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Summary. This paper presents a new sphere packing algorithm for generating gran-
ular structures in either two or three dimensions. Such a structure is often modeled by
a parallelepiped containing spherical balls in three dimensions or by a rectangle filled
with disks in two dimensions. The grains (spherical balls or disks) are separated by
interfaces with specific thicknesses, called grain boundaries, and their size correspond
to a size distribution experimentally obtained. The geometrical modeling of such a
structure, which consists in determining the repartition of the set of disjoint grains ac-
cording to the above specifications, can then be considered as the classic sphere packing
problem. The proposed method is a constructive algorithm based on an advancing-front
approach, which is well known in a different context, namely mesh generation. Since
the use of the advancing-front approach leads to empty areas near front collisions, a
point relocation algorithm, using weighted Delaunay triangulation, is then introduced
to balance the local density on the whole structure. Moreover, we propose a method
to transform spherical balls (disks) into polyhedral (polygonal) cells similar to the real
grain shape. Numerical 2D and 3D examples are provided to illustrate the capability
and the efficiency of our approach. The algorithms and techniques presented here can
find applications to generate aggregates in all fields concerned by the granular struc-
tures such as metallurgy, ceramics, soil science, cements, biomechanics, etc.

Keywords: sphere packing, advancing-front approach, granular, nanostructures,
Laguerre diagram, quality meshes.

1 Introduction

The geometrical modeling of granular structures represents a key step in the sim-
ulations and studies of their behavior (mechanical, electrical, thermal, ...). This
modeling is often based on experimental data provided by microscopic analysis
in the form of a parallelepipedic (rectangular) sample and the distribution of the
grain sizes within the considered structure. The physical results of simulations
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on these structures, by the molecular dynamics models or the finite element
method or other methods of resolution, strongly depend on the geometric mod-
els provided. Hence, the geometrical modeling of these structures is a crucial
task requiring special attention. Usually, a sample of a granular structure is
modeled by a parallelepiped (rectangle) containing grains modeled by spherical
balls (disks). Beyond the large simplifications in the geometrical calculations,
this modeling provides an acceptable model in many cases where the comput-
ing with the real grain geometries (complex shapes) is very difficult to achieve
[1]. Using this approximation, the geometrical modeling of granular structures
is then very similar to the classic sphere (circle) packing which consists in fill-
ing a domain with spheres (circles) whose radii follow a size distribution. In
our concern, we are particularly interested in the modeling and the meshing of
nanomaterials considered as granular structures. This is due to their consider-
able scientific and industrial potentialities. Indeed, it is experimentally proved
that the physical properties of nanomaterials are very different, and often better,
than those of ordinary materials. This quality improvement of materials is due to
changes of their structures on small scales, in other words to their nanostructur-
ing. The structure of an ordinary material is constituted by a multitude of small
polyhedral volumes called grains whose size usually ranges from 2 to 20 microm-
eters, separated by grain boundaries with specific thicknesses. Compared to the
configuration of an ordinary material, the grain size in a nanomaterial is 1000
times smaller and the proportion of grain boundaries is more important. These
two features, the grain size and the proportion of grain boundaries, are mostly
responsible for changes in the material behavior when its structure changes from
the micrometer to the nanometer scale [2, 3].

In our concern, the nanostructures studied are issued from the SMAT (Surface
Mechanical Attrition Treatment) process [2], considered as granular structures.

2 Sphere Packing and Granular Structure Modeling

2.1 Sphere Packing

The term of sphere (circle) packing is generally used to evoke the mathemati-
cal study of the arrangements of non-overlapping spheres (circles) which fill a
given domain. A typical sphere packing problem is to determine the repartition
of the particles (spheres or circles) which maximizes the density in the domain.
Indeed, the density is the proportion of space filled by the particles having this
repartition. This density depends on the particle size distribution, the way these
particles are packed and the volume of the domain to fill. In practice, to de-
termine the efficiency of a filling algorithm to generate structures with high
densities, we consider it in the particular case where the particles have an iden-
tical size and where the domain has a sufficiently large volume. Indeed, in this
particular case, the density of the generated structure can be compared with

π√
18
� 0.74048, the density of the cubic close packing arrangement in the three-

dimensional Euclidean space (Kepler conjecture), and π√
12
� 0.9069, the density
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of the hexagonal packing arrangement in the two-dimensional Euclidean space.
Note that the maximal density value in 3D concerns regular arrangements only.
For irregular arrangements in 3D (which is usually the case in the sphere pack-
ing algorithms), the highest density (in the particular case where the particles
have the same size) is generally about 0.64, which corresponds to the jammed
configuration.

