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Abstract. A method of flattening 3D triangulations for use in surface meshing is presented. 
The flattening method supports multiple boundary loops and directly produces planar locations 
for the vertices of the triangulation. The  general nonlinear least-square fit condition for the 
triangle vertices includes conformal (angle preserving) and authalic (area preserving) condi-
tions as special cases. The method of Langrange multipliers is used to eliminate rotational and 
translation degrees of freedom and enforce periodic boundary conditions. Using matrix parti-
tioning, several alternative sets of constraints can be efficiently tested to find which  produces 
the best domain.  A surface boundary term is introduced to improve domain quality and break 
the symmetry of indeterminate multi-loop problems. The nonlinear  problems are solved using 
a scaled conformal result as the initial input.  The resulting 2D domains are used to generate 3D 
surface meshes. Results indicate that best mesh quality is achieved with domains generated 
using an intermediate altitude preserving condition. Apart from an admirable robustness and 
overall efficiency, the 2D developed domains are particularly suited for structured transfi-
nite/mapped meshes which often reveal wiggly irregularities with most conventional developed 
domains. Flattening and meshing (both free and transfinite/mapped) results are presented for 
several 3D triangulations. 

Keywords: flattening, free-boundary, interpolation, Langrange multipliers, parameterization, 
periodic, transfinite, triangle. 

1   Introduction 

Although direct methods of generating meshes on 3D surfaces abound, a large  
majority of mesh generation programs used in both the industry and the research labo-
ratories continue to use indirect method of generating the mesh on a flattened 2D pa-
rameter space first, transforming the mesh back to the original 3D surface later. Finite 
element analyses of structures, fluid flow and interaction problems have increased in 
complexity over the last few decades. The mesh to solve (especially quad-form 
meshes) often have pressing quality requirements. Crash analyses limit the variation 
of element size in anisotropic meshes. A large range of boundary-flow and structural 
problems require meshes to be boundary structured or partially or wholly transfinite. 
                                                           
* Corresponding author. 
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A general purpose mesh generation engine needs to be able to cater to most classes of 
problems. Such meshes of high quality and constraint are often virtually impossible to 
generate directly on real, complex 3D geometry efficiently.  

Thus the problem of generating a low distortion 2D parameter space from the 3D 
surface continues to enthrall engineers and mathematicians. The goal is to create a 2D 
flattened domain of a crack-free triangulated (tessellated) 3D surface where the mesh 
could be generated. A discrete, continuous transformation function should be made 
available to finally transform the mesh nodes to the 3D surface. The same transform 
can be also used in 2D space to check the quality of the 3D elements being generated 
in 2D space.  

1.1   Use of 2D Domains Created from 3D Triangulation 

Two-dimensional domains created from 3D triangulations have a variety of applica-
tions. These include the fitting of parametric surfaces, the use and creation of texture 
maps, and as a parameterization to solve differential equations on 3D surfaces. In our 
case, the domains are used in the meshing of tessellated faces, which are based on a 
3D triangulation. These faces can be derived by combining triangulations of several 
NURBS surfaces. The topology associated with these faces can include many bound-
ary loops and/or repeated edges. To see how we use the 2D domains, we give a sim-
plified version of our meshing process: 

1.2   Simplified Meshing Method – Free or Transfinite Meshing 

Before we start the meshing process, we abstract the tessellated faces. This geometry 
abstraction toolbox includes a host of basic discrete geometry operators which involve 
splitting and combining the facetted faces, cutting sharp corners that cause meshing 
issues. First mesh all edges at 3D locations. (For mapped meshes one must match the 
number of vertices on matched edges for the whole system.) For each surface:  

1) Create 2D domain from 3D triangulation and topology. Split edge uses of 
same edge in domain (to create non-periodic surfaces from periodic) if needed 
for quality. 

2) Transform nodes on 3D edges to 2D domain.  
3) Mesh domain in 2D using boundary nodes. 
4)  Map 2D node positions to 3D using triangle coordinates. 

In this paper we will  focus on how the domains produced in step 1 affect our 
meshing result. 

