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Summary. We present an iterative algorithm to transform a given planar triangle mesh into
a well-centered one by moving the interior vertices while keeping the connectivity fixed. A
well-centered planar triangulation is one in which all angles are acute. Our approach is based
on minimizing a certain energy that we propose. Well-centered meshes have the advantage
of having nice orthogonal dual meshes (the dual Voronoi diagram). This may be useful in
scientific computing, for example, in discrete exterior calculus, in covolume method, and in
space-time meshing. For some connectivities with no well-centered configurations, we present
preprocessing steps that increase the possibility of finding a well-centered configuration. We
show the results of applying our energy minimization approach to small and large meshes,
with and without holes and gradations. Results are generally good, but in certain cases the
method might result in inverted elements.

1 Introduction

A well-centered mesh is a simplicial mesh in which each simplex contains its cir-
cumcenter. A 3D example is a tetrahedral mesh in which the circumcenter of each
tetrahedron lies inside it, and circumcenter of each triangle face lies inside it. In this
paper we address the case of planar well-centered triangulations, i.e., triangle meshes
in which each triangle is acute angled. Typical meshing algorithms do not guarantee
this property. For example, a Delaunay triangulation is not necessarily well-centered.
We present an iterative energy minimization approach in which a given mesh, after
possible preprocessing, is made well-centered by moving the internal vertices while
keeping the boundary vertices and mesh connectivity fixed. The preprocessing step
may add vertices or change the mesh connectivity, as this is sometimes necessary to
permit a well-centered mesh.

A well-centered (primal) mesh has a corresponding dual mesh assembled from
a circumcentric subdivision [14]. For an n-dimensional primal mesh, a k-simplex
in the primal corresponds to an (n — k)-cell in the dual. In a well-centered planar
triangle mesh, the dual of a primal interior vertex is a convex polygon with bound-
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ary edges that are orthogonal and dual to primal edges. This orthogonality makes it
possible to discretize the Hodge star operator of exterior calculus [1] as a diagonal
matrix which simplifies certain computational methods for solving partial differen-
tial equations. Some numerical methods that mention well-centered meshes in this
context are the covolume method [17] and discrete exterior calculus [8, 14]. Well-
centered meshes are not strictly required for these or other related methods. However,
some computations may be easier if such meshes were available. Another example
from scientific computing is space-time meshing. When tent-pitching methods for
space-time meshing were first introduced, the initial spatial mesh was required to be
well-centered [19]. More recently, this requirement has been avoided, although at the
expense of some optimality in the construction [12].

2 Previous Results

We are mostly concerned with planar triangulations where the domain is specified
by a polygonal boundary or, more general, a straight line graph. In addition to the
triangulations being acute, we are also mostly interested in quality triangulations in
which a lower bound on the triangle angles is achieved. Relevant work can be divided
into constructive and iterative approaches.

Constructive approaches start with the specified input boundary/constraints and
generate additional points and a corresponding triangulation. Normally a point is
committed to a position and never moved afterwards. An algorithm for non obtuse
triangulations based on circle packings is described in [3], and more recent works
describe improved constructions while also describing how to derive an acute trian-
gulation from a non obtuse one [15, 20]. In fact, these algorithms aim to achieve a
triangulation of size linear in the input size, and so the smallest angle can be arbitrar-
ily close to zero. It is not straightforward to extend this class of algorithms to acute
quality triangulations. There are also algorithms that achieve acute quality triangula-
tions for limited domains for point sets [4], or non obtuse quality triangulations [16].
Also relevant is an algorithm that, given a constraint set of both points and segments,
finds a triangulation that minimizes the maximum angle [11], without adding points.
If an acute triangulation exists for the input constraints, the algorithm will find it,
otherwise it fails. Thus, there appears to be a no complete constructive solution for
the generation of acute quality triangulations.

