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Summary. This paper proposes an algorithm to mesh 3D domains bounded by
piecewise smooth surfaces. The algorithm may handle multivolume domains defined
by non connected or non manifold surfaces. The boundary and subdivision sur-
faces are assumed to be described by a complex formed by surface patches stitched
together along curve segments.

The meshing algorithm is a Delaunay refinement and it uses the notion of re-
stricted Delaunay triangulation to approximate the input curve segments and surface
patches. The algorithm yields a mesh with good quality tetrahedra and offers a user
control on the size of the tetrahedra. The vertices in the final mesh have a restricted
Delaunay triangulation to any input feature which is a homeomorphic and accurate
approximation of this feature. The algorithm also provides guarantee on the size and
shape of the facets approximating the input surface patches. In its current state the
algorithm suffers from a severe angular restriction on input constraints. It basically
assumes that two linear subspaces that are tangent to non incident and non disjoint
input features on a common point form an angle measuring at least 90 degrees.

1 Introduction

Mesh generation is a notoriously difficult task. Getting a fine discretization
of the domain of interest is the bottleneck of many applications in the areas
of computer modelling, simulation or scientific computation. The problem of
mesh generation is made even more difficult when the domain to be meshed
is bounded and structured by curved surfaces which have to be approximated
as well as discretized in the mesh. This paper deals with the problem of gen-
erating unstructured tetrahedral meshes for domains bounded by piecewise
smooth surfaces. A common way to tackle such a problem consists in building
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first a triangular mesh approximating the bounding surfaces and then refining
the volume discretization while preserving the boundary approximation. The
meshing of bounding surfaces are mostly performed through the highly popu-
lar marching cubes algorithm [LC87]. The marching cubes algorithm provides
an accurate discretization of smooth surfaces but the output surface mesh
includes poor quality elements and fails to recover sharp features. The march-
ing cubes may be followed by some remeshing step to improve the shape of
the elements and to adapt the sizing of the surface mesh to the required den-
sity, see [AUGA05] for survey on surface remeshing. Once a boundary surface
mesh is obtained, the original surface is replaced by its piecewise linear ap-
proximation. The 3-dimensional mesh is then obtained through a meshing
algorithm which either conforms strictly to the boundary surface mesh (see
e.g. [FBG96, GHS90, GHS91]) or refine the surface mesh within the geometry
of the piecewise linear approximation [She98, CDRR04]. See e.g. [FG00] for a
survey on 3-dimensional meshing. In both cases, the quality of the resulting
mesh and the accuracy of the boundary approximation highly depends on the
initial surface mesh.

This paper proposes an alternative to the marching cubes strategy. In this
alternative, the recovery of bounding curves and surfaces is based on the no-
tion of restricted Delaunay triangulations and the mesh generation algorithm
is a multi-level Delaunay refinement process which interleaves the refinement
of the curve, surface and volume discretization.

Delaunay refinement is recognized as one of the most powerful method to
generate meshes with guaranteed quality. The pioneering work of Chew [Che89]
and Ruppert [Rup95] handles the generation of 2-dimensional meshes for do-
mains whose boundaries and constraints do not form small angles. Shewchuk
improves the handling of small angles in two dimensions [She02] and general-
izes the method to generate 3-dimensional meshes for domains with piecewise
linear boundaries [She98]. The handling of small angles formed by constraints
is more puzzling in three dimensions, where dihedral angles and facet an-
gles come into play. Using the idea of protecting spheres around sharp edges
[MMG00, CCY04], Cheng and Poon [CP03] provide a thorough handling of
small input angles formed by boundaries and constraints. Cheng, Dey, Ramos,
and Ray [CDRR04] turn the same idea into a simpler and practical mesh gen-
eration algorithm for polyhedral domains. In 3-dimensional space, Delaunay
refinement produces tetrahedral meshes free of all kind of degenerate tetrahe-
dra except slivers. Further work [CDE+00, CD03, LT01, CDRR05] was needed
to deal with the problem of sliver exudation.

Up to now, little work has been dealing with curved objects. The early work
of Chew [Che93] tackles the problem of meshing curved surfaces and Boivin
and Ollivier-Gooch [BOG02] consider the meshing of 2-dimensional domains
with curved boundaries. In [ORY05], we propose a Delaunay refinement al-
gorithm to mesh a 3-dimensional domain bounded by a smooth surface. This
algorithm relies on recent results on surface mesh generation [BO05, BO06].
It involves Delaunay refinement techniques and the notion of restricted De-
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launay triangulations to provide a nice sampling of both the volume and the
bounding surface. The restriction to the boundary surface of the Delaunay
triangulation of the final mesh vertices forms an homeomorphic and accurate
approximation of this surface. The present paper extends this mesh genera-
tion algorithm to handle 3-dimensional domains defined by piecewise smooth
surfaces, i. e. patches of smooth surfaces stitched together along 1-dimensional
smooth curved segments. The main idea is to approximate the 1-dimensional
sharp features of boundary surfaces by restricted Delaunay triangulations.
The accuracy of this approximation is controlled by a few additional refine-
ment rules in the Delaunay refinement process. The algorithm produces a con-
trolled quality mesh in which each surface patch and singular curved segment
has a homeomorphic piecewise linear approximation at a controlled Hausdorff
distance. The algorithm can handle multi-volume domains defined by non
connected or non manifold piecewise smooth surfaces. The algorithm relies
only on a few oracles able to detect and compute intersection points between
straight segments and surface patches or between straight triangles and 1-
dimensional singular curved segments. Therefore it can be used in various
situations like meshing CAD-CAM models, molecular surfaces or polyhedral
models. The only severe restriction with respect to the input features is an
angular restriction. Roughly speaking, tangent planes at a common point of
two adjacent surface patches are required to make an angle bigger than 90◦.