2   Past Research 

There is an extensive literature for the parameterization of 3d triangulations [1]. Some 
techniques require a fixed convex boundary in UV space as an initial condition. 
Floater [2] has developed an improvements to this approach by considering harmonic 
function theory. Using his approach, the results vary smoothly with input data, are 
fast to solve, and guarantee no triangle flips in UV space. Though the technique is 
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powerful, the requirements  of a non-convex boundary (and the filling in of holes) can 
often cause significant distortion. Instead we focus on free boundary methods. 

One of the first free-boundary approaches was developed by Hormann and Greiner 
[3]. They developed the Most Isometric Parameterization (MIPS) based on minimiz-
ing a metric of distortion. They realized that directly using the Dirichlet energy did 
not punish the collapsing of triangles, or a degenerate solution. Instead they found a 
nonlinear criterion that was more difficult to solve.  They had good results on small 
models, but the overall approach was computationally expensive. Levy et al. [4] con-
sidered a quasi-conformal approach  (Least square conformal  mapping  -LSCM) in 
the context of automatic atlas generation.  For smaller regions this method was quite 
fast and could produce good results. They found they could avoid degeneracy by fix-
ing two points of the system in UV space.  They chose two far apart in  geodesic dis-
tance along the surface. Desbrun et al [5] developed a similar least squares conformal 
approach independently. They found they could linearly combine the results with area 
preserving  (authalic) solution that was not formulated for a free boundary. They de-
veloped a general approach of constraints using Lagrange multipliers. Even though 
that constraint approach was quite general, in practice they used a more simplistic 
approach to avoiding degeneracy than Levy et al. They fixed two points farthest apart 
in 3d space.  An angle based flattening  (ABF) approach was found by Sheffer and de 
Sturler [6]. They considered equations for angles that were consistent with the plane.  
When they found a solution to their nonlinear problem with constraints,  they could 
guarantee a no triangle flip answer. Sheffer et al. [7] developed a hierarchical ap-
proach for large systems and pointed out their approach produced significantly less 
stretch than the LSCM method. We suggest that in the comparison the LSCM proce-
dure suffered from a simplistic pinning condition and a “collapsing triangle” problem 
evident with large triangulations. Recently Zayer et al [8] have found a fast linear 
approach that gives very similar results to the ABF method.  After the angles of the 
triangles are determined by the ABF (or derivative) procedure,  it is still necessary to 
find a solution in UV space. Here at Siemens, we have used a flattening approach 
based on preserving the lengths of triangle sides. Chief architects of the  technology 
included Evan Sherbrooke and David Gossard (formerly of  New Technologies Inc.) 
Similarly to the ABF method,  constraint equations are developed such that the result 
is consistent with the restriction of the plane. The constraints were based  on the  law 
of cosines for the wheel of triangles around all interior vertices. Once the lengths of 
the triangles are found, they must be rolled out into the 2D plane. (The work in this 
paper originated from improvements to the robustness of the roll-out procedure used 
in NTI’s method.)  A global  parameterization based on gradient fields was developed 
by Gu and Yau [9]. In their method they found the underlying basis vectors of the 
linear space. The bounding conditions were based on periodic boundary conditions on 
cuts of closed surfaces or a double covering of the non-closed surface. By tying to-
gether the boundaries of the surface together, and avoiding pinning of points, very 
uniform conformal solutions were found.    

3   Problem Statement  

Our meshing method requires a procedure to create a 2D domain for meshing from a 
3d triangulation of a face. Associated with the facetted face there is a topology which 



128 K. Beatty and N. Mukherjee 

includes loops and edges. This topology is a important component of our meshing 
process,  which in turn puts requirements on our flattening procedure. The facetted 
faces consist of triangles defined by facet vertices.  The facetted faces to be flattened 
have a loop and edge topology.  The edges are defined on edges of facets. The edges 
can be  both on the exterior and interior of the 3d face.  Edges on the interior of a face 
have two uses by the loops, which are in different orientations. Edges interior to a 
face can be used to make non-manifold connections between different faces or en-
force meshing along an edge. They can also be added to help the creation of a low 
distortion domain in two dimensions.   A cylinder can be represented with one loop of 
edges with a repeated edge use.  If the repeated edge is allowed to split apart in a UV 
domain,  then we can get a rectangle where the vertices along the repeated edge have 
different uses with different UV values. An edge so used is commonly referred to as a 
“seam”. Originally, we distinguished between interior edges that were from cutting a 
cylinder, and edges that were added for other purposes. However,  there were two 
problems with this approach.  The first is that an edge could have different uses on 
different faces. (This problem could be rectified by considering edge uses.)  The sec-
ond problem was that a small modification of the topology of a surface could require 
reevaluating the status of all edges of the surface. These considerations lead us to the 
following requirements for our flattening process. 

