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Summary. In geometrical modeling, one is often provided a description of a surface
that is defined in terms of a triangulation, which is supported by a discrete number of
nodes in space. These faceted surface representations are defined to be C-0 continuous,
and therefore in general have slope and curvature discontinuities at the triangle sides,
unless the tessellation is planar. Unfortunately, analytical and computational methods
often require a surface description that has well-defined and smoothly-varying gradients
and curvatures; in general spline surfaces possess such properties. Described herein is
a process for generating a cubic spline surface that approximates, to within a user-
specified tolerance, a given tessellated surface that may be non-convex or multiply-
connected. The method combines a local least-squares technique for specifying knot
properties as well as an adaptation technique of selecting the necessary knot spacings.
This new technique is first described along a curve for illustrative purposes. It is then
expanded to the case of the general surface. A reparameterization technique that is
required for surfaces with non-smooth parameterizations is described next. Computed
results for two configurations are then shown.

1 Introduction

1.1 Background

Creating spline fits of general data is a subject that has received much attention
over the years. In fact, there are many books devoted to spline generation and
applications[1, 2]. In most of the spline fitting literature, it is assumed that data
is known at a specified number of knots, and the spline is constructed so as to
pass through the knots and such that it has a specified level of smoothness (most
frequently C-2 continuity).

There has been limited literature concerning the generation of splines that fit,
in a least-squares sense, a set of data that are not located at the knots[3, 4, 5, 6].
In these cases, the knot locations and/or values can be modified to both mini-
mize the distance between the resulting spline and the data, and to guarantee
a specified level of smoothness. These techniques were developed primarily for
cases with a larger number of data points than spline knots. Unfortunately, all
these techniques are only presented with one independent parameter. Also, if
the data are clumped (i.e., there are portions of the parameter’s domain that
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contain no data points), the only way to apply these schemes is to move the
knots to the regions where the data exist.

The extension of these techniques from a curve (one independent parameter)
to a surface (two independent parameters) is not straightforward as there are
a few other concerns that must be addressed. First, efficient spline evaluation
techniques always operate on rectangular grids of knots. Therefore the ability
to place knots is restricted; the only degrees of freedom that are available are
the values of the dependent variables at the knots (as well as perhaps the total
number of knots in each grid direction). Second, surfaces in general can be non-
convex and can contain an arbitrary set of holes. Therefore along any constant
parameter line there are likely to be gaps, which must be dealt with in an
appropriate manner.

1.2 Problem Statement

The problem here is to create a spline surface that approximates, to within a
user-specified tolerance, a surface that is defined in terms of a tessellation. In
particular, assume that the surface to be fitted is defined in terms of N nodes,
at which the space coordinates xn, yn, and zn (n = 1, . . . , N) are known. Also
known at each of the nodes are two parametric coordinates, un and vn, which
are defined prior to the execution of this algorithm. The nodes are connected
into a tessellation that is defined in terms of T triangles, which are each defined
in terms of its three nodes, n1t, n2t, and n3t, (t = 1, . . . , T ) as well as its three
neighboring triangles t1t, t2t, and t3t; triangle sides that are at the edge of the
surface or which bound a hole within the surface have no neighbor. There is no
assumption here that the surface is convex; additionally the surface can contain
any number of arbitrarily-shaped and sized holes.

The objective then can be stated as: find the set of uniformly-spaced knots,
ûi,j and v̂i,j (i = 1, . . . , I and j = 1, . . . , J) and their corresponding space
coordinates (x̂i,j , ŷi,j , and ẑi,j) that can be used to define a cubic spline surface.
The cubic-spline surface should be such that the error associated with evaluating
the spline at each of the surface’s nodes (en) is within the user-specified tolerance
etol. The definition of the node errors is given by

en =
[
(x̃n − xn)2 + (ỹn − yn)2 + (z̃n − zn)2

]1/2
(1)

where x̃n, ỹn, and z̃n are the values that come from an evaluation of the spline
at each of the nodes (un and vn).