On the other hand, there are iterative or optimization approaches which allow
an initial triangulation (possibly the canonical Delaunay) and then move the points
while possibly changing the connectivity. This is the class of algorithms in which we
are primarily interested: there are well-known algorithms to generate quality trian-
gulations [10, 18] for which reliable implementations exist and so they are good can-
didates as starting points for iterative approaches that seek to achieve acute angles.
In this class there are optimization approaches like centroidal Voronoi diagrams [9]
and variational triangulations [2]. Each approach has a global energy function that it
attempts to minimize through an iterative procedure that alternates between updating
the location of the mesh vertices and the triangulation of those vertices. The energy
functions optimized in these approaches are designed to optimize certain qualities of
the mesh elements, but they do not explicitly seek well-centered simplices. Though
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these methods appear to produce nice experimental results, there is no guarantee that
they construct quality triangulations, much less acute ones. In fact, in Sect. 5 we
show examples in which the converging triangulation is not acute. Also, only limited
convergence results are known (there are indeed local minima that can be reached).
In addition to the optimization approaches that work directly with a mesh, there are
several algorithms that generate circle packings or circle patterns by optimizing the
radii of the circles. In particular the algorithms for creating circle patterns that were
proposed in [7] and [5] can be adapted to create triangulations. These algorithms
produce circle patterns that have specified combinatorics but they do not permit a
complete specification of the domain boundary. Thus they are not appropriate to our
purpose.

3 Iterative Energy Minimization

Given a simplicial mesh of a two-dimensional planar domain, we iteratively modify
the mesh guided by minimizing a cost function defined over the mesh. We’ll refer to
the cost function as energy. Our method is somewhat similar to the methods of [9]
and [2] in that it uses an iterative procedure to minimize an energy defined on the
mesh, but it differs in that the mesh connectivity and boundary vertices remain fixed
as the energy is minimized. We also minimize a different energy, one designed to
achieve well-centeredness. We next describe this energy, which is the main compo-
nent of our method. In Sect. 4 we describe preprocessing steps that may add vertices
and change the connectivity of the mesh before energy minimization is begun.
Given a simplicial mesh M of a planar
region, the mesh is well-centered if and only
if every angle 6 in every triangle in the mesh
has angle measure strictly less than 90°. This
1.5 suggests minimizing the maximum angle in
the mesh. The cosine of an angle, which can
be computed with a dot product and divi-
0.5 sion by vector norms, is easier to compute
from a mesh than the actual angle, so a good

|cos(8) — 1/2|

% 30 60 90 120 150 180 alternative to directly minimizing the max-
Angle Measure 6 (degrees) imum angle is to minimize the maximum
|cos(6) — 1/2| over all angles 0. As the graph

Fig. 1. Graph of |cos(6) — 1/2] of |cos(f) — 1/2| in Fig. 1 shows, if any an-

gle of the mesh is obtuse, then the largest an-

gle of the mesh will dominate the expression,
but when the mesh is well-centered and all angles are acute, the expression penal-
izes small angles as well as large ones. This is an added benefit, since small angles
may be considered poor quality in some scientific computing applications. We also
note the nice feature that a mesh composed of entirely equilateral triangles achieves
the minimum energy, taking a value of 0. The key feature, though, is that the en-
ergy maintains the property that any acute triangulation is of lower energy than any
nonacute triangulation.
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As stated, this energy faces several difficulties, in particular some problems with
differentiability. In many cases the gradient is not well-defined in areas of the mesh
away from the current maximum angle. This problem could probably be addressed
by using techniques of nonsmooth analysis such as the taking the minimum norm
member of a generalized gradient [6], but a simpler alternative is to note that

1/p
lim (Z |cos(6;) — 1/2|p) = max |cos(6;) — 1/2],
p—00 Z [
and make a reasonable modification of the energy to use, for some finite p, the energy

Ey(M) = B,(V,T) = 3 |cos(8) — 1/2]". ()
e M

The mesh M is defined by the collection of vertex locations V and collection of
triangles 7. The sum here is taken over every angle 6§ of every triangle T € 7.

