
Transient Mesh Adaptivity with Large

Rigid-Body Displacements

G. Compère�, J.-F. Remacle, and E. Marchandise

Institute of Mechanical, Materials and Civil Engineering (iMMC)
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Summary. This paper presents a procedure for computing fluid-structure interaction
problems when the boundaries of the domain undergo large displacements. The algo-
rithm is based on both mesh motion and mesh adaptation techniques. More specifically,
we use a node repositioning algorithm based on an elastic analogy together with a mesh
adaptation procedure based on local mesh modifications [1]. This paper also includes a
new technique for eliminating sliver tetrahedra. Some computational results are finally
presented that include statistics on mesh quality measures.

1 Introduction

This paper deals with the issue of computing fluid-structure interaction (FSI)
problems with large displacements of the structure. The most common way of
dealing with FSI is to adopt an Arbitrary Lagrangian Eulerian (ALE) formula-
tion of the fluid equations. ALE formulations allow to take into account small
motions of the nodes in the fluid caused by the displacement of the structure.
This approach suffers from obvious limitations as node repositioning cannot al-
ways provide a valid mesh when significant displacements or deformations of the
structure are considered.

One way of addressing this problem is to remesh the entire domain when the
displacements of the structure are too large to be handled [2, 3]. In this work,
we rather use local mesh modifications [1, 4, 5, 6] both to optimize the quality
of the tetrahedra and to comply a mesh size field. This approach is globally
advantageous compared to global remeshing:

• Local solution projection procedures can be built in a way that ensures local
conservation [4],

• The mesh remains unchanged in large parts of the domain,
• Local mesh modifications can be performed in parallel, enabling transient

adaptive simulation to run on parallel computers [5].

There exist a small number of other approaches to handle large mesh defor-
mations, among which the sliding mesh techniques [7]. Compared to local mesh
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modifications, they have the disadvantage of requiring a flux computation at
the interface and working with non coinciding meshes. The overset grid meth-
ods [8] are also developed in the literature but require grid assemblies and donor
cell search processes. The local mesh modification technique has a unique mesh
and a single prescribed boundary motion, which leads to a conceptually simple
method and robust mesh movements [5].

Transient adaptive computations using local mesh modifications have already
been applied to transient multiphase flow simulations in [9]. In this previous
work, the mesh was adapted in order to capture the interface between two fluids,
described by a level set function. In this paper, we extend the method to FSI
problems.

In this context, two new issues have to be addressed. The first issue is the for-
mulation of the mesh motion problem. In FSI, only the motion of the boundaries
of the domain is prescribed. Typically, some kind of elastic analogy, possibly with
a variable stiffness [10], is used to extend this motion inside the domain. Here,
we do not make the assumption that the boundary motion is small or that the
volume of the domain remains unchanged. An elastic approach does not give any
guarantee on the validity of the mesh for large displacements. Even when the
motion is limited, ill-shaped elements are produced in the process. This is the
second issue. A new efficient procedure is presented that enables to eliminate all
ill-shaped elements that are inevitably produced during the mesh motion.

The remainder of this paper is organized as follows: the first section introduces
the different edge size fields. Section 3 describes the set of local mesh modification
operators while section 4 presents the ill shaped elements elimination algorithm.
In section 5, we recall the principles of the elastic analogy for mesh motion
and discuss the choice of local element stiffness. The global procedure is then
described in section 6. Section 7 presents some numerical results.

2 Mesh Size Field

The aim of the mesh generation process is to build elements of controlled shape
and size. Mesh generators are usually able to adapt to a so called mesh size field
(see for instance [11, 1]). An isotropic mesh size field is a scalar function δ(x, t)
that defines the optimal length of an edge at position x of the domain and at
time t.

We typically define the non-dimensional length Ltr
e of edge e as

Ltr
e (t) =

∫
e

δ−1(x, t)dl. (1)

The quantity Ltr
e represents the number of subdivisions of edge e that are nec-

essary for having an edge that has exactly the right size with respect to the size
field.