Our work is very closed to a recent work [CDR07] where Cheng, Dey and
Ramos propose a Delaunay refinement meshing for piecewise smooth surfaces.
This algorithm suffers no angular restriction but uses topology driven refine-
ment rules which involve computationally intensive and hard to implement
predicates on the surface.

The paper is organized as follows. Section 2 precises the input of the al-
gorithm and provides a few definitions. In particular we define a local feature
size adapted to the case of piecewise smooth surfaces. The mesh generation
algorithm is described in section 3. Before proving in section 5 the correct-
ness of this algorithm, i. e. basically the fact that it always terminates, we
prove in section 4 the accuracy, quality and homeomorphism properties of
the resulting mesh. The algorithm has been implemented using the library
CGAL [CGAL]. Section 6 provides some implementation details and shows a
few examples. Section 7 gives some directions for future work, namely to get
rid of the angular restriction on input surface patches.

2 Input, definitions and notations

The domain O to be meshed is assumed to be a union of 3-dimensional cells
whose boundaries are piecewise smooth surfaces, i. e. formed by smooth sur-
face patches joining along smooth curve segments.

More precisely, we define a regular complex as a set of closed manifolds,
called faces, such that:
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• the boundary of each face is the union of faces of the complex,
• any two faces have disjoint interior.

We consider a 3-dimensional regular complex whose 2-dimensional sub-
complex is formed by patches of smooth surfaces and whose 1-dimensional
skeleton is formed by smooth curve segments. Each curve segment is assumed
to be a compact subset of a smooth closed curve, and each surface patch is
assumed to be a compact subset of a smooth closed surface. The smoothness
conditions on curves (resp. surfaces) is to be C1,1, i.e. to be differentiable with
a Lipschitz condition on the tangent (resp. normal) field.

The domain O that we consider is a union of cells, i. e. 3-dimensional faces,
in such a regular complex.

We denote by F the 2-dimensional regular complex which forms the bound-
aries of the cells in O. The set of faces in F includes a set Q of vertices, a set
L of smooth curve segments and a set S of smooth surface patches, such that
F = Q∪ L ∪ S.

In the following,
⋃
F denotes the domain covered by the union of faces in

F and d(x, y) the Euclidean distance between two points x and y.
We assume that two elements in F which are neither disjoint nor incident

do not form sharp angles. More precisely, we assume the following:

Definition 1 (The angular hypothesis). There is a distance λ0 so that,
for any pair (F,G) of non disjoint and non incident faces in F , if there is a
point z on F ∩ G such that d(x, z) ≤ λ0 and d(y, z) ≤ λ0, then the following
inequality holds:

d(x, y)2 ≥ d(x, F ∩ G)2 + d(y, F ∩ G)2. (1)

In the special case of linear faces, the angular hypothesis holds when the
projection condition [She98] holds. The projection condition states that if
two elements F and G of F are neither disjoint nor incident, the orthogonal
projection of G on the subspace spanned by F does not intersect the interior
of F . For two adjacent planar facets, it means that the dihedral angle must
be at least 90◦.

Definition of the local feature size

To describe the sizing field used by the algorithm we need to introduce a no-
tion of local feature size (lfs , for short) related to the notion of local feature
size used for polyhedra [Rup95, She98] and also to the local feature size intro-
duced [AB99] for smooth surfaces. To account for curvature, we first define
a notion of interrelated points, (using an idea analogous to the definition of
intertwined points for anisotropic metric in [LS03]).

Definition 2 (Interrelated points). Two points x and y of S are said to
be interrelated if:
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• either they lie on a common face F ∈ F ,
• or they lie on non-disjoint faces, F and G, and there exists a point w in

the intersection F ∩ G such that: d(x,w) ≤ λ0 and
d(y, w) ≤ λ0.

We first define a feature size lfsP(x) analog to the feature size used for a
polyhedron. For each point x ∈ R3, lfsP(x) is the radius of the smallest ball
centered at x that contains two non interrelated points of

⋃
F .