Unfortunately, in taking a fixed p we lose the property that every well-centered
mesh is of lower energy than any mesh with an obtuse angle. On the other hand, using
E, we gain some sense of the quality of a triangle in regions of the mesh away from
the maximum angle. Moreover, we know that for any particular domain and mesh
connectivity that admit a well-centered configuration of the vertices, there is a finite p
such that a given well-centered configuration is of lower energy than any non-well-
centered arrangement of the vertices. It is computationally infeasible to compute F,
as p approaches infinity, but globally minimizing F,, Eg, E's or some combination of
them has sufficed in our experiments to date. Note that an even power p is preferable,
since that makes it unnecessary to explicitly take the absolute value.

Fig. 2. Necessity of a Nonconvex Energy

The energy we have defined has the undesirable feature of being nonconvex. For
energy minimization, one might hope to develop an energy that is convex or at least
has a unique minimum. It is not possible, though, to define an energy that accurately
reflects the goals of well-centered meshing and also has a unique minimum. Consider
the mesh shown on the left in Fig. 2 where only the interior vertex may move. We
want to relocate the interior vertex and obtain a well-centered mesh. The right side
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of Fig. 2 shows the constraints on where the vertex can be placed to produce a well-
centered mesh. The lighter gray regions are forbidden because placing the interior
vertex there would make some boundary angle nonacute. (The dotted lines show the
four boundary angles that are most important in defining this region.) The darker
gray regions, which overlay the lighter gray regions, are forbidden because placing
the interior vertex there would make some angle at the interior vertex nonacute.

If the interior vertex is placed in either of the two small white regions that re-
main, the mesh will be well-centered. We see that the points permitted for well-
centeredness form a disconnected set in R?. Moreover, the mesh is radially symmet-
ric, so there is no way to create an energy that prefers one white region over the other
unless we violate the desired property that the energy be insensitive to a rotation of
the entire mesh. Any symmetric energy that has minima in only the white regions
must have at least two distinct global minima and is not convex.

In most planar meshes there is an interior vertex v that has exactly six neighbors,
all of which are interior vertices. If all interior vertices are free to move, as we assume
in the method we propose, then the six neighbors of v can be rearranged to match
a scaled version of the boundary of the mesh in Fig. 2. Moving v around when its
neighbors have such a configuration should exhibit nonconvexity in whatever energy
for well-centeredness we might define. One certainly can define convex energies on
a mesh, but for the mesh in Fig. 2, no symmetric strictly convex energy will have a
minimum at a well-centered mesh.

4 Neighborhood Improvement

In some cases the mesh connectivity or the fixed boundary vertices are specified in a
way that no well-centered mesh exists. A simple example of this is an interior vertex
with fewer than five neighbors. Any such vertex has some adjacent angle of at least
90°. Similarly, boundary vertices need to have enough interior neighbors to divide
the boundary angle into pieces strictly smaller than 90°. We will refer to a vertex that
does not have enough neighbors as a lonely vertex.

To address the problem of lonely vertices we propose a preprocessing step in-
volving three simple operations for increasing the valence of vertices in the mesh.
By applying these three operations — edge flip, edge split, and triangle subdivision —
one can guarantee that no mesh vertex is lonely. The authors plan to include a for-
mal proof of that in a sequel paper, though a thoughtful consideration of the double
triangle subdivision (Sect. 4.3) may make it clear to the reader. The condition that
each vertex have enough neighbors is not sufficient to guarantee that a well-centered
arrangement of vertices exists. In our experience this situation — in which there is no
lonely vertex and no well-centered configuration possible — appears to occur rarely
in meshes we encountered in practice. This issue, too, will be addressed in a future
paper. We next describe the three preprocessing steps and an algorithm for applying
these steps in a way that limits the number of new vertices introduced.