Several approaches have been proposed to fill a domain with particles in two
and three dimensions. These methods can generally be classified into two major
families: dynamic techniques and constructive techniques. The dynamic methods
are based on the motion and/or the resizing of the particles. In these techniques,
two approaches are essentially used. A purely geometric approach, where cal-
culations are based only on the particles positions and sizes [4, 5, 6, 7], and a
second approach in which physical properties are introduced allowing each par-
ticle to find an equilibrium position depending on its interactions with the other
particles [8, 9, 10, 11]. Usually, the dynamic methods are very costly in terms
of computing time, because the position and/or the size of each particle are/is
modified during the whole filling process. The second family of methods is the
constructive techniques, in which calculations are purely geometric: The posi-
tion and often the size of each particle are kept throughout the filling process.
In this kind of techniques, we can distinguish the methods where the filling in a
given step depends on the situation of the system in the previous steps (like the
advancing-front approach) [12, 1, 13, 14, 15], and the other pseudo-constructive
methods where the repartition of the particles is randomly generated [16, 17, 18]
or based on a pre-built triangulation [19] for example. In many contexts, the
constructive techniques are considered as more advantageous than the dynamic
ones.

2.2 Granular Structure Case

A granular domain, in particular a nanostructure, can be described by a par-
allelepiped (rectangle) containing spherical balls (disks) whose sizes are defined
by a given distribution. The spherical balls (disks) represent the grains and the
spaces between them the grain boundaries. The geometrical modeling of these
structures can be considered as an application of the sphere (circle) packing
when spheres (circles) are modeling grains. In addition to the conformity with
grain size distribution, in the nanostructure case, the grains must be separated
by grain boundaries with specific thicknesses and the generated aggregate must
be irregular (no periodicity).

In terms of algorithmic aspects, further constraints must be considered. In
fact, the algorithm for generating models of granular structures must also be
fast and robust, especially in the three dimensions case.

Modeling grains by spherical balls (disks) obviously creates empty areas in the
structure, a fortiori if the filling method is an advancing-front type. Since these
empty areas, as well as their non homogeneous repartition, do not exist in the real
structure, fatal errors may occur during the physical simulations. Thus, in most
cases, an optimization algorithm, to equally distribute these empty areas on the
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whole structure, must be applied after the filling process. The resulting structure
may be transformed, using the weighted Delaunay triangulation techniques, into
an aggregate of grains in the form of Laguerre cells closer to reality.

3 Geometrical Modeling Scheme

3.1 Filling Algorithm (Sphere Packing Algorithm)

The algorithm we propose to generate granular structures, which is a new sphere
packing algorithm, is a constructive method based on an advancing-front ap-
proach. The term ”constructive” means that the construction at a given step
depends and uses the result of the previous steps, and that particles keep their
size and position during the filling process. The advancing-front approach used in
our algorithm is a new variant of a classical approach in the context of meshing.
Indeed, the idea of the advancing-front method is to mesh a domain by an iter-
ative inwards spreading of a front initialized on its boundary until its complete
recovery [20, 21]. The front is a set of elements (segments in 2D or triangles in
3D) connecting the vertices of the mesh. The advancing-front approach consists
in using the front elements (a previous construction) to create and insert the new
points in the mesh. At each step, an element of the front is selected to propose
the position of the new point according to a given criterion. If the new point is
valid, then the selected front element is deactivated and new front elements are
created, connecting this new point to the points of the deactivated front element
and possibly to other points of the mesh. A new point is said valid (and then
inserted in the mesh) if it satisfies the specified criterion and if the possible cre-
ated front elements do not intersect the current front elements. In the event that
one or more points of the current mesh better fit the specified criterion using the
selected front element (compared to the new point), then the best of these points
is chosen and connected to the points of the selected front element. The conver-
gence of the advancing-front method strongly depends on how the elements are
selected from the front, the identification of the optimal points and the valida-
tion of the created front elements. The advancing-front method remains highly
empirical, unlike Delaunay-type methods for example [22, 23], which are based
on mathematical formulations. Thus, the advancing-front methods are often in-
tuitive and their convergence, especially in the 3D case, cannot be guaranteed by
a rigorous formalism. The use of the advancing-front approach, in our context,
requires to introduce some new concepts in order to ensure its convergence.