We then define a feature size lfsFi
(x) related to each feature in L∪S. Let Fi

be a curve segment or surface patch in F . We first define the function lfsFi
(x)

for any point x ∈ Fi as the distance from x to the medial axis of the smooth
curve or the smooth surface including the face Fi. Thus defined, the function
lfsFi(x) is a Lipschitz function on Fi. Using the technique of Miller, Talmor
and Teng [MTT99], we extend it as a Lipschitz function lfsFi

(x) defined on
R3 :

∀x ∈ R3, lfsFi
(x) = inf {d(x, x′) + lfsFi

(x′) : x′ ∈ Fi}.
The local feature size lfs(x) used below is defined as the pointwise mini-

mum:

lfs(x) = min
(

lfsP(x), min
Fi∈F

lfsFi
(x)
)

.

Being a pointwise minimum of Lipschitz functions, lfs(x) is a Lipschitz func-
tion.

3 The mesh generation algorithm

The meshing algorithm is based on the notion of Voronoi diagrams, Delaunay
triangulations and restricted Delaunay triangulations. Let P be a set of points
and p a point in P. The Voronoi cell V (p) of the point p is the locus of points
that are closer to p than to any other point in P. For any subset T ⊂ P, the
Voronoi face V (T ) is the intersection

⋂
p∈T V (p). The Voronoi diagram V(P)

is the complex formed by the non empty Voronoi faces V (T ) for T ⊂ P.
We use D(P) to denote the Delaunay triangulation of P. Let X be a subset

of R3. We call restricted Delaunay triangulation of P to X, and denote by
DX(P), the subcomplex of D(P) formed by the faces in D(P) whose dual
Voronoi faces have a non empty intersection with X. Thus a triangle pqr
of D(P) belongs to DX(P) iff the dual Voronoi edge V (p, q, r) intersects X
and an edge pq of D(P) belongs to DX(P) iff the dual Voronoi facet V (p, q)
intersects X.

The algorithm is a Delaunay refinement algorithm that iteratively builds
a set of sample points P and maintains the Delaunay triangulation D(P), its
restriction D|O(P) to the domain O and the restrictions D|Sk

(P) and D|Lj
(P)

to every facet Sk of S and every edge Lj of L. At the end of the refinement
process, the tetrahedra in D|O(P) form the final mesh and the subcomplexes
D|Sk

(P) and D|Lj
(P) are accurate approximation of respectively Sk and Lj .



448 Laurent Rineau and Mariette Yvinec

The refinement rules applied by the algorithm to reach this goal use the,
hereafter defined, notion of encroachment for restricted Delaunay facets and
edges.

Let Lj be an edge of L. For each edge qr of the restricted Delaunay trian-
gulation D|Lj

(P), there is at least one ball, centered on Lj , whose bounding
sphere passes through q and r and with no point of P in its interior. Such
a ball is centered on a point of the non empty intersection Lj ∩ V (q, r) and
called here after a restricted Delaunay ball. The edge qr of D|Lj

(P) is said to
be encroached by a point x if x is in the interior of a restricted Delaunay ball
of qr.

Likewise, for each triangle qrs of the restricted Delaunay triangulation
D|Sk

(P), there is at least one ball, centered on the patch Sk, whose bounding
sphere passes through q, r and s and with no point of P in its interior. Such
a ball is called a restricted Delaunay ball (or a surface Delaunay ball in this
case). The triangle qrs of D|Sk

(P) is said to be encroached by a point x if x
is in the interior of a surface Delaunay ball of qrs.

The algorithm takes as input

• the piecewise smooth complex F describing the boundary of the volume
to be meshed.

• A sizing field σ(x) defined over the domain to be meshed. The sizing field
is assumed to be a Lipschitz function such that for any point x ∈ F ,
σ(x) ≤ lfs(x).

• Some shape criteria in the form of upper bounds β3 and β2 for the radius-
edge ratio of respectively the tetrahedra in the mesh and the boundary
facets.

• Two parameters α1 and α2 such that α1 ≤ α2 ≤ 1 whose values will be
discussed in section 5.

The algorithm begins with a set of sample points P0 including Q, at least
two points on each segment of L and at least three points on each patch of S.

At each step, a new sample point is added to the current set P. The
new point is added according to the following rules, where rule Ri is applied
only when no rule Rj with j < i can be applied. Those rules issue calls
to sub-procedures, respectively called refine-edge, refine-facet-or-edge,
and refine-tet-facet-or-edge, which are described below.

R1 If, for some Lj of L, there is an edge e of D|Lj
(P) whose endpoints do not

both belong to Lj , call refine-edge(e).
R2 If, for some Lj of L, there is an edge e of D|Lj

(P) with a restricted Delau-
nay ball B(ce, re) that does not satisfy re ≤ α1σ(ce), call refine-edge(e).

R3 If, for some Sk of S, there is a facet f of D|Sk
(P) whose vertices do not

all belong to Sk, call refine-facet-or-edge(f).
R4 If, for some Sk of S, there is a facet f of D|Sk

(P), and a restricted Delaunay
ball B(cf , rf ) of f with radius-edge ratio ρf , such that

R4.1 either the size criteria, rf ≤ α2σ(cf ), is not met,
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R4.2 or the shape criteria, ρf ≤ β2, is not met,
call refine-facet-or-edge(f).