There are lots of ways to define a size field: some are based on rigorous error
estimation procedures [12] but there are lots of heuristics. For example, it is often
considered that mesh size should be smaller near boundaries: when dealing with
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viscous flows, a large part of the vorticity is created near the walls, when dealing
with solid mechanics problems, stress concentration are usually located near the
boundaries.

We define d(x, t) as the distance to the closest boundary at time t. This
distance can be computed in place using the Approximated Nearest Neighbor
Algorithm [13]. A first mesh size field δ1(x, t) is computed as follows:

δ1(x, t) = δsmall
1 + α1(x, t)(δ

large
1 − δsmall

1 ),

where

α1(x, t) =

⎧⎪⎨⎪⎩
0 if d(x, t) ≤ dmin

1
d(x,t)−dmin

1
dmax
1 −dmin

1
if dmin

1 < d(x, t) < dmax
1

∞ if d(x, t) ≥ dmax
1

with δlarge
1 and δsmall

1 a large and a small desired mesh sizes, dmax
1 and dmin

1

two field values that define the zone of refinement. An example of use of δ1 is
presented on figure 1.

Fig. 1. Mesh adapted using the distance to boundaries

Other size fields δ2(x, t), δ3(x, t), . . . can be defined:

1. mesh sizes prescribed at model vertices and interpolated linearly on model
edges;

2. prescribed mesh gradings on model edges (geometrical progressions, ...);
3. mesh sizes defined on another mesh (a background mesh) of the domain;
4. mesh sizes that adapt to the principal curvature of model entities.

The size field δ(x, t) is computed, at time t, as the minimum of all size fields. It
is usually bounded by upper and lower values of mesh sizes.

In an ideal mesh, each edge has an adimensional length Ltr
e = 1. This ideal

situation cannot be attained in practice. In the adaptation procedure one has to
decide whether an edge is acceptable, i.e. find a range [Llow, Lup] for which an
edge is considered to have a good size. Then a long edge has a size Ltr

e > Lup

and a short edge has a size Ltr
e < Llow.

In [1], the authors show that choosing a too narrow range for acceptable edge
sizes may lead to infinite loops between splits and collapses. In § 6 and § 7, we
show the influence of this interval on the mesh quality and on the number of
infinite loops.
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3 Local Mesh Modifications

The three basic local mesh modifications are the edge split, the edge collapse and
the edge swap. Other operators like face swap and some compound operators
are also used in this work.

There are two ways of dealing with long edges. The first one consists in tagging
every long edge of the mesh. Then, every tetrahedron of the mesh is subdivided
using a template that is function of the number of edges that have been split.
The second manner consists in splitting all tetrahedra surrounding a long edge,
and then proceed to the next edge. The latter approach has been used because it
is simpler (only one template has to be defined), more robust (no Steiner point
has to be introduced) and (surprisingly) more efficient. Moreover, we have found
out that both methods lead to meshes with elements of similar qualities. The
edge split operator is depicted on figure 2.

(a) (b)

Fig. 2. Edge split operation: (a) initial cavity, (b) cavity after the edge split

When a short edge is found, an edge collapse is applied. The edge collapse
operator (see figure 3) removes an edge and all its bounding elements from the
mesh by merging its two extremities at one of their locations.

(a) (b)

Fig. 3. Edge collapse operation: (a) initial cavity, (b) cavity after the edge collapse

The edge swap consists in remeshing the cavity surrounding the edge with
the aim of improving the worst element shape in that cavity. Figure 4(a) shows an
edge to be swapped that is surrounded by five tetrahedra. Figures 4(c), (d) and
(e) depict three of the five possible configurations after the swap. The retained
configuration is the one that has the best minimal element quality in the cavity.

The face swap removes a face and replaces it by an edge, leading to the
creation of three tetrahedra instead of two. This operation can be seen as the
inverse edge swap with n = 3.