 

i)   Produces a 2D domain with  minimal global and local distortion. 
     Ability to trade-off shape distortion,  dimension distortion, and  
     performance depending on application. 
ii)  Supports multiple loops and non-convex boundaries 
iii) Automatically finds constraints between the repeated edges of  
      a face’s topology that lower distortion  in the 2d domain. 

       iv) Overall procedure must be fast and robust. 

4   Weighted Edge Flattening Method (WEFM) 

The WEFM will be presented as both a local and a global solution.  The local solution 
is a simpler framework, but can become unstable with large systems of badly shaped 
triangles.  It also requires explicit constraints.  A global solution  that overcomes these 
problems is presented. 

4.1   Rolling Out  a 3D Triangulation into 2D Using Iteration 

Consider creating a 2D domain from a 3D triangulation surface with the five triangles 
shown in Figure 1. All of the triangles of the surface are equilateral,  and four of them 
are from the top of a square based pyramid.  An additional (equilateral) triangle is 
added with one side attached to one side of the square at the base of the pyramid.  In 
the case of this example, it is impossible to put the vertices into 2-d without distorting 
the lengths of the edges and the angles of the triangles.  Notice the angles of the four 
triangles the meet the vertex of the pyramid are 60 degrees. However, as this point is 
interior to the surface the total angle must be 360 degrees. But only triangles with all 
angles the same  have all sides of the same length, so the sides can not be all the same 
length in  2D. If we put a cut at the thick solid line in Figure 1a,  and let these sides 
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Fig. 1a. Simple 3D Triangulation 

  
 

Fig. 1b. Flattened 2D domain with 
cut  (5 equilateral triangles) 

 
separate in the UV plane,  then it is possible to find a UV domain with no area/length 
distortion except measurements that involve the cut. The result is given in Figure 1b.  

When rolling the triangulation out to the plane requires deformation, aver-
ages/compromises are used for determining the positioning of vertices.   The first step 
of the iterative procedure is to lay a long perimeter edge of the triangulation along the 
x-axis. The edge is given the same length that it has in 3D. For the given figure, the 
edge is placed from vertex 1 to vertex 2 on the x – axis. Then the vertex is placed op-
posite  to the edge in  the domain to keep the same shape and orientation. This process 
is continued,  picking a vertex that neighbors the edges placed in 2D. In Fig. 2a, this is 
done with vertices 3 and 4. When vertex 5 comes, it is found that it is neighboring  
two different triangles,  and the coordinates found for the vertex are different.  The 
vertex is placed at  weighted average of these results. Each triangle is given a weight 
which is determined by the length of the opposite side divided by the altitude to the 
vertex we are placing in 2D.  Up until vertex 5 is placed in 2D,  all of the edges have 
their original length. This makes it possible for each triangle to have a position for a 
neighboring vertex  that does not change any lengths or angles. Once the results are 
averaged, vertex 5 is no longer at each desired position,  and distortion results.   

When we come to placing vertex 6 in the plane we have a new problem. The length 
from vertex 4 to vertex 5 in the plane is different then they are in 3D. Vertex 6 could 
be placed such that:  

1) The triangle in 2D has the same angles as in 3D. 
2) The altitude to the vertex has the same length in 2D and 3D. 
3) The triangle in 2D has the same (absolute) area as in 3D. 