R5 If there is some tetrahedron t in D|O(P), with Delaunay ball B(ct, rt) and
radius edge ratio ρt, such that

R5.1 either the size criteria, rt ≤ σ(ct), is not met,
R5.2 or the shape criteria ρt ≤ β3 is not met,

call refine-tet-facet-or-edge(t).

refine-edge. The procedure refine-edge(e) is called for an edge e of the
restricted Delaunay triangulation D|Lj

(P) of some edge Lj in L. The pro-
cedure inserts in P the center ce of the restricted Delaunay ball B(ce, re)
of e with largest radius re.

refine-facet-or-edge. The procedure refine-facet-or-edge(f) is called
for a facet f of the restricted Delaunay triangulation D|Sk

(P) of some
facet Sk in S. The procedure considers the center cf of the restricted
Delaunay ball B(cf , rf ) of f with largest radius rf and performs the fol-
lowing:
- if cf encroaches some edge e in ∪Lj∈LD|Lj

(P), call refine-edge(e),
- else add cf in P.

refine-tet-facet-or-edge. The procedure refine-tet-facet-or-edge(t) is
called for a cell t of D|O(P). It considers the circumcenter ct of t and
performs the following:
- if ct encroaches some edge e in ∪Lj∈L D|Lj

(P), call refine-edge(e),
- else if ct encroaches some facet f in ∪Sk∈L D|Sk

(P),
call refine-facet-or-edge(f),

- else add ct in P.

4 Output Mesh

At the end of the refinement process, the tetrahedra in D|O(P) form the fi-
nal mesh and the features of L and S are approximated by their respective
restricted Delaunay triangulation. In this section we assume that the refine-
ment process terminates, and we prove that after termination, each connected
component Oi of the domain O is represented by a submesh formed with well
sized and well shaped tetrahedra and that the boundary of this submesh is
an accurate and homeomorphic approximation of bdOi.

Theorem 1. If the meshing algorithm terminates, the output mesh D|O(P)
has the following properties.

Size and shape. The tetrahedra in D|O(P) conform to the input sizing field
and are well shaped (meaning that their radius-edge ratio is bounded by
β3).

Homeomorphism. There is an homeomorphism between
⋃

F and D⋃ F (P)
such that each face F of F is mapped to its restricted Delaunay triangula-
tion DF (P). Furthermore, for each connected component Oi of the domain
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O, the boundary bdOi of Oi is mapped to the boundary bdDOi
(P) of the

submesh DOi
(P).

Hausdorff distance. For each face (curve segment or surface patch) F in
F , the Hausdorff distance between the restricted Delaunay triangulation
DF (P) and F is bounded.

Proof. The first point is a direct consequence of rules R5.2 and R5.1. The
rest of this section is devoted respectively to the proof of the homeomorphism
properties and to the proof of Hausdorff distance.

The extended closed ball property.

To prove the homeomorphism between
⋃
F and D⋃ F (P) we make use of the

Edelsbrunner and Shah theorem [ES97]. In fact, because the union
⋃
F is

not assumed to be a manifold topological space, we make use of the version
of Edelsbrunner and Shah theorem for non manifold topological spaces. This
theorem is based on an extended version of the closed balled property recalled
here for completeness.

Definition 3 (Extended closed ball property). A CW complex is a reg-
ular complex whose faces are topological balls. A set of point P is said to have
the extended closed ball property with respect to a topological space X of Rd if
there is a CW complex R with X =

⋃
R and such that, for any subset T ⊆ P

whose Voronoi face V (T ) =
⋂

p∈T V (p) has a non empty intersection with X,
the following holds.

1. There is a CW subcomplex RT ⊂ R such that
⋃

RT = V (T ) ∩ X.
2. Let R0

T be the subset of faces in RT whose interior is included in the
interior of V (T ). There is a unique face FT of RT which is included in
all the faces R0

T .
3. If FT has dimension j, FT ∩ bdV (T ) is a j − 1-sphere.
4. For each face F ∈ R0

T \ {FT } with dimension k, F ∩ bdV (T ) is a k − 1
ball.

Furthermore, P is said to have the extended generic intersection property
for X if for every subset T ⊆ P and every face F ′ ∈ RT \ R0

T there is a face
F ∈ R0

T such that F ′ ⊆ F .

Theorem 2 ([ES97]). If X is a topological space and P a finite point set
that has the extended generic intersection property and the extended closed
ball property for X, X and DX(P) are homeomorphic.

In the following, we consider the final sampling P produced by the meshing
algorithm and we show that P has the extended closed ball property with
respect to

⋃
F . For this, we need a CW complex R whose domain coincides

with
⋃
F . We define R as R = {V (T ) ∩ F : T ⊆ P, F ∈ F}. and our first

goal is therefore to prove that each face in this complex is a topological ball.
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Surface sampling

The following lemmas are borrowed from the recently developed surface sam-
pling theory [ACDL02, BO05]. They are hereafter adapted to our setting
where the faces Sk ∈ S are patches of smooth closed surfaces.