4.1 Edge flip

Figure 3 is a graphical illustration of the well-known edge flip operation. The initial
mesh is shown on the left, with the edge that will be deleted drawn as a dotted line
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rather than a solid one. The initial mesh has exactly one lonely vertex. The final mesh
is displayed at right, with the edge that replaced the deleted one shown as a dotted
line. The final mesh has no lonely vertices, and is, in fact, a well-centered mesh.
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2

Fig. 3. Edge Flip

In the edge flip operation there are two vertices whose valence decreases and
two vertices whose valence increases. We permit an edge flip for increasing valence
of a lonely vertex only if no new lonely vertices are introduced. For example, if
the vertices whose valence decreases are both interior vertices, they must initially
have valence at least six. We also require that the edge-flip not introduce an inverted
triangle. Triangle inversion is rarely a problem, but it is possible.

4.2 Edge split

The edge split operation shown in Fig. 4 is a more versatile operation than the edge
flip. In the initial mesh shown at left, the edge that will be deleted through the edge
split operation is drawn as a dotted line. There is exactly one lonely vertex in the
initial mesh. In the final mesh shown on the right, there are three new edges (the
dotted lines), and one new vertex (the empty circle). The final mesh is not well-
centered, but it has no lonely vertices, and it is quite easy to find a well-centered
configuration of the mesh by relocating the new vertex. Note that we do not permit an
edge flip operation in this case since all the candidate edges for flip have an endpoint
with valence five.

For definiteness of location, the new vertex is introduced at the midpoint of the
edge. The edge being split and the one being deleted both have to be interior edges
(we do not want to split a boundary edge this way, because the new vertex would be
lonely, having only one interior neighbor). Thus the new vertex is always an interior
one, and it always gets exactly five neighbors, so it is not a lonely vertex. Of the
vertices that appeared initially there are two whose valence increases and one whose
valence decreases. We permit the edge split only if it will not introduce a new lonely
vertex and will not introduce an inverted triangle. Again, triangle inversion is rare
but possible.
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Fig. 4. Edge Split

4.3 Triangle subdivision

The edge split operation is quite versatile, since in the interior of the mesh there is
usually a choice of both which edge to split and which endpoint of the edge will
decrease in valence. There are some infrequent cases, though, when something more
than the edge split may be needed. Except for the small example meshes we created
to illustrate these cases, we have not needed anything else in our experiments, but for
completeness we propose a third operation, triangle subdivision, that will work in all
cases.

Figure 5 shows how a triangle subdivision can be used to increase the valence
of a vertex in the mesh. The initial mesh (left) has exactly one lonely vertex. The
final mesh (right) has six new edges, shown as dotted lines, and three new vertices,
shown as empty circles. The final mesh has some angles that are much larger than
the largest angle of the initial mesh, but it has no lonely vertices, and one can obtain
a well-centered configuration of the mesh by relocating all of the interior vertices
appropriately.

S

Fig. 5. Triangle Subdivision

If the mesh shown in Fig. 5 were a submesh of a larger mesh, it might be possible
to do an edge split to increase the valence of the lonely vertex, but if this submesh
occurs with the two edges at the top along the boundary, then no edge split will be
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permitted that might increase the number of neighbors of the lonely vertex. No edge
flip will be permitted in any case, since every edge we might want to flip has an
endpoint that is an interior vertex with valence five.

In the triangle subdivision operation we introduce three new vertices, each at the
midpoint of some edge of the initial mesh. We do allow the subdivision of a boundary
triangle. Any new interior vertex introduced by the subdivision has valence five, so
it is not lonely, and any new boundary vertex will have valence four (two interior
neighbors) and a boundary angle of 180°, so it is not lonely either. In the case of
meshing a domain with a curved boundary, one might move a new boundary vertex
onto the actual boundary with some rule, but unless the boundary is not well resolved,
the boundary angle will still measure much less than 270°, so a new boundary vertex
will not be lonely.