In the analogy between this meshing advancing-front approach and our sphere
packing algorithm, a node of the mesh becomes a particle in our geometrical mod-
eling. The sizes of these particles are defined using a given grain size distribution.
In our case, a front element is a virtual triangle (resp. segment) connecting the
centers of 3 spherical balls (resp. 2 disks). A spherical ball (resp. disk) is the
association of a center position and a radius defined according to the specified
size distribution. The location of each spherical ball (resp. disk) is determined,
using an element of the front, to maximize the local density with the particles
(spherical balls or disks) constituting this front element. This position is valid if
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this particle does not overlap any of the existent particles and if it is completely
contained in the domain. A similar sphere packing algorithm have been proposed
by many authors including Yamakawa et al. [24], the proposed method defines
the metric using a sphere (bubble) packing possibly overlapping approach. Our
algorithm can be summarized by the following scheme:

1. Create an initial front
2. Do while the front still contains active elements

a) Generate a random radius according to the grain size distribution
b) Determine the level l of the front (= the first active element level),
c) Do the following for the front of level l

i. Select an active element if its level le is less than or equal to l
ii. Place the new particle Pnew using the selected front element es

iii. Control the validity of Pnew

iv. If Pnew is valid then
• Deactivate es

• Connect Pnew to es particles 1 and go to (a)
v. If the position of Pnew is not valid and all the active elements with a level

≤ l have been tested to place Pnew without success then
• Deactivate the first active element ef in the front
• Determine the existent particle maximizing the local density with ef

particles
• Add possible new elements to the front 2 and go to (b)

d) End do
3. End while

The first step of our algorithm is to create an initial front by connecting the
particles which are placed on the interior side of the domain boundary. Then the
filling is made by an inwards spreading of the front. In figure 1, an illustration
of a filling example in 2D is shown. Figure 2 shows a filling example using our
algorithm in 3D by illustrating the increasing particle level towards the domain
center (each color corresponds to a level in figure 2).

The convergence of the new variant of the advancing-front method is assumed
by the front level concept. Indeed, the level of a front is defined by the level of
its first active element. A front element is said active if it has not been deleted
(deactivated) from the front, either because it has been used to insert a new
particle or because it has been the first active element of a front in the case
where no element of this front could insert the new particle. The level of an
element is defined by the sum of the levels of its particles (spherical balls or
disks). The particle level ranges from 0 (the level of the initial front particles)
to a level n corresponding to the level of the last front particles. The level of
1 This connection will create new front elements (two in 2D and three in 3D) with a

level ≥ le.
2 For each set s containing d − 1 particles of ef , (d is the space dimension), do: if the

determined particle is not connected to the particles of s, then connect it if the level
of the resulting new front element is greater than l in the 3D case (this is necessary
for the convergence of the method). In the 2D case, the new front element is created
even if its level is less than or equal to l.
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Fig. 1. A 2D illustration of a filling example using our algorithm

a new particle is a function of the levels of the particles of the front element
used to insert this new particle. Indeed, the level lnew of the new particle Pnew

is calculated by:

lnew = min
i

(li) + max(1,max
i

(li)−min
i

(li)) (1)

where li are the levels of the particles of the front element used to insert the new
particle. For the convergence of the method, the following two conditions must
be satisfied: (a) a new particle level is equal or greater than to the minimum of
the levels of the particles of the front element used to insert this new particle,
(b) the filling using the elements of a front with a level l is initiated only when
the fronts with levels less than l are completely saturated. The detection and
analysis of conflicts (intersections) between the particles constitutes a crucial
task which generally takes the half of the computing time of the whole filling
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Fig. 2. Illustration of a filling example in 3D

process. To make this task faster, this detection is localized using a grid. In
addition to the speed of the method, the use of this grid makes our algorithm
linear. For more details of this algorithm see [1, 26, 27].