Cut 
Edges 
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Fig. 2a. Simple triangulation roll-out where 
vertex 5 is weighted average from triangles 4-
3-5 and 3-2-5 

Fig. 2b. Simple triangulation roll-out where 
vertex 6 placement can vary from preserv-
ing angles to preserving area 

 
To calculate the location of vertex 6 for these different cases a notation based on 

half-edges is used. (Choices 2 and 3 will be made unique with further restrictions.) A 
half-edge is associated with one and only one side of a triangle. There are one half-
edge for each exterior edge of the triangulation, and two half-edges for each interior 
edge of the triangulation. A special notation is used to indicate the vertex indices as-
sociated with an half-edge with index h.   The vertex indices along a half-edge with 
index h are designated in the counter-clockwise order of the triangle by I(h,1) and 
I(h,2).   The vertex opposite the half-edge with index h is designated by I(h,3). Con-
sider this notation applied to Fig. 2b for the half-edge the goes from vertex 4 to vertex 
5. This half-edge is in triangle 4-5-6, since is assumed the triangles are numbered 
consistently and counter-clockwise. If the half-edge from vertex 4 to vertex 5 has an 
index of 13,  then  I(13,1) =4,  I(13,2)=5, and I(13,3) = 6.  

Associated with each half-edge are two parameters that give the shape of the trian-
gle.  The first gives how far along the half-edge is the opposite vertex.   Using the dot 
product to find the parameter (αh) along the half-edge: 
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)1,()3,()1,()2,(
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where Lh= length of the half edge with index h.  The second parameter (βh) is a ratio 
of the altitude to the opposite vertex to the length of the half-edge with index h. Using 
the cross product for the parameter perpendicular to the half-edge: 
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where f(I(h,3)) is an adjustment for Gaussian curvature around the opposite vertex.  
For a vertex on the boundary it is set to 1.0.  For an interior vertex it is the sum of the 
angles around the vertex divided by 2π. Also associated with an half-edge is the ratio 
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(ρh) of the geodesic length of the half-edge with index h (which we take to be the 3D 
length) to the length of the edge in the UV domain.  That is  

)1,()2,( hIhI

h
h

zz

L

−
=ρ                                        (3) 

where the each z  refers to the UV position of the vertex with the same index. The  
formula to calculate a new UV location of a vertex from anopposite half-edge is given 
by eqn.(4) where the UV coordinates have been  

 
(4) 

 
 

represented as complex numbers,  i  is the imaginary unit vector, and s  is  a global 
parameter which gives different types of “roll outs”. Choices 1,2, and 3 correspond to 
s values of 0, 1, and 2 respectively.  These choices are referred to as conformal, alti-
tude preserving,  and authalic. Notice for the s =0 solution the value of ρ does not 
matter. When one vertex is across from many half-edges,  then the weight for each 
half-edge is proportional to the reciprocal of its associated β.  The weights are normal-
ized to sum to 1.0. Taking half-edge 13 which goes from vertex 4 to vertex 5, and 
using an s value of 1.0 the equation (4) becomes: 

( ) ( )( )izzzzzz 134513451346 ρβα −+−+=             (5) 

The order in which points are selected for putting into 2d affects the solution that is 
found. Ordering the vertices by the ratio of the 3d lengths of the edges which are in 2d 
that ring a vertex to the perimeter of the ring in 3d provides a good heuristic for sort-
ing the list of possible vertices.  Once all the points are in the UV plane, we can con-
tinue to iterate through all vertices updating their  position.  Choice (1) can lead to 
degenerate solutions, and choice (3) is often unstable.Though choice (2) often works 
well  for domain generation,  it is not always stable and can produce domains that are 
of poor quality.  It is also order dependent;  heuristic choices of which vertex to calcu-
late next can dramatically affect the result. Though it is straightforward to constrain 
points of the iterative solution, creating periodic boundary conditions is more  
problematic.  