There is a case when a single triangle subdivision is not sufficient to increase the
valence of a lonely vertex. In that case, one can perform a pair of triangle subdivi-
sions to increase the number of neighbors of the lonely vertex. This double triangle
subdivision can be performed within a single triangle, so we see that we can increase
the valence of any lonely vertex. The double subdivision is illustrated in Fig. 6, where
the initial mesh on the left is taken to be the entire mesh, i.e., a mesh of the square
with four triangles. Again we see that the final mesh has some very large angles.
Increasing the valence of lonely vertices is only a preprocessing step, though, and
we note that there is a well-centered mesh with the same connectivity and boundary
vertices as the final mesh in Fig. 6.

Fig. 6. Double Triangle Subdivision

4.4 Preprocessing algorithm

The preprocessing algorithm in Fig. 7 guarantees that the resulting mesh has no
lonely vertices. The result of the preprocessing step is a mesh that can be passed to
the energy minimization method. The repeat-until loop of the algorithm is necessary
because a mesh may have an interior vertex with only three neighbors. For such a
vertex we would need to increase the valence twice to keep the vertex from being
lonely.

Using an operation increases the valence of vertices other than the targeted lonely
vertex. This can make it possible to perform an operation at another vertex where
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for each lonely vertex v
repeat
perform first permitted operation among:
edge flip,
edge split,
triangle subdivision,
double triangle subdivision;
until v is not lonely
end

Fig. 7. Preprocessing Algorithm

previously that operation was not permitted. For example, sometimes flipping one
edge lets us flip another edge that we were not initially allowed to flip. For this
reason it may be advantageous to implement the algorithm in stages. Each stage
would look like the algorithm in Fig. 7, but the earlier stages would have a shorter
list of operations. For example, one might allow only edge flips in the first stage, then
allow edge flips or edge splits in the second stage, and allow any operation in a third
stage. In the earlier stages, the until condition would need to be modified to detect the
possibility that vertex v was unchanged, i.e., that no operation was permitted among
the list of allowed operations.

Repeating stages in the algorithm can also be advantageous. Our current imple-
mentation is the three-stage example just mentioned, with the first stage repeated
twice before moving on to the second stage. We implement the algorithm this way in
an attempt to limit the number of new vertices. To limit the number of new vertices
even more, one could implement the preprocessing step to continue flipping edges
until no more edge flips were allowed, then split an edge and return to flipping edges,
etc., using the more versatile operations (and adding vertices) only when the simpler
operations cannot be applied anywhere in the mesh. On the other hand, if addition
of vertices is not a concern, one can perform a triangle subdivision for each lonely
vertex and be done with the preprocessing.

S Experimental Results

In this section we give some experimental results of applying our energy minimiza-
tion to a variety of meshes. The algorithm for the preprocessing step has been already
described in Section 4 and it was implemented in MATLAB.

We also used MATLAB for the energy minimization, implementing the conjugate
gradient method with the Polak-Ribiere formula for modifying the search direction
[13]. If gy is the gradient at step k£ and sy is the search direction at step & in the
conjugate gradient method, then s; 11 = —gk+1 + Br415k for some scalar Sy41. In
the Polak-Ribiere formula, we have Bx11 = ((8k+1 — 8k) - 8k+1)/(8k - 8k ) instead
of the more common Fletcher-Reeves formula, Sx11 = (8k+1-8k+1)/(8k - k). For
a problem with n free variables, we reset the search direction to the negative gradient
after every n iterations. We discovered that MATLAB’s fminbnd function was not
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Fig. 8. Regular pentagon on top left is not well-centered. On top right is the well-centered
mesh obtained by our method by applying 14 steps of conjugate gradient minimization of Fj.
This particular well-centered mesh is not ideal for the finite element method (which is not
our target application anyway), but some well-centered meshes produced by our method are
appropriate for that application. See for example, the mesh in Fig. 10. We have not yet studied
the effects of our algorithm on element aspect ratios. The second row shows the result of
applying variational triangle meshing to the initial mesh. We used a boundary fixing variant of
the 2D version of the variational tetrahedral meshing algorithm [2]. The resulting mesh shown
is not well-centered.

performing a good line search, so we implemented our own (rather expensive) line
search. Our line search takes samples of the function on a log scale to determine
where the function decreases and where it increases. Then near the minimum we
take evenly spaced samples of the function to get better resolution of where precisely
the minimum lies. The line search should eventually be replaced by something more
efficient. In what follows, number of iterations refers to the number of iterations of
the conjugate gradient method.