The problem has been stated in simple terms: given a set of triangles (with
(x, y, z) and (u, v)), return a spline surface. The following are just some of the
practical applications:

Topological Editing. The Boundary Representation (BRep) that is produced by
modern CAD systems is both a function of the configuration and the model-
ing operations used by the CAD operator. Several modern tools have adopted



Generation of Spline Approximations to Tessellations 251

the concept of a quilt, in which the faces in the original BRep are merged
into quilts (or super-faces). One of the requirements of this merge operation
is the ability to create an analytic representation of the merged faces; in
fact, the generation of a spline surface for the merged faces is the driving
motivation for the work described in this paper. It allows for the formation
of a new BRep that stands on its own, where analytic representations of the
geometry exist for each entity.

Converting a triangulation to a BRep. Sometimes the geometry of a configura-
tion is only available via a legacy (triangular) representation. The ability to
segment a triangulation, parameterize the segments, produce spline approx-
imations, and then trim the resultant surfaces are all necessary techniques
for converting a triangulation into the analytic representation that some
analytical/computational tools require.

Retriangulation. The given triangulation may not be appropriate for 3D mesh-
ing or analysis. CAD systems can provide triangulations in conjunction with
the BRep or they may be the result of a quilting operation. More impor-
tantly, if the source is a triangulation but the quality is not appropriate,
then the tessellation will need to be reconstructed. Many quality surface tri-
angulation schemes require knowledge of both the space coordinates (x, y, z)
as well as parametric coordinates, (u, v). Additionally, many of these tech-
niques require smoothly-varying surface slopes and curvatures (if the actual
geometry is smooth). A spline surface that is fitted to the original surface
naturally provides such a mechanism.

Multidisciplinary Coupling. One of the keys to multi-disciplinary analysis, such
as fluid/structure interaction, is the transfer of analysis data on the surface
between disciplines. Direct transfer of data from one analysis’s grid nodes
to the other’s is not a well defined operation because the nodes are gener-
ally not co-located. If a smooth approximation to the analysis data can be
constructed and tied to the analytic surface, then the transfer can be made
simply. Therefore, given a surface parameterization and a scalar or vector
field at the nodes, the goal is to provide an interpolant for the field data on
the surface. This requires the same algorithms as described in this paper,
but instead of (x, y, z), field values are used in the fitting process. The end
result can be used to interpolate these quantities at a specific (u, v) on the
surface and therefore onto the other discipline’s mesh nodes.

Behavioral Morphing. The analysis of geometric shapes that change in response
to the physical phenomena being modeled is a challenging problem. An obvi-
ous example is a structural member under stress, but the motivating example
here is in turbomachinery, where the analysis is performed hot (i.e. at tem-
perature and up to rotational speed) but the manufactured part (in the CAD
system) is cold. Given a parameterization that defines the surface for an in-
dividual face in the BRep, it is possible to transform the given displacement
field (however it is supplied) into an interpolating function, as described
above, based on the surface’s (u, v) space. It is then simple to create a new
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surface that is displaced from the original surface; (x, y, z) = f(u, v) just be-
comes (x, y, z) = f(u, v) + g(u, v) where g is the displacement interpolating
function.

1.3 General Approach

The proposed solution to this problem is given by:

1. Pick a 2× 2 array of knots (ûi,j , v̂i,j) that surrounds the parametric coordi-
nates in the original tessellated surface.

2. Find the space coordinates at the knots that minimizes, in a least-squares
sense, the errors between each of the nodes and their spline counterparts.

3. If the maximum error if less than a user-specified tolerance, STOP.
4. Otherwise

a) refine the number of knots in the i direction and then re-execute the
least-squares algorithm (and its error)

b) refine the number of knots in the j direction and then re-execute the
least-squares algorithm (and its error)

c) keep the knots (from a or b above) that have the smaller maximum error
and repeat back to step 3.

1.4 Roadmap

Each of these steps is described below. This paper begins with a derivation of
the proposed scheme along a curve (i.e., only one parametric coordinate, u), in
order to both analytically and graphically describe the algorithm. Sample results
of the basic algorithm are shown and the need for smoothing is highlighted; the
smoothing formulation used here is then presented and more sample results are
shown.

The section that follows re-derives the scheme for a surface with two para-
metric coordinates (u and v). The two-dimensional scheme can result in a very
large sparse matrix; the technique used to solve the system is described. This
section also concludes with some sample results.

One of the limitations of the proposed technique is that it requires that the
provided (u, v) parameterization be relatively smooth. A section that shows what
happens when you do not have smoothness, the method used to regularize the
parameterization, and the resulting approximation follows.