3.2 The Algorithm Efficiency

In this section, we give some criteria to characterize the sphere packing algo-
rithm. In addition to the computing time and the density of the generated
structure, another criterion is introduced. Indeed, this criterion characterizes the
elements of the front by giving their quality. The quality qe of a front element
(P1, P2, P3) (respectively (P1, P2) in the 2D case) is given by:

qe =
δ12 + δ23 + δ31

3
(respectively, qe = δ12) (2)

with δij = d(Pi, Pj) − Ri − Rj, where d(Pi, Pj) denotes the Euclidean distance
between the centers of the particles Pi and Pj with radii Ri and Rj respec-
tively. The efficiency Q of the algorithm is presented by an histogram giving
the frequency corresponding to each quality interval. Indeed, we define the min-
imum quality qmin, the maximum quality qmax and a quality step defined by
qs = qmax−qmin

10 for example. The frequency fi corresponding to the ith quality
interval [qmin + (i − 1)qs, qmin + iqs[ is ni

ne
, where ni is the number of front el-

ements whose quality is belonging to the quality interval i, and ne is the total
number of the front elements. It is said that a filling has a good quality if the
histogram, representing Q, is a Gaussian centered in qmin.
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3.3 Application

In this section, we consider a nanostructure of pure iron [25]. The domain to fill
is a parallelepiped with dimensions 240×300×240 nm (a square with dimensions
240× 300 nm in the 2D case), the grain size distribution has radii ranging from
2 to 8 nm as shown in table 1, and the grain boundary thickness is a function of
the grain radius given by Gb(R) = 2/R. In the filling process, the radius of each
grain will be calculated as R + Gb(R), where R is a radius randomly chosen in
the grain size distribution (for more details see [1, 26, 27]).

Table 1. The grain size distribution of the pure iron nanostructured

radii (nm) frequency (%)

[2 - 2.5[ 15.8

[2.5 - 3[ 21

[3 - 3.5[ 20.2

[3.5 - 4[ 16.7

[4.5 - 5[ 6.8

[5 - 5.5[ 4

[5.5 - 6[ 3

[6 - 6.5[ 0.8

[6.5 - 7[ 0.7

[7 - 7.5[ 0.6

[7.5 - 8[ 0.4

In these conditions, using a machine with a 1.4 GHz processor, our algorithm
generates a structure containing 33,738 spherical balls (respectively 1,330 disks
in 2D) with a density of 0.494 (0.80) and a computing time less than 3 s (0.02 s).
We can note that the filling is quite fast and that the density (in the 2D case)
is quite satisfactory. The obtained density in the 3D case cannot be compared
to a theoretical value because the distribution contains different grain sizes. To
characterize our algorithm concerning the densities that can be obtained in the
3D case, we apply it in the particular case of a fixed radius (4 nm), keeping the
same domain size and the same grain boundary expression. Indeed, the idea is to
compare the density of the generated structure with the value 0.64 corresponding
to the highest possible density in a irregular assembly of constant size particles.
In this particular case, the generated structure contains 39,061 spherical balls
with a density of about 0.606. This density is much better than the value 0.494
previously obtained with the specified grain size distribution.

The generated structures in 2D and 3D are illustrated by figure 3. We can
observe that there are many empty areas in these structures (more visible in
the 2D case). As mentioned above, this is due to the modeling of the grains by
spherical balls (disks) and to the advancing-front method intrinsic characteristic
of generating empty areas when two fronts are meeting. In addition to these
factors, the constraints of generating random irregular structures (no periodicity)
and the conformity with the grain size distribution, in our case, accentuate these
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Fig. 3. Illustrations in 2D and 3D of the pure iron nanostructured model

Fig. 4. The quality histogram for the cases 2D (left) and 3D (right)

empty areas. Since these empty areas, introduced by the filling algorithm, are
residual, i.e. they do not physically exist in the real structure, then they must
be equally distributed on the whole structure. This is the main purpose of the
next section.

The filling quality histograms (of both 2D and 3D cases) for the pure iron
example are shown in figure 4. We can observe that the filling quality in the
2D case is a Gaussian more pronounced (almost a Dirac) than in the 3D case.
Indeed, the filling quality in the 3D case is calculated, on each triangle (a front
element), by the average edges (of this triangle) quality, which does not show
the gap between the qualities of these edges as in the 2D case.