In all the experiments, our MATLAB code can successfully decrease maximum
angle below 90° with little or no degradation of minimum angle of the mesh. Some
experiments show impressive improvement in both maximum and minimum angle.

Shading scheme: For all the meshes shown hereafter the shading indicates tri-
angle quality with regard to well-centeredness. The shade of a triangle is based on
the cosine of the largest angle of the triangle. Darker shade indicates greater largest
angle and there is a noticeable jump at 90° so that well-centered triangles can be
distinguished from those that are not. For example, the ten triangles that are not
well-centered in the initial mesh on the left in Fig. 8 should be easily identifiable.
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5.1 Small Meshes

The top row of Fig. 8 shows a test involving a small mesh of a regular pentagon
and the well-centered mesh we obtained. Fourteen iterations using the energy Fy,
results in the well-centered mesh shown. The final mesh on the right in top row of
Fig. 8 has some long, thin isosceles triangles and a rather abrupt change from small
triangles in the center to large triangles along the boundary. These features may be
unusual compared to an intuitive idea of a nice mesh, but they are permitted in a well-
centered planar triangulation, and, in this case, essential to getting a well-centered
triangulation with the given boundary vertices and connectivity. We acknowledge
that this particular well-centered mesh would not be of high quality for the finite
element method, but in some cases, such as the mesh in Fig. 10, making a mesh
well-centered improves the aspect ratio of the majority of the mesh elements. We
have not yet systematically studied the effects of our algorithm on element aspect
ratios, since the finite element method is not the primary motivation of the work on
well-centered triangulations.

In Sect. 2 we mentioned variational triangulations. These are based on an iterative
energy minimization algorithm introduced in [2] for tetrahedral meshing. We adapted
it for comparison with our method. Our adaptation keeps boundary vertices fixed, but
is otherwise analogous to the algorithm given in [2]. The bottom row of Fig. 8 shows
the result of applying variational triangle meshing to the initial mesh on top left. The
result is shown after 10 iterations, which is quite near convergence. The vertices are
spread out, and the triangles in the middle of the mesh are nice, but the boundary
triangles are all obtuse. The energy used for variational triangle meshing does not
detect a benefit of clustering the interior vertices near the center of the pentagon. We
tried variational triangle meshing for several of our meshes, sometimes obtaining
good results and sometimes not. In most of the failures the method converged to a
mesh containing at least one lonely vertex.

We also tried Centroidal Voronoi Tessellation (CVT) [9] for several of our
meshes. For our implementation of CVT, we kept boundary vertices fixed, along
with any other vertices that had unbounded Voronoi cells. Vertices in the interior
of the mesh with bounded Voronoi cells were moved to the centroid of their full
Voronoi cells (not clipped by the domain). The preliminary CVT experiments were
inconclusive regarding an explanation for why CVT produces a well-centered mesh
in some cases and not in others and more analysis is required in this direction. The
mesh shown in top left of Fig. 9 is one of the cases for which centroidal Voronoi
tessellation did not work. The actual initial mesh is shown on the left in middle row
of Fig. 9, but CVT depends on only the vertex positions and uses the Delaunay tri-
angulation of the point set, so we show the Delaunay triangulation and the bounded
Voronoi cells in Fig. 9. We see that this mesh is, in fact, a fixed point of our imple-
mentation of CVT while being far from well-centered. Note also that the pattern of
the mesh can be extended, and it will remain a fixed point of CVT.

There are other extensible patterns that are not well-centered but are fixed points
of the CVT variant that clips Voronoi cells to the domain and allows boundary ver-
tices to move within the boundary. Our method yields a well-centered mesh with 30



132 Evan VanderZee, Anil N. Hirani, Damrong Guoy, and Edgar Ramos

iterations of energy minimization using Ey (Fig. 9). That figure also shows how the
energy and the maximum angle evolve. The graphs show that the method is near-
ing convergence at 30 iterations and that decreases in the energy F, do not always
correspond to decreases in the maximum angle of the mesh.