4.2   A Global Method for Triangle Roll-Out 

To overcome the limitations of the iterative scheme, we move to a global solution 
using a least squares fit. The  solution is directly in terms of planar coordinates, and 
the constraints can be any linear combination of vertex positions.  The function to be 
minimized consists of four terms.  The first term is a surface energy term based on the 
same formulation as the iterative method.  The second term uses Lagrange multipliers 
to take out the translation degree of freedom by constraining a weighted average of 
the UV points to be at the origin.  The third term is a more general constraint term 
used to enforce boundary conditions and eliminate a rotational degree for freedom.  
The rotational degree of freedom can be eliminated by enforcing the difference  
between the UV position of two vertex uses to be a vector. (At repeated edges the 

( ) ( ) ( ) ( ) ( ) ( ) ( ) izzzzzz s
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vertices can be split in the domain)  The last term is based on angles in UV space be-
tween  edges on the boundary loops. The angles are for a counterclockwise direction 
in the designated outer loop, and for a clockwise direction in all other loops.  This 
convention breaks the symmetry of the problem for uncut cylinders. The upper limit n 
is for the number of vertex uses of the model. The upper limit m is for the number of 
constraints in the model. The upper limit d  is for the loops of the model. li  is the 
number of facet segments for loop i. The four term function to be minimized for the 
vector of unknown UV positions: 
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qi of the first term is a 2d vector (or complex number).  Multiplying qi  by its complex 
conjugate gives a distance squared.  The vector qi starts at a weighted average of UV 
positions determined by all half-edges opposite the vertex use. (There is one such 
half-edge for each triangle that contains vertex use i.)  It ends at the UV position  
of the vertex use times the sum of the weights of all half-edges for which it is an  
opposite. 
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The index notation for vertices based on half-edges,  I(h,1) etc., was described in 
the previous section. The  scaling-rotation vector, which depends on the type of “roll 
out, is: 
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In  the special case s is set to zero, a value for ρ is not needed.  The weight of each 
half-edge is given by 
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where βh is defined in eqn. 2. The sum is over the set of all half-edge indices that have 
the same opposite vertex use. Setting k to 1 normalizes the sum of the weights around 
a vertex use to 1.  Improved results are often found when k is set to ½. (In the iterative 
scheme k is always set to 1.)  For the second term of eqn. (6),  ηi   is the area of all 3D 
triangles connected to  vertex i.   For the second and third terms the λk are Lagrange 
multipliers.  For the third term,  gi

k  is a weight for a point of the constraint,  and ck is 
a fixed vector [5].  In our current usage, gi

k  is usually -1, 0,  or 1 and  ck  is zero. But 
these constants can be any complex value. The last term of the global equation  
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involves loop segments of different loops.  pi,j is a vector relation for loop i segment j.    
The term preserves boundary angle and length ratios: 

( ) jiji i
ijiji
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ljijiji erzzerzzp ,,
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ϕϕ −

+−− ⋅⋅−+⋅⋅−=       (10) 

φ  is half the goal angle between two neighboring segments of a loop. r l,+-1  is the ratio 
of segment length before/after the vertex to their average.  In the last term,  li,j  is the  
average length of two consecutive segments of the loop.  µd is a weighting factor for 
the boundary. zi,j is the UV position for the point on loop i at the end of segment j.  
Solve the system by setting the partial derivatives for the points and Lagrange multi-
pliers to zero.   

4.3   General Solution Process 

The solution of the least squares minimization problem is found by solving the equa-
tions resulting from setting the partials for the points and the Lagrange Multipliers to 
zero. Approaching the general nonlinear solution is done in three steps: 

1) Solving the (linear) conformal system without repeated edge constraints.  
Return if the solution is of sufficient quality. 

2) Compare solutions for repeated edges to find if each repeated edge should be 
periodic, free, or together (scar). Again, can return with solution if domain is 
of sufficient quality.  

3) Repeat solve with increasing s value using the constraint decision found in 
step 2. Iterate to an s=1.0 solution.  Use the boundary energy term in the 
nonlinear solution.  When s is not 0.0,  a value of ρh determined from equa-
tion 3 must be used in equation 8.  The value is determined from the solution 
at the previous s.  

During the solution process we often make use of a score to assess the quality of 
the domain. The score is from zero to one based on a weighted average of the square 
of the ratio of areas for the triangles in UV and 3d space. (The reciprocal of the ratio 
is taken if it is above 1.0). One is  subtracted from the total weighted score for all tri-
angles if there  is any triangle flip. Two is subtracted for boundary intersection. (A 
flip of a triangle would result in a mapping such that a position in the UV domain 
would not correspond to one point in the 3-d triangulation. This could lead to an un-
usable mesh.). 