Lemma 1 (Topological lemma). [ACDL02] For any point x ∈
⋃
F , any

ball B(x, r) centered on x and with radius r ≤ lfs(x) intersects any face F of
F including x according to a topological ball.

Lemma 2 (Long distance lemma). [Dey06] Let x be a point in a face
Sk of S. If a line l through x makes a small angle (l, l(x)) ≤ η with the line
l(x) normal to Sk at x and intersects Sk in some other point y, d(x, y) ≥
2lfs(x) cos(η).

Lemma 3 (Chord angle lemma). [ACDL02] For any two points x and y
of Sk with d(x, y) ≤ η lfs(x), with η ≤ 2, the angle between xy and the tangent
plane of Sk at x, is at most arcsin η

2 .

Lemma 4 (Normal variation lemma). [ACDL02] Let x and y be two
points of Sk with d(x, y) ≤ η min(lfs(x), lfs(y)), with η ≤ 2. Let n(x) and n(y)
be the normal vectors to Sk at x and y respectively. Assume that n(x) and
n(y) are oriented consistently, for instance toward the exterior of the smooth
closed surface including Sk. Then the angle (n(x), n(y)) is at most 2 arcsin η

2 .

Lemma 5 (Facet normal lemma). [ACDL02] Let p, q, r be three points of
Sk, such that the circumradius of triangle pqr is at most η lfs(p). The angle
between the line lf normal to triangle pqr and the line l(p) normals to Sk in
p is at most arcsin(η

√
3) + arcsin η

1−η .

At the end of the algorithm, the sampling P is such that for any patch
Sk of S, the subset P ∩ Sk is a loose α2-sample of Sk. This means that
any restricted Delaunay ball B(c, r), circumscribed to a face of the restricted
Delaunay triangulation D|Sk

(P ∩Sk), has its radius r bounded by α2lfs(c). It
is proved in [BO06] that any loose ε-sample of a patch Sk is a ε′-sample of
Sk for ε′ = ε(1 + O(ε)). The following lemma are proved in [Boi06] for closed
smooth surfaces, but their proof can be easily adapted in the case of surface
patches.

Lemma 6 (Projection lemma). [Boi06] Let Pk be a loose ε-sample of the
smooth surface patch Sk for ε < 0.24. Any pair f and f ′ of two facets of
D|Sk

(Pk) sharing a common vertex p, have non overlapping orthogonal pro-
jections onto the tangent plane at p i.e. the projections of the relative interiors
of f and f ′ do not intersect.

Lemma 7 (Small cylinder lemma). [Boi06] Let Pk be a loose ε−sample
of the smooth surface patch Sk. For any point p ∈ Pk, if VPk

denotes the cell
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of p in the diagram V(Pk), the intersection VPk
(p)∩Sk is contained in a small

cylinder with axis l(p), height h = O(ε2)lfs(p) and radius O(ε lfs(p)), where
l(p) is the line normal to Sk at p.

The same result holds if the function lfs is replaced by any Lipschitz sizing
field σ with σ(x) ≤ lfs(x), both in the definition of loose ε−sample and in the
description of the small cylinder.

Proof of the homeomorphism properties

The following lemmas are related to the final sampling P. They assume that
the sizing field σ(x) is less than lfs(x) for any point x ∈ F and that the
constant α1 and α2 used in the algorithm are small enough.

Lemma 8. • A facet V (p, q) of V(P) intersects a curve segment Lj of L iff
p and q are consecutive vertices on Lj. Any facet in V(P) intersects at
most one curve segment in L. If non empty, the intersection V (p, q) ∩Lj

is a single point, i. e. a 0-dimensional topological ball.
• For any cell V (p) ∈ P, the intersection V (p) ∩ Lj is empty if p �∈ Lj and

a single curve segment, i.e a 1-dimensional topological ball, otherwise.

Proof. Proof omitted in this abstract.

Lemma 9. • An edge V (p, q, r) of V(P) may intersect the surface patch Sk

only if p, q and r belong to Sk. An edge V (p, q, r) intersects at most one
surface patch of S. If non empty, the intersection V (p, q, r)∩Sk is a single
point.

• A facet V (p, q) of V(P) may intersect the surface patch Sk only if p and q
belong to Sk. If non empty, the intersection V (p, q)∩ Sk is a single curve
segment, i.e a 1-dimensional topological ball .

• For any cell V (p) ∈ P, the intersection V (p) ∩ Sk is empty if p �∈ Sk and
a topological disk if p ∈ Sk.

Proof. Proof omitted in this abstract.

Lemma 10. The set R = {V (T ) ∩ F : T ⊂ P, F ∈ F} forms a CW complex
and P has the extended closed ball property for

⋃
F .