5.2 Larger Meshes

These first two examples shown in Figures 8 and 9 are for small toy meshes. We
have also done experiments with larger meshes. For the largest of these meshes it is
difficult to see detail in a small figure, hence for this paper we include only midsize
meshes such as the meshes in Fig. 10 and Fig. 11. The largest mesh we have used in
our experiments has 2982 vertices and 5652 triangles (about four times as many as
the mesh in Fig. 11). That mesh and several others of similar size that we tried all
became well-centered without complications.

The initial mesh in the top row of Fig. 10 has some lonely vertices, and the result
of preprocessing the mesh with the operations described in Sect. 4 is shown in middle
row. The well-centered mesh obtained by 30 iterations minimizing F, appears in the
bottom row of Fig. 10. Histograms of the minimum and maximum angles of each
triangle are included beside each mesh. We see that the preprocessing step introduces
several new large angles, but the energy minimization takes care of these, finding a
mesh with maximum angle approximately 82.38°, and having most triangles with
maximum angle in the range [62, 76].

5.3 Meshes Requiring Retriangulation

Next, we show a mesh for which our energy could not find a well-centered configu-
ration. However, when we applied our method after a retriangulation of the same set
of vertices, we did obtain a well-centered mesh. The initial mesh is show on the top
left in Fig. 11. The mesh has no lonely vertices, so we apply the energy minimization
directly. After 500 iterations using the energy E,4, we obtain the mesh shown at top
center in Fig. 11. The shading shows that the general quality is much improved, but
there is a problem. In the top right corner of the result mesh there are some inverted
triangles. A zoom on that portion of the mesh is displayed at top right in Fig. 11.
Inversion of triangles is rare, since it requires some angle of the mesh to reach 180°,
but for the same reason, when inversion does occur, the inverted triangles tend to stay
inverted.

The standard method does not work, but there are other ways to get a well-
centered mesh. One way is to try a completely different connectivity for the same
vertex set. The middle row of Fig. 11 shows the Delaunay triangulation of the two
holes mesh after preprocessing has been applied. Along with more than twenty edge
flips, the preprocessing step included eight edge splits, which produced the eight
groups of bad triangles along the inner boundary. Five hundred iterations with en-
ergy Iy produce a fairly good result with several slightly obtuse triangles, so we
follow that with 500 iterations using the energy E's. The Eg energy focuses more
on the largest angles of the mesh and less on the general quality of the triangles,
producing a well-centered result, which appears at middle right in Fig. 11.
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Fig. 9. Mesh shown on top left is a fixed point of the Centroidal Voronoi Tessellation algo-
rithm [9] but it is far from being well-centered. It is the Delaunay triangulation corresponding
to the initial mesh which is shown in middle left (CVT uses Delaunay triangulation). Bounded
Voronoi cells are shown in top right figure, with vertices denoted by empty circles and cen-
troids of Voronoi cells by plus symbols. Starting with initial mesh in middle left, 30 iterations
of our energy minimization using F, yields the well-centered mesh in middle right. The evo-
lution of energy and maximum angle observed during energy minimization is shown in the
bottom row.
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Fig. 10. The initial mesh in the top row has some lonely vertices which are removed by the
preprocessing algorithm described in Section 4. The result of preprocessing is shown in middle
row. The well-centered mesh resulting from 30 iterations of £4 minimization is shown in the
bottom row. Histograms of the minimum and maximum angles are shown next to each mesh.
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Fig. 11. Energy minimization applied to the two holes mesh on top left does not yield a well-
centered mesh. Result after 500 iterations of E4 minimization is shown at top center. This
resulting mesh has some inverted triangles which are shown in the close-up at top right. With a
different connectivity for the same vertex set, our minimization does produce a well-centered
mesh. This is shown in the middle row. Middle left shows a Delaunay triangulation of the
original vertex set after preprocessing. Using this mesh as the initial mesh and applying 500
iterations of F4 followed by 500 iterations of Es minimization yields the well-centered mesh
shown in middle right. The bottom row shows the two holes mesh with a different boundary.
The mesh has the same mesh connectivity as the initial mesh at top left, but the vertices along
the boundary have been moved. The well-centered mesh at bottom right was obtained by
applying 100 iterations of Es minimization to the mesh at bottom left.
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Another way to get a well-centered mesh of the two holes domain is to change the
location of the boundary vertices. The mesh on at bottom left in Fig. 11 has the same
connectivity as the initial two holes mesh at top left in Fig. 11, but the vertices along
the boundary have moved. Instead of being equally spaced, the vertices on the outer
boundary are more concentrated at the north and south and more spread out along
the east and west. The vertices along the inner boundary have also moved slightly.
For this mesh we use the energy Eg, reaching a well-centered configuration by 100
iterations. This mesh appears at bottom right in Fig. 11. The converged result with
FE actually has one slightly obtuse triangle (90.27°), but there are many iterations
during the minimization for which the mesh is well-centered.