4 Optimization of the Generated Structure and Cell
Construction

The advancing-front method usually leads to an heterogeneity of the local density
in the structure (some regions are denser than others, see figure 3). This feature
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can have a direct impact on the results of the physical simulations, particulary in
the nanomaterials case. Indeed, in a nanostructure, an empty area is considered
as an additional grain boundary. However, the proportion and the repartition
of grain boundaries in such a structure are the major features of its behavior
(obstacles to dislocations propagation for example [3]). Hence, a point relocation
algorithm is necessary to equally distribute these additional empty areas on the
whole structure, and then to reduce as much as possible their impact on the
physical simulations.

The main idea of the point relocation algorithm that we propose is the fol-
lowing principle: ”in order to equally distribute the empty areas on the whole
structure, one just has to equally distribute them locally around each particle”.
Thus, we need to know the local configuration around each point (particle cen-
ter), i.e. the positions and radii of its nearest particles. For this purpose, we
use the weighted Delaunay triangulation (dual of Laguerre diagram) built on
the point cloud constituted by the particle centers (where the weights are the
radii of these particles) and the points of the domain boundary discretization
(considered as particles with radius zero). The domain boundary discretization
must be as fine as possible so that all the Laguerre diagram cells (dual of this
triangulation) are completely contained in the domain.

4.1 Domain Boundary Discretization

Several approaches can be used to obtain the discretization of the domain bound-
ary. As explained before, this discretization must allow all the Laguerre diagram
vertices to be completely contained in the domain, but it must also be as least
costly as possible (minimum number of points). To obtain this discretization,
we are proceeding in an iterative scheme. At a first time, the weighted Delau-
nay triangulation, using the set of points constituted by the particle centers and
the 8 points of the parallelepiped (4 points of the rectangle) representing the
domain, is built. Then, for each tetrahedron (triangle) whose vertices are includ-
ing at least one of the particle centers, we check if the center of the weighted
”circumscribed” sphere (disk) is outside (or on) the domain boundary. If it is
the case (outside or on the domain boundary), the centers of these particles
are orthogonally projected onto the domain boundary side where the center of
this ”circumscribed” sphere (disk) is outside (or on it). These projected points
are then added to the point cloud and a new weighted Delaunay triangulation
is built. These second and third steps iterate until all the Laguerre diagram
vertices (the tetrahedra (triangles) ”circumscribed” spheres (disks) centers) are
completely contained in the domain (including if they are on the domain bound-
ary). In the 3D case, from two points associated with the same particle center
(projection on two perpendicular planes), a third point (corresponding to the
orthogonal projection of these two points on the segment, intersection of these
two planes) is added to the point cloud. In figure 5, an example of the weighted
Delaunay triangulation and its dual (Laguerre diagram) of a point cloud in 2D
is given.



Sphere Packing and Applications to Granular Structure Modeling 11

Fig. 5. The weighted Delaunay triangulation and its dual Laguerre diagram (red color)
of a point cloud in 2D

4.2 The Point Relocation Algorithm

The algorithm we propose here to balance the density on the whole structure
is an algorithm of point relocation under constraints. Indeed, the optimization
produced by this algorithm must not lead to intersections between the particles,
and thereby preserves the validity of the generated structure. The idea of this
algorithm is to use the weighted Delaunay triangulation, as described above, to
move locally each particle by considering its nearest neighbors (its topological
ball). Indeed, each particle center is repositioned using the front defined by all
the sides of its ball boundary. Let Fi (respectively Si) be the ith face or triangle
(segment) of the front defined by the sides of the point P ball boundary, we can
assume that there is a unique position Pi of P calculated using Fi (Si). This point
relocation method is to move, step by step, the point P towards the barycenter
P ∗ of the points Pi. At each step, the validity of the point P (no intersection
with the other particles, and the particle centered on P is completely contained
in the domain) is checked. The general scheme of our point relocation algorithm
can be described by the few following lines:

• Do while there are relocated points
– For each point P (particle center)

· Define the ball of P using the weighted Delaunay triangulation
· Calculate the positions Pi associated with the faces Fi (segments Si) of the

front defined by the sides of P ball boundary
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· Calculate the barycenter P ∗ of the points Pi