To eliminate these degrees of freedom for step 1 of the process, Levy fixed  two 
points that were far away in a 3D geodesic sense.  This requires finding geodesic dis-
tances in 3D with holes. Instead of fixing two points apriori,  we do most of the work 
of solving the linear system, and add the constraints later. To do this  extensive use  
was made of the method of Lagrange Multipliers and matrix partitioning. To elimi-
nate the translational degree of freedom, a weighted average of the vertex UV posi-
tions was constrained  to be at the origin. To eliminate a rotational degree of freedom,  
we fix the vector between two points that are on the boundary. Once this solution is 
found,  we can find two points on the boundary that are far apart in the UV domain.  
We eliminate the constraint fixing the facet edge, and add the constraint for the two 
points that are far apart in UV. We reuse the LU decomposition of the part of our  
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matrix that involves points, so the second solution is found very quickly. One exam-
ple where the two-step approach works well, while the methods of Levy and Desbrun 
do not, is in the flattening of the triangulation of  a sphere with a small hole.  A two 
level matrix partitioning procedure significantly speeded up step 2 of the process. 

5   Surface Mesh Generation 

Once a 2D triangulated domain is generated, the boundary of the domain is discre-
tized with nodes (driven by a global element size) and a variety of 2D mesh genera-
tion algorithms are used to fill the area. The algorithms used can be broadly classified 
into three categories, namely 

a. Unstructured free mesh generation using subdivision technique [10,11] 
b. Unstructured free mesh generation using a combination of subdivision and 

advancing loop-front methods [12] 
c. Structured mesh generation using boundary-blended transfinite interpolation 

techniques [13,14] 

5.1   Mesh Quality Measure 

For free, unstructured meshes, mesh distortion can be measured by an element quality 
metric, λ, where  

                                                                         n           1/n 
λmesh  = (Πi=0 λi)              denotes the quality of the mesh (11) 

λi   (mesh quality of the i-th triangle)  where λi is as proposed by Lo[15]. 
All elements need to pass a critical threshold defined by λcr = 0.6. 

Both λmesh and λi  of the worst element in the mesh can be compared for different 
domains to decide which is better.  

For transfinite meshes however, element or mesh quality, as determined by λmesh or 
λi is not necessarily a good measure. Bad domains can cause the transfinite nature 
(structured) of the mesh to be destroyed even for the same number of nodes/elements 
and element connectivity. The rail lines of the mesh can be wiggly, or unparallel – all 
of these could destroy the properties of a transfinite mesh. To measure the wiggle of 
the rail lines a “wiggle factor” is used. The wiggle factor, εfi for the i-th rail line is an 
error norm computed for each interior mesh node on the line summed over the length 
of  the rail line in j direction made up of n nodes.   

                     n                                   _ 
                  εfi= 1/n ∑j=0(Lij – Lij-1)

2/Li
2                 (12) 

Lij denotes the length vector at node ij  (jth node on the i-th rail line). Li   denotes 
the average length vector of all nodes on the i-th rail line.  

6   Examples and Discussion 

Three different examples will be discussed to show the benefit of using an efficient flat-
tening or domain development technique for high quality surface meshing. Certain  
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specific aspects of mesh quality or pattern will be discussed in this connection. In all of 
the results presented a k value of 1 was used in eqn. (9),  though it has subsequently 
found a k value of ½ slightly improved the results for the boundary structured free mesh. 

 

Fig. 3a. 2D domain of a helical surface developed by WFEM at s=0 (conformal) with no 
boundary constraint 

 

Fig. 3b. 2D domain of the same helical surface by WFEM at s=1 with boundary constraint 

 

Fig. 3c. 3D final transfinite mesh on the helical surface 
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Fig. 4a. 2D domain of a pressure vessel wall 
surface by WEFM at s = 0 (conformal) 

 

 

Fig. 4b. Corresponding final 3D transfinite 
mesh with wiggly ends 

     

Fig. 5a. 2D domain of a pressure vessel 
wall surface by WEFM at s = 0.3 with 
boundary energy term 

 