5.4 Graded Meshes

The two holes mesh of Fig. 11 is graded. However, the gradation was controlled
partly by the presence of the internal boundaries (of holes) and the geometry of the
mesh. As a final result we show a mesh obtained by applying energy minimization
to a square mesh with an artificially induced gradation. The initial mesh (after a
preprocessing step that used only edge flips) appears at left in Fig. 12. The nearly
converged result of 50 iterations minimizing F, is displayed to its right. From the
other experimental results that we have shown, it is clear that the initial size of the
triangles of a mesh is not always preserved well. We expect, however, that the energy
will generally preserve the grading of an input mesh if the initial mesh is relatively
high quality. This hypothesis stems from the observation that the energy is indepen-
dent of triangle size, the idea that the connectivity of the mesh combined with the
property of well-centeredness somehow controls the triangle size, and the supportive
evidence of this particular experiment.
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Fig. 12. A graded mesh of the square, in which the gradation is not due to internal boundaries.
The initial mesh on left becomes the well-centered mesh on right after 50 iterations of Ej
minimization.
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6 Conclusions and Future Work

This paper introduces a new energy function that measures the well-centeredness of
planar triangulations. The authors are preparing a paper that describes an extension of
this energy to three and higher dimensions. We also intend to do theoretical analysis
and proofs of when and how quickly the energy minimization converges to a well-
centered configuration. As for optimization, in our experiments shown here we have
used relatively simple optimization techniques. It would be good to investigate other
options for optimization. In addition, implementation in some language faster than
MATLAB may significantly change the execution time of the algorithm, so collecting
meaningful data about efficiency remains future work as well.

The current paper also discussed lonely vertices and the general problem that
some meshes have no well-centered configuration that preserves both the mesh con-
nectivity and the positions of the boundary vertices. The paper proposes a prepro-
cessing algorithm that eliminates lonely vertices from the mesh. A complete char-
acterization of which meshes permit a well-centered configuration is still lacking,
however. Moreover, there may be a more efficient or effective way to perform pre-
processing. In particular, the preprocessing algorithm proposed here employs only
refinement operators, but it is possible that coarsening operators, such as the edge-
collapse operator, might be helpful. An analysis of the number of points added during
preprocessing would be interesting as well.

Our experiments shown here demonstrate that the proposed energy function can
be effective in finding a well-centered configuration of a mesh. Unfortunately, in-
verted elements may be introduced and avoiding or handling inversions is a topic for
future research. Additional experiments with larger, more complex meshes are also
planned. A systematic study of the change in aspect ratio would be worthwhile as
well. Although the finite element method is not a primary motivation for the work
on well-centered meshes, it is possible that the method could be used effectively to
improve finite element meshes in some cases.
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