Proof. Lemma 8 and 9 show that each element in R is a topological ball.
Obviously, the boundary of each face in R is a union of faces in R and the
intersection of two faces in R is either empty or a face in R. Therefore R is
a CW complex. For any subset T ∈ P, RT = {V (T ) ∩ F : F ∈ F} and R0

T
is the subset of RT obtained with the faces F ∈ F whose interior intersects
the interior of V (T ). Therefore condition 1 in definition 3 is satisfied and we
next show that conditions 2, 3 and 4 are also satisfied.

Let V (p, q, r) be an edge of V(P). For T = {p, q, r}, RT is empty except if
p, q, r belong to the same facet Sk ∈ S. In this last case Sk is the unique face



5A.1 Meshing 3D Domains 453

of F intersected by V (p, q, r) so that R0
T reduces to {FT = V (p, q, r) ∩ Sk},

thus conditions 2 and 4 are trivial and condition 3 is satisfied because FT ∩
bdV (p, q, r) is the empty set which is a 0-dimensional sphere.

Let V (p, q) be a facet of V(P) and assume that V (p, q) ∩ F is not empty.
It results from lemmas 8 and 9 that, either V (p, q) intersects a single surface
patch Sk of S and no curve segment in L or V (p, q) intersects a single segment
Lj of F and all the patches of S incident to Lj .

In the first case R0
T reduces to {FT = V (p, q)∩Sk}, and conditions 2 and

4 are trivial. Condition 3 is satisfied because V (p, q) does not intersect the
boundary of Sk and therefore, bdV (p, q)∩FT = bdV (p, q)∩Sk = bd (V (p, q)∩
Sk), which, owing to lemma 9, is 1-dimensional sphere.

In the second case, R0
T = {V (p, q)∩Li}∪{V (p, q)∩Sk : Sk ∈ S, Li ⊂ Sk},

and condition 2 holds with FT = V (p, q)∩Lj . Furthermore, bd V (p, q)∩FT is
empty so that conditions 3 holds. For any F = V (p, q)∩Sk ∈ R0

T , bdV (p, q)∩
F = bd (V (p, q) ∩ Sk) − V (p, q) ∩ Lj which is a single point (from lemmas 8
and 9), so that condition 4 holds.

Sk

V (p, q)

Sk

V (p, q)

Lj

Fig. 1. Intersection with a Voronoi facet V (p, q). Left V (p, q) intersects no curved
segment Lj . Right V (p, q) intersects a single curved segment Lj .

Let V (p) be a cell of V(P). If p �∈ F , V (p) intersects no face of F and RT
is empty.

If p belongs to some facet Sk of S but to no edge of L, Sk is the only
face in F intersected by V (p). Thus, R0

T reduces to {FT = V (p) ∩ Sk} and
conditions 2 and 4 are trivial. Condition 3 is satisfied because V (p) does not
intersect bd Sk and therefore bdV (p)∩FT = bdV (p)∩Sk = bd ((V (p)∩Sk),
which, owing to lemma 9 and is a 1-dimensional topological sphere.

If p belongs to some edge Li but is not a vertex of F , V (p) intersects Li

and all facets Sk containing Li. Therefore, R0
T = {V (p) ∩ Li} ∩ {V (p) ∩ Sk :

Sk ∈ S, Li ⊂ Sk} and condition 2 holds with FT = V (p)∩Lj . The intersection
bdV (p)∩FT is bd V (p)∩Li, which is two points, i. e. a 0-sphere, from lemma 8.
For any F = V (p) ∩ Sk in R0

T , bdV (p) ∩ F = bd (V (p) ∩ Sk) − V (p) ∩ Li

which is from lemmas 9 and 8 a 1-dimensional topological sphere minus a
1-dimensional topological ball, i. e. a 1-dimensional topological ball.
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The case where p is a vertex of F is omitted in this abstract.
��

As a conclusion, for small enough values of the constant α1 and α2 used
by the algorithm, the final sample set P has the extended closed ball property
for
⋃
F . Adding the reasonable assertion that P has the extended generic

intersection property, we conclude by Theorem 2 that
⋃

F and D⋃ F (P) are
homeomorphic. Moreover, because the proof of Theorem 2 construct the iso-
morphism step by step between each face V (T )∩F ∈ R and the corresponding
face in DF (P) in non decreasing order of dimension, the resulting isomorphism
is such that each face F of F is mapped to its restricted Delaunay triangula-
tion DF (P).

The boundary bdOi of each connected component Oi of the domain O
is a union of faces F ∈ F , each of which is homeomorphic to its restricted
Delaunay triangulation DF (P). Thus bd Oi is homeomorphic to the restricted
Delaunay triangulation Dbd Oi(P), which, from the following lemma, is just
bdDOi(P).

Lemma 11. For each cell Oi of O, Dbd Oi
(P) = bdDOi

(P).