The face collapse operator can be seen as the compound of and edge split
and an edge collapse. The operation is depicted on Figure 5. One of the edges of
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(a) (b) (c) (d) (e)

Fig. 4. Edge swap operation: (a) initial cavity with n = 5, (b) mean surface that is
going to be triangulated, (c),(d) and (e) three possible configurations after the swap

(a) (b) (c)

Fig. 5. Face collapse operation: (a) initial tetrahedron, (b) split of an edge of the
concerned face, (c) collapse of the new edge on the new vertex

the face is split and the resulting new edge is collapsed on the new vertex. This
operation is particularly well suited to eliminate an ill-shaped element that has
a face with a small ratio area/edge lengths.

The double edge split collapse compound operator consists in splitting
two edges of a tetrahedron and then collapsing the edge joining the two new
vertices. This operator is used when a tetrahedron with a small volume has two
edges nearly intersecting. The operation is depicted on Figure 6.

(a) (b) (c)

Fig. 6. Double edge split + edge collapse operation: (a) initial tetrahedron, (b) situa-
tion after the edge splits, (c) situation after the edge collapse

4 Sliver Tetrahedra Handling

A tetrahedron is said to be a sliver when it has a small volume and no short edge.
Such a tetrahedron can be classified in one of the two categories [14] depicted
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(a) (b)

Fig. 7. Classification of the sliver tetrahedra: (a) type I, (b) type II

on figure 7. Type I slivers are tetrahedra in which two edges almost intersect. In
type II slivers, one vertex is very close to its opposite face. The determination
of the sliver type is important because it gives a useful information about the
best local mesh modification that can be applied in order to eliminate it. The
projection algorithm presented in [1] is used in this work to determine the type
of sliver.

In FSI, when the mesh motion solver is pushed to its limits, it inevitably
generates slivers near the boundaries undergoing a motion. In [1], an algorithm
selecting the local mesh modifications to be applied was proposed to eliminate
most of them. In this work, we propose an extension to this algorithm that
eliminates more slivers.

A new sequence of mesh modification operations is proposed in Table 1. The
operations are sorted with respect to their average efficiency to eliminate slivers
of type I and II. The efficiency measure that we have used takes into account
both the rate of success of eliminating slivers and CPU time consumption of the
given operator. The rates of success of the different operations have been deduced
from various test cases. Some of them are presented in section 7. We notice that
the vertex motion is the very last solution as it is highly probable that the
tetrahedron becomes a sliver again after the next step of the boundaries motion.
The target location for the motion is computed with the method proposed in [15].

Note that those sequences are designed to be part of the sliver elimination
algorithm inserted in the global adaptation procedure presented in section 6.
Other sequences could be more efficient if the global procedure was modified.

In this work, we consider that eliminating the slivers is more important than
enforcing locally the length criterion, which means that an operation that can
eliminate a sliver or at least improve the local quality is performed, even if it
creates long or short edges. The long or short edges will be eliminated later on
by the global procedure but only if they do not create a sliver tetrahedron (see
section 6.2).

The construction of the list of sliver tetrahedra is made by computing the
quality of every element of the mesh. The quality measure is chosen to be the
cubic mean ratio [16], defined by

η3 = 15552
V 2(∑6

i=1(Li)2
)3 , (2)
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Table 1. Sequence of local mesh modifications attempted to eliminate a sliver

Sliver type Priority level Local mesh modification

I 1 Split one of the two key edges
2 Collapse one of the edges of the tetrahedron
3 Split both key edges and collapse the new interior edge
4 Split one of the key edges and collapse the new vertex
5 Swap one of the two key edges
6 Relocate a vertex

II 1 Collapse one of the edges of the tetrahedron
2 Collapse the key face
3 Swap any of the edges bounding the key face
4 Swap the key face
5 Relocate a vertex

with V the volume of the element and Li the length of the ith edge of the
element. The 15552 factor is set to scale η3 such that it ranges from 0 to 1. Its
value is 1 for an equilateral tetrahedron and 0 for a flat tetrahedron. An element
is considered as a sliver if its quality is under a certain threshold Tsliver . In all
simulations presented in this paper, Tsliver is set to 0.01.

