
4.4

κ-Compatible Tessellations∗

Philippe P. Pébay and David Thompson

Sandia National Laboratories
P.O. Box 969, Livermore CA 94551, U.S.A.
{pppebay,dcthomp}@sandia.gov

Summary. The vast majority of visualization algorithms for finite element (FE)
simulations assume that linear constitutive relationships are used to interpolate val-
ues over an element, because the polynomial order of the FE basis functions used
in practice has traditionally been low – linear or quadratic. However, higher order
FE solvers, which become increasingly popular, pose a significant challenge to vi-
sualization systems as the assumptions of the visualization algorithms are violated
by higher order solutions. This paper presents a method for adapting linear visu-
alization algorithms to higher order data through a careful examination of a linear
algorithm’s properties and the assumptions it makes. This method subdivides higher
order finite elements into regions where these assumptions hold (κ-compatibility).
Because it is arguably one of the most useful visualization tools, isosurfacing is used
as an example to illustrate our methodology.

1 Introduction

People have been approximating solutions to partial differential equations
(PDEs) ever since PDEs were conceived. Much more recently, a class of tech-
niques known as hp-adaptive methods have been developed in an effort to
converge to a solution faster than previously possible, or to provide more ac-
curate approximations than traditional finite element simulation within the
same amount of computational time. These new techniques can increase both
the hierarchical (h) and polynomial (p) levels of detail – or degrees of freedom
– during a simulation.

Once these solution approximations have been computed, they must be
characterized in some way so that humans can understand and use the results.
This paper develops a technique for partitioning higher-order cells in order to

∗This work was supported by the United States Department of Energy, Office of
Defense Programs. Sandia is a multiprogram laboratory operated by Sandia Corpo-
ration, a Lockheed-Martin Company, for the United States Department of Energy
under contract DE-AC04-94-AL85000.

424 Philippe P. Pébay and David Thompson

characterize the behavior of their geometric and scalar field curvatures during
post-processing. We say that such partitions are κ-compatible. While a past
paper [8] has presented our software framework for creating these partitions,
this paper presents a full description of the algorithm and a rigorous proof of
the conditions under which it will work and terminate.

Currently, visualization techniques for quadratic and higher order FE so-
lutions are very limited in scope and/or cannot guarantee that all topological
features are captured [1, 3, 7, 8, 6]. These techniques are also limited in their
applicability to a subset of visualization techniques. Moreover, although some
production-level tools currently offer support for quadratic elements, they do
not always do so correctly (cf. [8] for a discussion); in the case of isocontouring,
consider for example the following scalar field:

Φ1 : [−1, 1]3 −→ IR
(x, y, z)T �→ x2 + y2 + 2z2,

interpolated over a single Q2 Lagrange element (hexahedron with degree 2
Lagrange tensor-product interpolation over 27 nodes), with linear geometry,
where one is interested in the isocontours Φ−1

1 (1) and Φ−1
1 (2).

Fig. 1. Isocontours of Φ1 for the isovalues 1 (cyan) and 2 (green): linear isocon-
touring approach (left), and our new topology-based approach (right).

As shown in Figure 1, left, the linear isocontouring approach (implemented
here in ParaView) completely misses Φ−1

1 (1), because it is entirely contained
within the cell. Meanwhile, the topology of Φ−1

1 (2) is correct, but its geometry
is poorly captured. On the other hand, our new method (Figure 1, right) cap-
tures the correct topologies of both isocontours, and provides a much better
geometric approximation of Φ−1

1 (2) than linear isocontouring does.
The lack of tools that are applicable to most visualizations of higher order

element simulations, and that can guarantee correctness of the results, pre-
vents analysts from exploiting such simulations. In this paper, we propose a
solution to this problem.

4.4 κ-Compatible Tessellations 425

1.1 Higher Order Finite Elements

Here we briefly review the FE method to develop notation used throughout the
paper. Recall that the FE method approximates the solution, f : Ω �→ IR, of
some PDE as a set of piecewise functions over the problem domain, Ω ⊂ IRd.
Although Ω may be any general d-dimensional domain, we’ll assume it is 3-
dimensional. The fact that we have a piecewise approximant divides Ω into
subdomains Ωe ⊆ Ω, e ∈ EΩ that form a closed cover of Ω. Each Ωe is itself
a closed set that is parametrized with a map (usually polynomial in form)
from parametric coordinates r = (r, s, t) ∈ R ⊂ IR3 to geometric coordinates
x = (x, y, z) ∈ Ωe:

Ξe(r) = B0,0,0 + B1,0,0r + B0,1,0s + B0,0,1t + B1,1,1rst + · · ·

where Bi,j,k ∈ IR3 such that Ξe is invertible for all points of Ωe. Therefore,
the approximate solution may be written in terms of parametric coordinates
(as Φe) or in terms of geometric coordinates: fe(x) = Φe ◦ Ξ−1

e (x), where

Φe : R ⊂ IR3 −→ IR
(r, s, t)T �→ Φe(r, s, t)

is the approximating function over Ωe expressed in terms of parametric coordi-
nates. Furthermore, we require that each Φe is polynomial in the parameters:

Φe(r) = A0,0,0 + A1,0,0r + A0,1,0s + A0,0,1t + A1,1,1rst + · · ·

These coefficients, Ai,j,k ∈ IR, are known as degrees of freedom (DOFs). Each
one corresponds to a particular modal shape, and sets of modal shapes can
be grouped together into nodes by the regions of parameter-space over which
they have an effect (a given corner, edge, face, or the interior volume).