Sample results for a two configurations follow. The paper concludes with a
summary of the scheme and its benefits.

2 Spline Approximation for a Curve

In this section, the basic scheme is derived for the case of a curve in space
that is defined in terms of one parametric coordinate, u. Although this result
is sometimes useful by itself, it is presented here to simplify the algebra and so
that a graphical interpretation of the results can be readily made.
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2.1 Ferguson Splines

A Ferguson spline is a special form of a piece-wise cubic spline that was popular-
ized by D. Ferguson[7]. In particular, consider a spline fit of one space coordinate
x as a function of u. The characteristics of the Ferguson spline are:

• the spline is defined by a uniformly-spaced set of knots ûi (i = 1, . . . , I) so
that ûi − ûi−1 = constant.

• as with all piece-wise cubic splines, the spline has C-2 continuity throughout;
• the particular flavor of Ferguson splines used here has natural end conditions

(that is, the curvature vanishes at the end points û1 and ûI . (In general,
Ferguson splines for which the end slopes are prescribed can be generated,
but are not considered here); and

• the spline creation process finds and stores the slopes (X̂i) at each of the
knots.

Given the above, the cubic in each interval i to i + 1 can be written as

x̃ = Ãx̂i + B̃x̂i+1 + C̃X̂i + D̃X̂i+1 (2)

where the basis functions are given by

Ã = 1− 3s̃2 + 2s̃3 B̃ = 3s̃2 − 2s̃3

C̃ = s̃− 2s̃2 + s̃3 D̃ = −s̃2 + s̃3

and where s̃ = (ũ − ûi)/(ûi+1 − ûi) is the fractional distance of ũ between ûi

and ûi+1.
To set up the spline, we want to make the curvatures match at the interior

knots. Using the above, this can be written as

3x̂i−1 − 3x̂i+1 + X̂i−1 + 4X̂i + X̂i+1 = 0 (i = 2, . . . , I − 1) (3)

The natural end conditions imply that the curvature vanishes at the endpoints.
This can be written

3x̂1 − 3x̂2 + 2X̂1 + X̂2 = 0 (4)
3x̂I−1 − 3x̂I + X̂I−1 + 2X̂I = 0 (5)

The above I equations form a linear set for the X̂i with a given set of x̂i. The
resulting matrix equation is tridiagonal, it can be solved in O(I) time.

2.2 Least-Squares Problem

In the above technique, it was assumed that the knot values x̂i were known and
we had to find the slopes X̂i that yielded C-2 continuity. In this section, we do
not a priori know the knot values and thus have to find the x̂i as well as the X̂i.

Assume that we are given the desired number of knots, I. The first step is
to define a vector of knot coordinates, ûi, that are both evenly spaced and such
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all the un fall between û1 and ûI . If we define a small buffer, b, to ensure that
the spline always interpolates (and never extrapolates), then the above can be
written

û1 = umin − b(umax − umin)
ûI = umax + b(umax − umin)

where

umin =
N

min
n=1

un and umax =
N

max
n=1

un

For all cases shown here, b = 0.10.
Combining these, we finally get

ûi =
[
(1 + b)(I − i)− b(i− 1)

I − 1

]
umin +

[
(1 + b)(i− 1)− b(I − i)

I − 1

]
umax (6)

The sum-squared error can then be defined (using Eq. 1) as

E =
N∑

n=1

e2
n =

N∑
n=1

[
(Anx̂in + Bnx̂in+1 + CnX̂in + DnX̂in+1)− xn

]2

(7)

where in in the knot immediately preceding un so that ûin ≤ un < ûin+1. Also,
An = 1− 3s2

n + 2s3
n, where sn = (un − ûin)/(ûin+1 − ûn).