5 Mesh Motion Solver

In FSI problems, the structure imposes its motion to some of the boundaries of
the fluid domain. Moving only the boundary nodes leads to the generation of ill
conditioned tetrahedra. A way to circumvent partially this issue is to relocate
the nodes of the volume using a linear elasticity analogy [17, 6].

A linear elastic problem is solved every time the mesh is moved. Here, we
use the approach of [10] in which a stiffness alteration based on the Jacobian
of the elements is used to stiffen the smaller elements. The corresponding finite
element formulation is written as follows. Consider the vector of displacements
of the nodes yh ∈ Sh, where Sh is the piecewise linear nodal finite element
space. The modified energy of deformation of a tetrahedron e submitted to a
displacement yh (with the corresponding strain and stress tensors ε and σ) is
written as:

1
2

∫
e

[
ε(yh) : σ(yh)

]e
Je

(
J0

Je

)χ

dv, (3)

where χ is the stiffening parameter and J0 a fictious volume constant over the
mesh.

Figure 8 illustrates the influence of χ. With χ = 0, we observe ill shaped
elements near the walls. The elastic solver fails to achieve the mesh deformation
with positive volumes of the elements if a motion of the cube of more than 0.1×h
where h is the size of the cube is imposed. With χ = 1 and χ = 2, a motion of
1.0× h can be attained without any particular problem. In the χ = 2 case, the
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Initial mesh χ = 0.0 χ = 1.0 χ = 2.0

Fig. 8. Mesh around a cube and its deformations for various values of χ

elements are very well preserved around the cube but the quality falls outside of
the refined zone. The choice of χ = 1 seems to be a good compromise and has
been used in all the computations presented in this paper.

6 Global Mesh Modification Procedure

Our FSI procedure has two different stages: the node repositioning stage and the
mesh adaptation stage. The node repositioning step does not imply any change
in the mesh topology. As it does not need to reallocate the resources for the
storage of the topology, the solution or any data, it can be performed often at
a reasonable computational cost, that is, each time a displacement is prescribed
at the interface between the fluid and the structure. Moreover, the node reposi-
tioning is explicitly taken into account in the ALE formulation of the governing
equations and does not need any mesh to mesh interpolation. In the second
step of the procedure, the mesh is adapted using the local mesh modifications
presented in section 3 and the global size field presented in section 2.

6.1 The Mesh Adaptation Algorithm

The aim of the adaptation procedure is twofold. First, the adimensional size of
all edges of the mesh have to lie in the interval [Llow, Lup]. Then, the quality of
the resulting mesh has to be optimal. Minimal quality criterions can be expressed
for instance in terms of a minimal quality for every element and/or a minimal
mean quality of the elements.

The mesh adaptation procedure can be described as follows:
Do {

• Collapse short edges i.e. edges that have lengths Ltr
e < Llow.

• Do an edge swap loop: loop over all edges and compute the minimal quality
of the elements surrounding the edge. The quality is given by the cubic mean
ratio (equation 2). If the quality is lower than a given threshold Tswap, try to
find a swap configuration. Apply the swap if it improves the minimal quality
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in the cavity and if it does not create a long or a short edge. The threshold
Tswap is fixed to 0.1 in all the simulations presented in this paper.

• Eliminate sliver tetrahedra with the algorithm described in section 4.
• Split long edges i.e. edges that have lengths Ltr

e > Lup.

} While the mesh is modified.
The collapse loop is performed first in order to avoid memory peaks. Indeed,

the number of nodes decreases during this loop. As the edge swap loop is costly, it
is performed just after the coarsening loop, with the minimum number of nodes.
The sliver region elimination can then be performed without having to compute
any element shape, as all element qualities are computed at the previous step.