Proof. Let pqr be a facet of Dbd Oi
(P). Then the Voronoi edge V (p, q, r) inter-

sects bd Oi and it results from lemma 9 that V (p, q, r) intersects at most one
facet of bd Oi and in a single point. Therefore the two endpoints of V (p, q, r)
are Voronoi vertices one of which is inside Oi while the other is outside, which
means that one of the tetrahedra incident to pqr belongs to DOi

(P) while the
other does not and therefore pqr belongs to bdDOi

(P). Reciprocally if pqr
belongs to bdDOi

(P), the two endpoints of the Voronoi edge V (p, q, r) are
on a different side of bd Oi which means that V (p, q, r) intersects bd Oi and
therefore belongs to Dbd Oi(P). ��

Hausdorff distance

We prove here that the mesh generation algorithm provides a control on the
Hausdorff distance between F and the approximating linear complex DF (P)
through the sizing field σ.

Let us first consider a curve segment Lj in L. For each edge e = pq in
DLj

(P), both edge e and the portion Lj(p, q) of Lj joining p to q are included
in the restricted Delaunay B(ce, re) circumscribed to e. The Hausdorff dis-
tance between Lj(p, q) and e is therefore less than re which, from rule R2, is
less α1σ(ce) and the Hausdorff distance between Lj and DLj

(P) is less than
2α1 maxx∈Lj

σ(x).
Let us then consider a surface patch Sk. Each triangle pqr in DSk

(P) is
included in its restricted Delaunay ball B(c, r) with radius r ≤ α2σ(c) and
therefore each point of pqr is at distance less than α2σ(c) from Sk. From
rule R4.1, and the small cylinder lemma (Lemma 7), we know that each point
x in Sk is at distance O(α2)σ(p) from its closest sample point p. The Hausdorff
distance between Sk and DSk

(P) is less than O(α2) maxx∈Sk
σ(x).
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5 Termination

This section proves that the refinement algorithm in section 3 terminates,
provided that the constants α1 and α2, β2 and β3 involved in refinement
rules are judiciously chosen. The proof of termination is, based on a volume
argument. This requires to prove a lower bound for the distance between any
two vertices inserted in the mesh.

For each vertex p in the mesh, we denote by r(p) the insertion radius of
p, that is the length of the shortest edge incident to vertex p right after the
insertion of p, and δ(p) the distance from p to F \ Fp where Fp is the set of
features in F that contain the point p.

Recall that the algorithm depends on four parameters α1, α2, β2 and β3,
and on a sizing field σ. Constants α1 and α2 are assumed to be small enough
and such that 0 ≤ α1 ≤ α2 ≤ 1. The sizing field σ is assumed to be a Lipschitz
function smaller than lfs(x) on F . Let μ0 be the maximum of σ over F , and
σ0 the minimum of σ over O.

Lemma 12. For some suitable values of α1,α2, β2 and β3, there are constants
η2 and η3 such that α1 ≤ η3 ≤ η2 ≤ 1 and such that the following invariants
are satisfied during the execution of the algorithm.

∀p ∈ P, r(p) ≥ α1σ0 (2)

δ(p) ≥

⎧⎪⎨⎪⎩
α1σ0 if p ∈ L
α1σ0

η2
if p ∈ S

α1σ0
η3

if p ∈ P \ S
(3)

Proof. (Sketch) The proof is an induction. Invariants (2) and (3) are satisfied
by the set Q and by the set P0 of initial vertices. We prove that invariants(2)
and (3) are still satisfied after the application of any of the refinement rules
R1-R5 if the following values are set:

α1 = 1
(
√

2+2)ν0,(ν0+1)
α2 = 1

ν0+1 ,

β2 = (
√

2 + 2)ν0, β3 = (
√

2 + 2)ν0 (ν0 + 1) ,
1
η2

= (
√

2 + 1)ν0,
1
η3

= (
√

2 + 2)ν0,

where ν0 = 2μ0
σ0

.

(4)

For lack of space and as an example, we only give here the proof for Rule R3
and omit the other cases.

Let us therefore assume that a new vertex cf is added to P by application
of Rule R3. The vertex cf belongs to a surface patch Sk and is the center of a
Delaunay ball B(cf , rf ), circumscribing a facet f of D|Sk

. At least one of the
vertices of f vertices, say p, does not belong to Sk. The insertion radius of cf

is rf and, rf = d(cf , p) ≥ d(p, Sk). By induction hypothesis, d(p, Sk) ≥ α1σ0,
and invariant (2) is satisfied.

To check invariant (3), we prove hereafter than d(cf , bdSk) ≥ α1σ0
η2

, and
use the following claim to prove that the same bound holds for δ(cf ).
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Claim. For any point x in a face F ∈ F , δ(x) ≥ min (d(x,bdF ), lfs(x)).

Proof. Omitted in this abstract.