To minimize E, we force the I partial derivatives, ∂E/∂x̂i to vanish

∂E

∂x̂i
=

N∑
n=1

2(Anx̂i + Bnx̂i+1 + CnX̂i + DnX̂i+1)Fn = 0 (8)

where

Fn =

⎧⎨⎩An if ûi−1 ≤ un < ûi

Bn if ûi ≤ un < ûi+1

0 otherwise

The above I equations can be rearranged into the form

S1x̂i−1 + S2x̂i + S3x̂i+1 + S4X̂i−1 + S5X̂i + S6X̂i+1 = S7 (9)

with the shorthands

S1 ≡
∑

n∈nmi

AnBn S2 ≡
∑

n∈nmi

B2
n +

∑
n∈npi

A2
n

S3 ≡
∑

n∈npi

AnBn S4 ≡
∑

n∈nmi

BnCn

S5 ≡
∑

n∈nmi

BnDn +
∑

n∈npi

AnCn S6 ≡
∑

n∈npi

AnDn

S7 ≡
∑

n∈nmi

Bnxn +
∑

n∈npi

Anxn
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where nmi is the set of nodes for which ûi−1 ≤ un < ûi and npi is the corre-
sponding set when ûi ≤ un < ûi+1.

We can now form a large matrix equation from Eqs. 3 to 5 and Eq. 9, which
can be written in the general form[

M1 M2

M5 M6

] [
x̂

X̂

]
=

[
R1

0

]
(10)

Here the sub-matrices M1, M2, and R1 are taken directly from Eq. 9 and sub-
matrices M5 and M6 are taken from Eqs. 3 to 5. The resulting matrix equation,
which is quite sparse, can be solved in any convenient manner.

2.3 Numerical Solution

The above algorithm can be applied to a sample data set that was obtained by
taking a constant-v-parameter cut through one of the surfaces of an example
configuration. The original triangulation for the example surface is plotted in
the (u, v) plane in Fig. 1, with the selected cut at v = 2 shown by the horizontal
line. Fig. 2(a) shows the x(u) data along this cut as a series of circles. One can

0.0 2.0 4.0 6.0 8.0
0.0

2.0

4.0

6.0

u

v

Fig. 1. Prescribed triangulation for a test configuration. The horizontal line shows the
cut used in Figs. 2 and 3. This triangulation is the result of merging 13 faces in an
original BRep.
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(a) I = 2, E = 229.7304
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(b) I = 3, E = 0.5954
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(c) I = 5, E = 0.6366
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−2.0
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u

x

(d) I = 9, E = 78.3642

Fig. 2. Spline approximations along a curve without smoothing (µ = 0)

note three regions in which data is defined; the gap in the middle comes from
the shape of the outer boundary of the triangulation whereas the smaller gap
near the right comes from the rectangular hole in the triangulation.

The first approximation, shown in Fig. 2(a), has only two knots, resulting in
a spline that is simply a straight line. The caption of the figure states that when
the number of knots, I is 2 the sum-squared error, E, is about 200; clearly this is
not a good approximation. In part (b) of the figure, the number of knot-intervals
was doubled (taking I from 2 to 3); here the fit is visually much better and the
error has decreased to a little more than 1/2. When I = 5 the fit is about as
good as before. Unfortunately when the number of knots is increased to I = 9
the spline becomes worse, with wild oscillations present. A careful look at the
figure shows that the oscillation occurs in the region where there is insufficient
data to support the spline. In other words, in the vicinity of the oscillations,
the number of degrees of freedom in the spline knots is locally greater that the
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number of nodes for which an error is being minimized. Also, examination of
the matrix equation 10 reveals that there are some rows that are not diagonally
dominant (and in fact can become degenerate).
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(a) I = 2, E = 229.7304
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(b) I = 3, E = 0.5952
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(c) I = 5, E = 0.6369
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(d) I = 9, E = 0.1672
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(e) I = 17, E = 0.0013
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(f) I = 33, E = 0.0003

Fig. 3. Spline approximations along a curve with smoothing (µ = 0.001)
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2.4 Smoothing

To fix the above, there are two modifications to the basic least-squares equations
that appear to be necessary. First for interior knots, it has been found useful to
add a very small amount of Laplacian smoothing to the least-squares equations.
In particular, adding

µ

(
−x̂i−1 + 2x̂i − x̂i+1 −

1
2
X̂i−1 +

1
2
X̂i+1

)
(i = 2, . . . , I − 1)

to the i-th Eq. 10 has been found to work very well, where µ is a very small
parameter (here taken to be µ = 0.001). Note that in regions where there exists
enough data for least-square minimization, these smoothing terms are negligible.
However in regions where there are no nodes (that is, both nmi and npi are
empty sets), the smoothing restores the diagonal dominance in the matrix.