· Move the point P , step by step, towards P ∗ (do α = 0.3 to 0.05 by − 0.05)
· Pα = (1 − α)P + αP ∗

· Control the validity of Pα

· If the point Pα is valid then the position of the point P is replaced by
Pα, exit from the loop on α

· End of the loop on α
– End of the loop on the points P
– Reconstruct the weighted Delaunay triangulation

• End while

One may speculate about the use of this new point relocation algorithm,
whereas other algorithms exist, especially the smoothing algorithm, usually used
to smooth the edge lengthes in a mesh. Indeed, we have tested two variants
of the smoothing algorithm in our context. The first variant is the classical
smoothing scheme, which leads to intersections between the particles (and then
do not preserve the validity of the generated structure). In the second variant,
where the constraint of no overlapping between the particles is introduced, the
optimization is very weak and the generated structure keeps a big heterogeneity
in the local density.

4.3 Characterization of the Point Relocation Algorithm

In this section, we introduce a criterion to characterize the effectiveness of the
point relocation algorithm. This criterion supposes that the weighted Delau-
nay triangulation WDT, based on the point cloud constituted by the generated
particle centers and the points of the domain boundary discretization, is given.
Indeed, with each point P of the WDT (except the centers of the border particles
and the points of the domain boundary discretization) is associated a function
F (P ) defined by:

F (P ) = max
j

(δj)−min
j

(δj) (3)

with δj = d(P, Pj) − w − wj , where d(P, Pj) is the Euclidean distance between
point P and point Pj (one of the points of the topological ball of point P given
by the WDT ), w if the weight of point P defined by w = R+ gb(R), where R is
the radius of the particle centered on P and gb(R) is the grain boundary around
this particle, and wj is the weight (in the same manner as w) of point Pj . Note
that in our case, as shown in figure 6, we have necessarily δj ≥ 0.

By minimizing the function F (P ), the maximum and the minimum of δj tend
to an average value δmoy and then the optimization is realized. To present the
results of the application of this criterion, we draw the graph of the function F
between Fmin (the minimum of F (P )) and Fmax (the maximum of F (P )) by a
frequency histogram in 10 intervals:

[Fmin + i
Fmax − Fmin

10
, Fmin + (i + 1)

Fmax − Fmin

10
[, for i=0,...,9
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Fig. 6. The quantities δj are presented by solid lines for the 2D case (left) and by
green lines for the case 3D (right)

4.4 Construction of Cells

The generated particles with spherical (circular) shape can be transformed, us-
ing the dual of the weighted Delaunay triangulation obtained after the point
relocation procedure, into cells more similar to the grain shape observed in re-
ality. This transformation procedure is optional, depending on the grain shape
required by the user. To construct the cells representing the grains, we consider
the dual of the weighted Delaunay triangulation (Laguerre diagram) obtained
after the structure have been optimized (concerning the repartition of empty
areas). As shown in figure 5, the cells entirely contain the particles, which is a
principal feature of the duality between the weighted Delaunay triangulation and
the Laguerre diagram. In our case, the weight of each particle, in the weighted
Delaunay triangulation, is w = R+gb(R), meaning that the grain boundaries are
included in the weights of the particles. To separate the grain boundaries, these
cells must be isotropically shrunk. Thus, from the vertices oi of a cell and point
P center of its correspondent particle, we define the vertices õi of the shrunk cell
by:

õi = oi + (1− R

w
)−−→oiP (4)

5 Numerical Applications

In this section, we consider two numerical examples in both 2D and 3D cases.
The first example is a model where particles have the same radius, whereas in
the second one, the particles have different radii. The machine used in the two
examples has a Pentium M processor with 1.4 GHz.

5.1 Example 1

The 2D model consists in a domain with dimensions 100× 100 nm and particles
of radius 0.9 nm with a constant grain boundary of 0.1 nm. In the 3D model, the
particles radius and the grain boundary are the same as in the 2D model and



14 A. Benabbou et al.

Table 2. Modeling results in 2D and 3D cases

Results 2D model 3D model

Nb particles 2,789 17,787

Density 0.88 0.60

Time(s) 0.03 1

Fig. 7. The quality histograms for the cases 2D (left) and 3D (right)

Fig. 8. The generated structure in the 2D model, before (left) and after (right) the
application of the optimization algorithm

the domain is with dimensions 50 × 50× 50 nm. The results of the geometrical
modeling are given in table 2.