6.2 Infinite Loops

There are a few ways in which the adaptation procedure can degenerate in an
infinite loop between two or more configurations.

If the interval of tolerance for the length of the edges is not large enough,
an infinite loop between split and collapse operations can appear. Due to the
heuristic nature of the mesh adaptation, we cannot guarantee that such a loop
will never appear, even for a large interval. For that reason, a maximum number
of iterations is imposed in the global procedure. The edge length interval should
then be carefully chosen in order to strongly limit the number of infinite loops
without being too far from the unit mesh. More detailed results are presented
in section 7.

Another possibility of having an infinite loop is illustrated in Figure 9, in
which an edge split is followed by an edge collapse and an edge swap. This is
possible because the goal of the edge split and collapse operators is to respect
a criterion on edges length while the edge swaps tend to improve the quality of
the tetrahedra. A way to eliminated such a scenario is to forbid an edge swap if
it creates a long or short edge.

Finally, the operators used in the sliver regions handler can also create a set
of complex infinite loops. This possibility can be avoided if any operation that
creates a sliver tetrahedron is forbidden. Of course, as an exception, we allow
the replacement of a sliver by a better sliver.

(a) (b) (c) (d)

Fig. 9. Infinite loop between an edge swap, an edge split and an edge collapse: (a)
initial cavity, (b) cavity after the split, (c) cavity after the collapse, (d) cavity after the
swap, identical to (a)
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7 Computational Results

Our adaptation procedure has been evaluated on three test cases. The quality
of the meshes, the elimination of the sliver tetrahedra and the evolution of the
number of nodes are presented in the first and the second cases. The third test
case is a fluid-structure interaction computation with a very large motion of one
or two spheres in a fluid at rest.

7.1 Cylinder and Tube

This test case consists in the penetration of a cylinder in a tube, the diameters
of the objects being quite close. The initial geometry and mesh are shown in
figure 10. The cylinder has a radius of 0.9 and a length of 3.0. The tube has
the same length with an internal radius of 1.0 and an external radius of 1.2.
The initial distance between the two objects is 1.0. The two objects move with
a velocity of 1.0 for the cylinder and −1.0 for the tube. The end of the test is
fixed at time 4.0, when the objects are completely separated and the distance
between them is 1.0.

Fig. 10. Cylinder and tube test case: initial geometry and mesh

A global edge length of 0.6 is prescribed on the whole domain and both objects
are equipped with a local size field. The parameters of the local size fields for
the cylinder and the tube are{

dmin
cyl = 0

dmax
cyl = 1.0

{
δsmall
cyl = 0.1
δlarge
cyl = 0.6

{
dmin

tube = 0
dmax

tube = 1.0

{
δsmall
tube = 0.4
δlarge
tube = 0.6

For an interval [Llow, Lup] set at [0.5, 1.4], the number of nodes ranges from about
23.500 to 33.000 during the adaptation. This is sufficient to get representative
data and statistics about the mesh quality and the sliver elements handling.

A time step of 0.01 has been chosen for this test case. It corresponds to a
relative motion of the objects of 0.2dmin

cyl at each time step.
The mesh aspect obtained at different times with a time step of 0.01 and an

interval [Llow, Lup] set at [0.5, 1.4] is shown in figure 11.
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Fig. 11. Mesh aspect at different times with ∆t = 0.01, Llow = 0.5 and Lup = 1.4

Table 2. Tube and cylinder test case: statistics about sliver tetrahedra handling

Successes New sliver Failures Success rate (%)

Type I (547)

All operators 541 1 5 98.9
Edge collapse 244 3 300 44.6
Edge split 346 20 181 63.3
Double split+collapse 210 11 326 38.4
Face collapse 279 13 255 51.0
Edge swap 306 17 224 55.9
Vertex relocation 504 10 33 92.1

Type II (308)

All operators 306 1 1 99.4
Edge collapse 119 2 187 38.6
Face collapse 155 1 152 50.3
Edge swap 202 5 101 65.6
Face swap 112 6 190 36.4
Vertex motion 292 1 15 94.8