The other modification is associated with the knots at the ends of the spline.
At those knots, the above smoothing cannot be used since there is not an out-
board knot. For these cases, it has been found sufficient to transfer the natural
end condition associated with the Ferguson splines to the first inboard knot. For
example, if the first rows of M1, M2, and R1 are all zero, we can change that
equation to a zero-curvature condition at the inboard knot, or

3x̂1 − 3x̂2 + 2X̂1 + 4X̂2 = 0 (11)

A similar modification is added in the case where the last row of M1, M2, and R1

are all zero, which occurs when there are no nodes between the last two knots.
Fig. 3 shows the results of applying this scheme, with smoothing, to the nodes

that was shown previously in Fig. 2. Note that as more knots I are added,
the shape of the spline better approximates the shape of the node data. Note
in particular how smooth the spline is in the region that does not contains
any nodes. Also shown in the figure is the sum-squared error, E, which clearly
decreases as the number of knots increases.

3 Spline Approximation for a Surface

The extension of the above techniques from a curve to a surface is straightfor-
ward, but algebraically tedious. In this section, the most important aspects of
the extension are discussed.

Surfaces are defined in terms of two parametric coordinates, u and v. Hence the
knots at which the spline data is known form a uniformly-spaced two-dimensional
array; the parametric coordinates at the knots are thus ûi,j and v̂i,j , where
i = 1, . . . , I and j = 1, . . . , J . The knot values of the dependent variables are
x̂i,j , ŷi,j , and ẑi,j ; for illustrative purposes, only x̂i,j will be considered here.

3.1 Ferguson Splines

Creation of a Ferguson spline for a surface involves the determination of the
slopes in both parametric directions, X̂u

i,j and X̂v
i,j , as well as the cross-

derivatives X̂uv
i,j . In practice when all the knot values x̂i,j are known, the slopes
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X̂u
i,j are found by applying Eqs. 3 to 5 independently along each constant j

line; then an analogous technique for finding X̂v
i,j is used independently along

each constant i line. Finally, the cross-derivatives X̂uv
i,j can be found by applying

Eqs. 3 to 5 along constant i lines to the X̂v
i,j found previously (or alternatively

by fitting X̂u
i,j along constant j lines).

The evaluation of a Ferguson spline at (ũ, ṽ) is performed using a two-
dimensional form of Eq. 2, where there are now 16 basis functions that are
polynomial functions of s̃ (the fractional distance of ũ between ûi and ûi+1) and
t̃ (the fractional distance of ṽ between v̂j and v̂j+1) .

3.2 Least-Squares Problem

The least-squares problem for finding the x̂i,j that minimize the error E is also
conceptually straightforward.

First, the parametric coordinates at each of the knots, ûi,j and v̂i,j , are found
by independently scaling the u and v via equations similar to Eq. 6. Note that
the sums used here are over all nodes. Then an equation that is analogous to
Eq. 9 is formed, where the sums are over the set of nodes that are in the four
quadrilateral cells that surround (i, j). Next, a large, sparse matrix equation⎡⎢⎢⎣

M1 M2 M3 M4

M5 M6 0 0
M7 0 M8 0
0 0 M9 M10

⎤⎥⎥⎦
⎡⎢⎢⎣

x̂

X̂u

X̂v

X̂uv

⎤⎥⎥⎦ =

⎡⎢⎢⎣
R1

0
0
0

⎤⎥⎥⎦ (12)

is formed. Here, the sub-matrices M1 to M4 and R1 are written directly from
the analog of Eq. 9. The second set of sub-matrices (M5 and M6) come from
the spline-fit of x̂ in the i-direction (which yields X̂u). In a similar way, the
third set of sub-matrices (M7 and M8) come from fitting x̂ in the j-direction.
Finally, M9 and M10 come from splining X̂v in the i-direction. Note that since
the spline data x̂i,j are not known prior to generating the least-square fit, the
spline generation process requires that all three spline-generation sweeps be done
simultaneously.

Smoothing is added as above, by adding the Laplacian operator

µ(4x̂i,j − x̂i−1.j − x̂i+1.j − x̂i,j−1 − x̂i,j+1)

+
µ

2
(−X̂u

i−1,j + X̂u
i+1,j − X̂v

i,j−1 + X̂v
i,j+1)

to the matrix equation (as above). Finally, if any of the boundary knots (i = 1,
or i = I, or j = 1, or j = J) have a degenerate equation in the matrix (because
the are no nodes in the cells adjacent to the knot), the natural end condition is
applied at the adjacent inboard knot (for example, at (2, j)).

