments show that the orientation of the scanning device during the scan
has an impact on the quality of the input data. Scanning the same region with
different orientations improves the stability of the computation significantly. Ad-
ditionally to the uncertainty visualization the optimal orientation for the next
scan of an uncertain region could be visualized to aid the operator to achieve
better and faster results.
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