Sliver tetrahedra handling

In order to get more information about the efficiency of each mesh modification
applied in the sliver region elimination, we have run the adaptation procedure
in which the slivers handling algorithm is enhanced with a routine that tests
all operations individually on each sliver before going in the normal algorithm
of elimination. This routine has no influence on the results, but provides the
statistics shown in table 2. The first columns indicates the number of sliver
tetrahedra that the operators can eliminate without creating a new sliver. The
second column shows the number of situations in which the operator can only
eliminate the sliver by creating another sliver with a better quality, while the
third column shows the number of slivers that could not be eliminated or for
which a worse sliver would appear. The rate of success of the operator (not
including the cases in which a new sliver is created) is indicated in the last
column.
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(a) (b)

Fig. 12. Cylinder and tube test case: comparison between intervals [Llow, Lup]: (a)
evolution of the mean quality of the mesh and (b) the number of nodes

Table 3. Tube and cylinder test case: comparison between intervals [Llow , Lup]: number
of infinite loops

Interval [0.4, 1.0] [0.4, 1.4] [0.5, 1.2] [0.5, 1.4] [0.5, 1.6] [0.5, 2.0]

Infinite loops 400 0 400 81 0 0

We can see that combining all operators do not lead to a total elimination of
the slivers but provides a very good rate of elimination. The vertex repositioning
looks attractive but we observed that a lot of slivers eliminated by a repositioning
become slivers again once a global node motion is applied. For type I slivers, the
edge split is very efficient if we notice that it is a very fast operator compared to
the edge swaps. Note that those results are influenced by the fact that the sliver
elimination is done after the edge collapse and edge swap loops and before the
edge split loop.

Mesh quality and infinite loops

A particular result that we observe in our simulations is that the mean quality
of the mesh depends on the boundaries of the interval [Llow, Lup]. Figure 12 (a)
shows the evolution of the quality for various intervals, figure 12 (b) shows the
evolution of the number of nodes in each case, while table 3 shows the number
of time steps in which an infinite loop was created.

We can see that the condition Llow < 0.5Lup is not sufficient to avoid infi-
nite loops. Indeed, there is an infinite loop at each time step with the intervals
[0.4, 1.0] and [0.5, 1.2] while some infinite loops appear with [0.5, 1.4]. We would
then recommend to use an interval with a similar range than [0.4, 1.4] or [0.5, 1.6].

We also observe that the quality is dependent on the boundaries of the interval.
If we compare the intervals [0.4, 1.4] and [0.5, 1.4], the quality seems to be better
with the largest Llow. If we look at the results for [0.5, Lup], we can see that the
quality decreases to a smaller value when Lup is bigger. These two observations
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lead to the conclusion that the quality tends to a bigger value if the interval is
smaller.

In order to get the best mean quality without running into infinite loops,
a compromise has to be found on the size of the interval. The smaller interval
which do not lead to infinite loop should be used. From the set of intervals tested
here above, our choice would turn towards [0.4, 1.4] or [0.5, 1.6].

7.2 Worm Screw

The second test case is a worm screw whirling inside a cylinder. It has been
chosen to demonstrate the capabilities of the adaptation procedure on relatively
complex geometries.

Figure 13 shows the geometry and the initial mesh of the domain at time
0. The domain is bounded by a worm screw of diameter 4.94 and length 15.6
turning with an angular speed of 1.0, and a fixed cylinder of diameter 5.2 and
length 16.2. The computation ends when a complete turn has been operated, i.e.
at t = 2π. A time step of 0.02 is chosen.

Fig. 13. Worm screw: initial geometry and mesh

The maximum size on the whole domain is set to 1.0, while a size field with
the following parameters is prescribed at every wall:

dmin
1 = 0 dmax

1 = 0.4 δsmall
1 = 0.2 δlarge

1 = 0.4

The interval [Llow, Lup] is set to [0.5, 1.6]. With these parameters, the number
of nodes ranges from 125.000 to 155.000 during the computation.