Let y be the point of bd Sk closest to cf , and let q be the sample point in
P ∩ bdSk closest to y. Then d(cf , bdSk) = d(cf , y) ≥ d(cf , q) − d(y, q). The
distance d(cf , q) is at least rf . The distance d(y, q) is at most 2α1μ0 because,
when Rule R3 is applied, the curve segments of L are covered by restricted
Delaunay balls whose radii are at most α1μ0. Therefore

d(cf , bdSk) ≥ rf − 2α1μ0. (5)

• If vertex p does not belongs to F , rf = d(cf , p) ≥ α1σ0
η3

by induction
hypothesis, and d(cf , bdSk) ≥ α1σ0

η3
− 2α1μ0 which is at least α1σ0

η2
with

the choices in (4).
• If the vertex p lies on F but is not interrelated to cf , rf = d(cf , p) ≥

lfs(cf ) ≥ σ0, and d(cf , bdSk) ≥ σ0 − 2α1μ0 which is more than α1σ0
η2

with
the choices in (4).

• If p lies on Fi ∈ F and is interrelated to cf , we have by angular hypothesis,
r2
f = d(cf , p)2 ≥ d(cf , Sk ∩Fi)2 +d(p, Sk ∩Fi)2. Thus d(cf , Sk ∩Fi) ≤ rf ,

which proves that sample point p cannot lie in a curve segment of L.
Indeed if Fi was some curve segment in L, Sk ∩ Fi would be a vertex
in Q included in B(cf , rf ) which contradicts the fact that B(cf , rf ) is a
Delaunay ball. Therefore p belongs to the interior of some surface patch
Si ∈ S and by induction hypothesis δ(p) ≥ α1σ0

η2
which implies that:

r2
f ≥ d(cf , bdSk)2 +

(
α1σ0

η2

)2

. (6)

Equations (5) and (6) and the value chosen for η2 in (4) implies that
d(cf , bdSk) ≥ α1σ0

η2
.

��

Lemma 12 provides a constant lower bound, α1σ0, for the insertion radius
of any vertex in the mesh and therefore for the length of any edge in the
final mesh. A standard volume argument then ensures that the Delaunay
refinement algorithm of section 3 terminates.

6 Implementation and results

The algorithm has been implemented in C++, using the library CGAL [CGAL],
which provided us with an efficient and flexible implementation of the three-
dimensional Delaunay triangulation. Once the Delaunay refinement process
described above is over, a sliver exudation [CDE+00] step is performed. This
step does not move or add any vertex but it modifies the mesh by switching
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the triangulation into a weighted Delaunay triangulation with carefully cho-
sen weights. As in [ORY05] the weight of each vertex in the mesh is chosen
in turn so as to maximize the smallest dihedral angle of any tetrahedron in-
cident to that vertex while preserving in the mesh any facet that belongs to
the restricted triangulation of an input surface patch.

Fig. 2. Sculpt model. On the left: the input surface mesh. On the right: the
output mesh (blue: facets of the surface mesh, red: tetrahedra of the volume mesh
that intersect a given plan). The mesh counts 22923 tetrahedra.

Our mesh generation algorithm interacts with the input curve segments
and surface patches through an oracle that is able to detect and compute in-
tersections between planar triangles and curve segments and between straight
segments and surface patches. Currently, we have only one implementation of
such an oracle which handles input curve segments and surface patches de-
scribed as respectively as polylines and triangular meshes. Thus, with respect
to input features our algorithm currently act as a remesher but this is not a
limitation of the method.

The figure 2 shows a mesh generated by our algorithm. The input surface
of the figure 2 is made of six curved edges, and four surface patches The input
surface was given by a surface mesh. We have considered that an edge of the
mesh is a sub-segment of a curved segment of the surface when the normal
deviation at the edge is greater than 60 degree. The curved segments and
surfaces patches of the input surface are nicely approximated, as well as the
normals (the result surface of figure 2 has been drawn without any OpenGL
smoothing). Each element of the result mesh has a Delaunay ball smaller than
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Fig. 3. ITER model. A mesh with 72578 tetrahedra.

a given sizing field. In the figure 2, the sizing field has been chosen uniform.
After sliver exudation, the worst tetrahedra in the mesh has a dihedral angle
of 1.6 degree.

Another example is shown on Figure 3 where a mechanical piece which is
part of the International Thermonuclear Experimental Reactor (ITER) has
been meshed.

7 Conclusion and future work

The algorithm provided in this paper is able to mesh volumes bounded by
piecewise smooth surfaces. The output mesh has guaranteed quality and its
granularity adapts to a user defined sizing field. The boundary surfaces and
their sharp 1-dimensional features are accurately and homeomorphically rep-
resented in the mesh. The main drawback of the algorithm is the restric-
tion imposed on dihedral angles made by tangent planes on singular points.
Small angles are known to trigger an ever looping of the Delaunay refinement
algorithm. The main idea to handle this problem is to define a protected
zone around sharp features where the Delaunay refinement is restricted to
prevent looping. This strategy assumes that the mesh already includes re-
stricted Delaunay submeshes homeomorphic to the input surface patches and
curved segments. This could be achieved using a strategy analog to the strat-
egy proposed to conform Delaunay triangulation [MMG00, CCY04]. Another
promising way to protect sharp features which is proposed by [CDR07] is to
use weighted Delaunay triangulation with weighted points on sharp features.
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