The above matrix equation is rather large, but is very sparse. In fact each of
the sub-matrices M is pentadiagonal. To see how large the matrix is, consider
the generation of a 65 × 17 array of knots, which results in a square matrix
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that contains almost 20 million elements, fewer than one-half percent of which
are non-zero. Clearly forming and solving the full matrix is unacceptable and
thus sparse-matrix methods must be used. Here, the sparse-matrix data storage
format and the bi-conjugate gradient solver described in [8] are used. The only
delicate part of using this sparse-matrix technique is the direct creation of the
matrix in sparse-matrix form.

4 Overall Algorithm

The above section describes the technique used to find the knot data, x̂i,j , for
a spline that matches, in a least-squares sense, the data values prescribed at
the nodes, xn. Since in general we want to generate fits for all three space
coordinates, (x, y, z), the above technique can be applied successively to xn, yn,
and zn. However, the objective is to find the knots that result in splines that
are within a user-specified tolerance, etol, of the knot data. Above, a general
technique is outlined; this section expands on that description.

As mentioned above, the method starts out with a 2 × 2 array of knots; the
technique described above is then applied with I = 2 and J = 2 and the error
at each node, en, is computed for each space coordinate. The maximum of all
these errors

emax =
N

max
n=1

(ex
n, e

y
n, e

z
n)

is compared with the tolerance, etol to determine if the knot set is sufficient.
This coarse knot grid turns out to be sufficient for cases in which the tessellated
surface is planar.

If emax is larger than etol, then we do not have a sufficient number of knots.
In this case, two refinements are made:

• First the number of knot intervals in the i-direction is doubled, or Inew ←
2I − 1. The least-squares algorithm is executed on a Inew × J grid and the
maximum resulting error, called eI , is computed.

• Next the number of knot intervals in the j-direction is doubled, or Jnew ←
2J − 1. The least-squares algorithm is executed on a I × Jnew grid and the
maximum resulting error, called eJ , is computed.

The grid of knots with the smaller error becomes the new set of knots. For
example, if eI < eJ , then the new grid will be Inew × J .

If the error associated with this new grid (just computed) is smaller than etol,
the overall procedure terminates; otherwise the process is repeated until either
a sufficient grid is found or until a maximum grid size is reached; in practice,
the latter does not happen if the specified tolerance is reasonable. For all the
cases shown here, etol is set to 10−4 of the largest dimension (in (x, y, z)) of the
surface.

4.1 Improvements in the Parameterization

After exercising the above on over 2500 surfaces taken from both test and real-
world configurations, it was found that the above algorithm sometimes results in
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a set of knots that exhibit large oscillations; other times, the algorithm produces
good results within the trimming curves of the surface, but exhibits unwanted be-
havior beyond the surface’s trimming curve, indicating that the spline would not
be suitable for extrapolating a small distance beyond the edge of the surface.
(This extrapolation might be needed for an algorithm such as surface-surface
intersection.) Careful examination of these cases showed that this unwanted
behavior was always associated with nearly-infinite slopes in the underlying pa-
rameterization.

Clearly the answer to this is to reparameterize so that these nearly-infinite
slopes are eliminated. For a curve, this reparameterization is fairly easy to ac-
complish through stretching. Unfortunately, this reparameterization for a surface
is not quite as straightforward.

Stated simply, the objective of the reparameterization is to make the spacings
of the nodes in parametric (u, v) space to be proportional to the node spacing in
terms of the space coordinates, (x, y, z). Here we have adopted the reparameter-
ization proposed by Floater[9]. The first step is to find the mean value weights
at each node due to its neighbors. For a triangle side between nodes n1 and n2,
the mean-value weight is given by

wn1,n2 =
tan(α/2) + tan(β/2)

dn1,n2
(13)

where α is the angle at node n1 in the triangle to the left of side [n1, n2], β is
the angle at node n1 in the triangle to the right of side [n1, n2], and dn1,n2 is
the distance between the nodes. All of these angle and distance calculations are
made using the space (x, y, z) coordinates.