Fig. 5b. Corresponding final 3D transfinite  
mesh 

       

Fig. 4c. Rail lines at near face boundary showing 
wiggles 

       

Fig. 5c. Smooth rails 

6.1   Helical/Spiral Surface Meshing 

Meshing is often challenged by merged tessellated surfaces that are helically/spirally 
coiled. Such surfaces abound in threaded mechanical enginering parts and are often 
encountered in finite element analysis. Fig. 3a shows a typical rolled out 2D domain 
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Fig. 6a. 2D domain of an automobile frame by 
WEFM at s=0.8 with boundary energy term  

 

 

Fig. 6c. Corresponding final 3D mesh  

 
 
Fig. 6b. 2D triangular CSALF mesh on 
the 2D domain 
 
 

   

Fig. 6d. Layered mesh around frame cut-
out 

 

Fig. 6e. Boundary structured mesh around 
holes 

 
which has appreciable distortion but is not suitable for map meshing. Fig. 3b presents 
a continuous section of a 2D domain developed by WFEM with s=1. This domain is 
regular and can be meshed by transfinite interpolation (mapped meshing) which is 
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depicted in Fig. 3c. Note, the domain has a small kink resulting from an irregular cut 
line chosen along the facet edges. The 3D mapped mesh reflects a small local distor-
tion at that location. 

6.2   Accurate Transfinite Meshing Needs 

Transfinite or mapped meshes are structured and mathematically accurate. The Coon’s 
surface is not easily available on discrete geometry. Thus the efficiency and the accu-
racy of the flattening strategy is important for generating such meshes. Fig. 4a shows 
the 2D domain of a pressure vessel wall surface developed by WFEM (s=0.0) with no 
boundary energy term.  The corresponding 3D transfinite mesh is shown in Fig. 4b. 
When we zoom in on the elements near the vertical edge, as is evident in Fig. 4c, we 
notice a lateral waviness in a certain region. This region corresponds to the two longitu-
dinal kinks that exist on the vertical edges of the 2D domain.  The wiggle factor of the 
transfinite distortion parameter for this mesh is 0.12 which is  far above the limiting 
value of 0.01. With a domain developed by WFEM (s = 0.3)  with a boundary energy 
term as pictured by Fig. 5a, these irregularities vanish and we get a perfect 3D transfi-
nite mesh as shown in Fig. 5b-5c. The wiggle factor, described by eqn. (12) is 0.007.     

6.3   Boundary-Structured Free Meshing on Complex Geometry 

Good quality boundary-structured free meshes are important for a host of structural 
and fluid flow analysis problems. Generation of such surface and volume meshes on 
complex industrial geometry is key to the success of an engineering design process. 
Fig. 6a shows the 2D domain of such a frame structure developed by WFEM (s=0.8).  
A triangular CSALF mesh is shown on the 2D domain in Fig. 6b. These zones are of 
importance to the designer as they are usually susceptible to high stresses. The final 
3D mesh shown in Fig. 6c reveals the same. It is important to note that the mesh, al-
though unstructured in a global sense, is extremely layered/structured around all the 
inner circular/oval boundaries (see insets in Fig. 6d -6e). 

7   Conclusion 

It was found the conformal (s=0) solution for the WEFM can be used  for  meshing 
processes based on a 2d domain.  However, as in all conformal based solutions, the 
dimensions for non-developable triangulations  are changed when they are mapped to 
the UV domain.  This can be a problem when high quality meshes are required. It was 
found an intermediate  “altitude preserving” condition (s=1) of the WEFM, which 
compromises shape and dimension distortion,  could give superior results when  used 
with the presented map meshing process, and with forms of “mesh paving”. It was 
found that automatically choosing from all the valid solutions gave us the best overall 
strategy. An automatically procedure for creating and evaluating constraints for re-
peated edges was developed. It was used to determine if each repeated edge should be 
left free, treated as a scar, or be part of a periodic boundary condition.  A boundary 
energy term in the WEFM formulation enabled the solution of indeterminate multi-
loop problems, and generally improved the quality of the resulting domain. The dif-
ference in quality was readily apparent in the resulting 3D mapped mesh produced 
from the different  domains. 
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