We can observe that the filling is quite fast and gives satisfactory densities.
The filling qualities, in both 2D and 3D are illustrated in figure 7. In figure 8 we
illustrate the generated structure in the 2D model before and after the applica-
tion of the point relocation algorithm. The histogram of function F , giving the
repartition of the empty areas on the structure, before and after the application
of the optimization algorithm is given in figure 9. We can observe that the two
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Fig. 9. The function F , in the 2D model, before (left) and after (right) the application
of the optimization algorithm

histograms are quite similar: this is because, before the application of this algo-
rithm, the function F (P ) was optimal (near 0) for most of points P (as we can
see it in figure 8), and because for some points, the constraint of no intersection
between the particles leads to a locked state.

5.2 Example 2

The 2D model consists in a domain with dimensions 200×200 nm and a uniform
grain size distribution with radii in the interval [0.8 nm, 2.8 nm] and a constant
grain boundary of 0.2 nm. In the 3D model, the grain size distribution and the
grain boundary are the same as in the 2D model and the domain has dimensions
50× 50× 50 nm. The results of the modeling are given in table 3.

Table 3. Modeling results in 2D and 3D cases

Results 2D model 3D model

Nb particles 2324 1482

Density 0.81 0.51

Time(s) 0.02 0.05

In Figure 10, the structures with cells and particles in both 2D and 3D are pre-
sented. Note that each cell entirely contains a particle, and thus the volume (area)
of the cell is always greater than that of its correspondent particle. Indeed, in the
filling process, the thickness of grain boundaries is included in the radii of the parti-
cles, and despite of this, empty areas (intrinsic to the advancing-frontmethod) still
exist in the structure. These empty areas, which have no physical sense as nonexis-
tent in the real structure (model obtained experimentally), are equally distributed
on the whole structure leading to two kinds ofmodels: either the model with spheri-
cal (circular) grains where the grain sizes are maintained and the thickness of grain
boundaries is slightly increased, or the model with cells where the grain sizes are
slightly increased and the thickness of grain boundaries is kept.
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Fig. 10. Illustrations in 2D and 3D of the structures with cells and particles

6 Conclusions and Outlook

In this paper we have considered the problem of granular structure geomet-
rical modeling under constraints in both two and three dimensions. We have
considered this modeling as the classic sphere (circle) packing problem, and in-
troduced a new method based on an advancing-front approach generally used in
the meshing context.

Applying this new method in many cases, especially for nanostructures, we
have shown that it can generate structures with a large number of grains (over
30,000) in a short computing time (about 2 s) with a satisfactory density and
an ensured convergence.

The advancing-front approach used often generates heterogeneities in the
repartition of empty areas in the structure. Thus, we have also proposed an
optimization algorithm for equally distributing these areas on the whole struc-
ture. The proposed method is based on techniques of point relocation under
constraints.

Finally, we have introduced a simple method to transform the structure with
spherical (circular) grains into an assembly of cells closer to the grain shape ob-
served in reality. This method is based on the weighted Delaunay triangulation,
built on the point cloud constituted by particle centers and the points of the
domain boundary discretization, by considering its dual Laguerre diagram.

To ensure the convergence in the 3D case, some faces (front elements) have
been neglected in the filling process. An improvement in the algorithm on this
point can be investigated, which may increase the density. Also, this improve-
ment can be achieved by considering a densification procedure by a compromise
between the density and the conformity with the grain size distribution.

In the point relocation algorithm, the optimization is based on the minimiza-
tion of a functional calculated, for each particle, using the length of the empty
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areas (introduced by the advancing-front method) along some directions. An-
other approach is to consider this empty space in all directions by calculating
the functional using the volume (the area) of this space around each particle.
This method is more difficult to implement and more costly in terms of comput-
ing time, but it may give better results in the repartition of the empty areas on
the structure.

This geometrical modeling of granular structures (nanostructures in particu-
lar) is a pre-step of their simulation by the finite element method. Another key
task, which constitutes one of our principal activities, is the generation of quality
meshes of these structures (in 2D and 3D) required by this simulation.
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