Next two sparse matrix equations are formed. For each interior node in the
surface, we can write

un

∑
m

wm,n +
∑
m

(wm,num) = 0 (n = 1, . . . , N) (14)

vn

∑
m

wm,n +
∑
m

(wm,nvm) = 0 (n = 1, . . . , N) (15)

The parametric coordinates at boundary nodes are not allowed to move. These
equations are solved using the sparse-matrix, bi-conjugate gradient technique
mentioned above.

Fig. 4(a) show the tessellation that was provided; it was formed by projecting
the nodes on a fuselage surface in the spanwise direction; that is un = xn and
vn = yn. Note how the parameterization is squeezed near the top and bottom
edges due to the fact that the surface is nearly parallel to the x − z plane. A
vertical cut was made through the parameterization at u = 3 and the corre-
sponding spline fit of z(v) is shown in part (b). Notice the oscillations that arise
due to the nearly infinite slope, dz

dv , at the ends (which correspond to the top
and bottom of the vertical cut).

The above reparameterization technique was then applied, resulting in the pa-
rameterization in part (c) of the figure. Since the nodes on the surface were orig-
inally placed such that the spacings between adjacent nodes was approximately
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(a) original surface tessellation. The trian-
gles near the bottom and top are highly
stretched.
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(b) spline approximation along u = 3 for
the original surface tessellation.
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(c) reparameterized surface tessellation.
The triangles near the bottom and top are
more isotropic than before.
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(d) improved spline approximation along
u = 3 for the reparameterized tessellation

Fig. 4. Effect of reparameterizing a surface

constant, the reparameterization results in approximately-constant parametric
spacings. The spline technique applied on this new parameterization is shown in
Fig. 4(d). Here the oscillations have been eliminated and the error between the
resulting spline and the nodes is negligible. Application of this reparameteriza-
tion to the entire test suite shows that all the oscillations were eliminated.

5 Computational Examples

The spline generation scheme proposed here has been applied to over 100
configurations, comprised of over 2500 surfaces. Figs. 5 and 6 show two of these
configurations. The BRep produced by the CAD systems, along with CAPRI’s[10]
tessellation is shown in part (a) of each figure. Shown in part (b) of each figure is
the grid of knots that were automatically produced by this scheme. One can clearly
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(a) BRep with given tessellation

(b) BRep with grid of knots for each surface

Fig. 5. Test case 1, consisting of 17 surfaces (which were created by merging the original
82 faces in the Parasolid part). Note that the curved back surface is the surface used
in Figs 1 to 3.
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(a) BRep with given tessellation

(b) BRep with grid of knots for each surface

Fig. 6. Rocket launch vehicle, consisting of 40 surfaces (which were created by merging
the original 83 faces in the Pro/ENGINEER part)
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that most of the knots match the original configuration to within the specified tol-
erance, which was set to 10−4 times the configuration size. One can also see the
extrapolation beyond the edges of the configuration that is necessary in order to
have a rectangular grid of knots for each surface; this is especially apparent for-
ward of the wing, canard, and empenage leading edges in Fig. 6. The total CPU
time needed for the two cases was 4.3 and 49.9 seconds, respectively, on a Mac-
Book-Pro with a 2.6 GHz Intel Core 2 Duo processor running under OSX 10.5.

6 Summary

A new process for generating a cubic spline surface that approximates, to within
a user-specified tolerance, a given tessellated surface that may be non-convex
or multiply-connected is described. The method combines a local least-squares
technique for specifying knot properties as well as an adaptation technique of
selecting the necessary knot spacings.

This new technique is fully described along curves, with all necessary equa-
tions. It is then extended to the case of the general surface; here the key equations
are given together with an explanation as to how to derive the other equations
by extending the curve method. Also, a reparameterization technique that is
required for surfaces with poorly-defined parameterizations is described.

The new technique has been applied to over 100 configurations, composed of
over 2500 surfaces. In all cases, the method was able to find spline approxima-
tions that were within the user-specified tolerance. Computed results for two
configurations are shown.

The development of this technique was motivated by the need to create an
approximation for surfaces that were created by merging other surfaces. How-
ever, this technique has wider applicability, such as to support retriangulation
of surfaces, multi-disciplinary coupling, and behavior morphing.

Note that the development here used Ferguson splines as the approximating
function, which are a subset of general NURBs. Therefore this technique provides
a natural way for generating a NURB representation of a tessellated surface.
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