Figure 14 shows the aspect of the mesh at times 4.0 and 6.0.
The evolution of the mean quality is shown in figure 15 (a). The cubic mean

ratio tends to a value close to 0.40, which is quite similar to what was observed
in the previous test case with the same interval [Llow, Lup]. The distribution
of the quality in the final mesh is shown in figure 15 (b). The evolution of the
number of nodes is drawn on figure 15 (c). It stabilizes around 155.000.

The statistics about the elimination of the sliver tetrahedra are shown in
table 4. Every sliver is eliminated and most of them are eliminated at the first
attempts.
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(a) (b)

Fig. 14. Worm screw: cuts in the mesh at times 4.0 and 6.0
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Fig. 15. Worm screw: (a) evolution of the mean cubic mean ratio, (b) distribution of
the quality in the final mesh, (c) evolution of the number of nodes

Table 4. Worm screw: statistics about sliver tetrahedra handling

Applied (no sliver) Applied (new sliver)

Type I (1532)

Edge split 1182 0
Edge collapse 239 0
Double split+collapse 15 1
Face collapse 18 0
Edge swap 4 1
Vertex relocation 72 0
Remaining 0

Type II (1521)

Edge collapse 1430 0
Face collapse 33 1
Edge swap 17 0
Face swap 1 0
Vertex motion 38 1
Remaining 0
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7.3 Spheres Falling in a Fluid

In this test case, the mesh adaptation procedure is applied to a fluid-structure
interaction solver. The problem solved implies the motion of one or two spheres
falling in a fluid.

The fluid is governed by the incompressible Navier-Stokes equations. The
equations are discretized in a dual finite elements / finite volumes formulation.

The motion of the sphere is computed with the Newmark method and the
coupling is achieved with a CSS procedure [18] equipped with sub-iterations
cycles.

Single sphere

For this computation, a single sphere is immersed in the fluid. We fix the param-
eters of the fluid so that the Reynolds number Re is equal to 1 at equilibrium.
Due to the gravity, the sphere accelerates until the gravity is exactly balanced
by the drag force and the Archimede’s force. We fix the mass of the sphere such
that the theoretical velocity at equilibrium is 1.

Figures 16 shows the evolution of the velocity and displacement of the sphere
as well as the evolution of the mesh quality. We notice that the velocity tends
to 1 as expected and that the quality decreases slowly so that the loss along the
computation is not significant.
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Fig. 16. Single sphere test case: (a) evolution of the displacement, (b) velocity and (c)
mean quality of the mesh

Two spheres

In the next computation, the motion of two vertically aligned spheres are inves-
tigated.

The evolution of the displacements and the velocities of the spheres are shown
in figures 17 (a) and (b). We observe that from the time 1.5, the upper sphere
is aspirated by the flow around the first one. Eventually, the spheres touch and
the computation stops.

The cut of the computational mesh is represented on figure 18 for different
times as well as the pressure field.
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Fig. 17. Two spheres test case: (a) evolution of the displacements and (b) velocities
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Fig. 18. Two spheres test case: mesh and pressure field at different time steps

8 Conclusion

A procedure to handle large deformations of a mesh in FSI problems by nodes
movement and local mesh adaptation was presented. The procedure is robust
and can handle complex geometries with very large deformations of the domain.

For that purpose, a node repositioning technique with a selective treatment
for the elements previously applied for two-dimensional meshes was applied for
three-dimensional meshes.

A new adaptation procedure has been proposed in which an efficient handling
of the sliver tetrahedra is included. The procedure achieves a good quality for the
mesh and complies a mesh size field. Important parameters of the procedure like
the boundaries of the interval [Llow, Lup] were studied with a set of computations.
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In particular, some clues are given to choose them by looking at the quality,
number of nodes and production of infinite loops.

Finally, mesh deformation tests and fluid-structure computations have been
performed in order to show the potential of the presented approach.
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