A global approximant f(x) can then be constructed from the piecewise
elemental approximants. This leaves only the matter of what to do where
Ωe and Ωj,j �=e intersect. Usually, these subdomains intersect over (d − 1)-
dimensional or lower regions (2-dimensional faces, 1-dimensional edges, and
“0”-dimensional vertices in our case). In these regions, Φ is not well-defined
since Φe and Φj may disagree. Usually, the FE method constrains Φe and Φj

to be identical in these regions, however some methods such as the discon-
tinuous Galerkin method do not require this and subsequently have no valid
approximant in these regions.

For a given decomposition of Ω, the FE method may not converge to the
correct (or indeed, any) solution. When Φe and Ξe are trilinear polynomials
for all e, a technique called h-adaptation is often used to force convergence
and/or increase solution accuracy. In this technique, some subdomains E ⊆
EΩ are replaced with a finer subdivision E′ such that

⋃
e∈E Ωe =

⋃
e∈E′ Ωe

but |E′| > |E|2. Similarly, p-adaptation is the technique of increasing the
2In temporal simulations, we do allow |E′| < |E| in regions where Ω has been

adapted to some time-transient phenomenon.

426 Philippe P. Pébay and David Thompson

order of polynomials Φe and/or Ξe rather than the number of finite elements.
hp-adaptation is then some combination of h- and p-adaptation over Ω. In the
end, the FE method provides an approximation to f = Φ ◦ Ξ−1 by solving a
collection of equations for coefficients (A and B in the examples above). Our
task is then to characterize the maps Φe and Ξe in a way that aids human
understanding of the solution.

The rest of this paper presents a method for partitioning higher-order finite
elements into regions were visualization assumptions are satisfied.

2 Partitioning Finite Elements

Using these notation, we now examine what requirements must be satisfied
by κ-compatible tessellations. A common assumption made by linear visual-
ization algorithms is that critical points (points where all partial derivatives
of fe vanish) may only occur at vertices. This one assumption can show up
in many different ways. Algorithms that iterate over an element’s corner ver-
tices to identify extrema (e.g., thresholding) all make this assumption. Other
examples include (but are not limited to) isosurfacing, cutting, and clipping.

This paper is concerned with tessellating finite elements into regions where
the critical-points-at-vertices assumption holds as part of an overall strategy
to adapt existing techniques to work with higher order elements. Because we
use it as a running example of an important application driving the devel-
opment of κ-compatible tessellation, we will focus on the prerequisites of the
linear tetrahedral isosurfacing algorithm, keeping in mind that other visual-
ization techniques result in the same set of constraints. The linear tetrahedral
isosurfacing algorithm assumes:

(C10) each tetrahedron edge intersects a particular isocontour at most once,
(C20) no isocontour intersects a tetrahedron face without intersecting at least

two edges of the face,
(C30) no isocontour is completely contained within a single tetrahedron, and
(C40) the map from parametric to geometric coordinates must be bijective.

Remark 1. Note that (C40) only regards Ξe and can be restated as:

(C4) ∀x ∈ Ωe, ∃! r ∈ R such that Ξe(r) = x.

In this paper, it is satisfied by hypothesis as we focus on the Φe map. However,
in the context of higher order element mesh generation and modification, our
methodology can be applied to Ξe to verify the correctness of each element.

Let’s examine how changing to a higher-order interpolant affects these as-
sumptions. For instance, the Φ−1

1 (1) isocontour in the example of §1 violates
(C30), which explains why it is entirely missed by linear isocontouring.

We now translate the criteria into requirements on Φe, that are slightly
stronger for reasons that are discussed later on.

4.4 κ-Compatible Tessellations 427

Proposition 1. (C10), (C20) and (C30) are respectively implied by:

(C1) for each edge E of R, with direction vector (ax, ay, az),

ax
∂Φe

∂r
+ ay

∂Φe

∂s
+ az

∂Φe

∂t
�= 0 over the interior of E.

(C2) for each face F of R, with vector basis ((ax, ay, az), (bx, by, bz)),⎧⎪⎪⎨⎪⎪⎩
ax

∂Φe

∂r
+ ay

∂Φe

∂s
+ az

∂Φe

∂t
�= 0

bx
∂Φe

∂r
+ by

∂Φe

∂s
+ bz

∂Φe

∂t
�= 0

over the interior of F .

(C3) ∇Φe �= 0 over the interior of R.

Proof. By definition, (C10), (C20) and (C30) are equivalently stated as:

(C10) No restriction of Φe to an element edge has extrema interior to the edge
unless the restriction is constant on the edge.

(C20) No restriction of Φe to an element face has extrema interior to the face
unless the restriction is constant on the face.

(C30) Φe has no extrema inside the interior of the element unless the inter-
polant is constant over the entire element.

Being a polynomial function, Φe is C1, and so are its restrictions to the edges
and faces of R. Let E be an edge of R that passes through the point (px, py, pz),
with direction vector (ax, ay, az). This edge can be parametrized as follows:

η : I ⊂ IR −→ IR3

t �−→ (axt + px, ayt + py, azt + pz)
T

,

from which we obtain the restriction of Φe to E, Φe|E = Φe ◦ η : I −→ IR. Its
derivative dΦe|E ∈ L(IR) at any arbitrary point t0 ∈ I is thus

dΦe|E(t0) = dΦe (η(t0))◦dη(t0) =
(

∂Φe

∂r
,
∂Φe

∂s
,
∂Φe

∂t

)∣∣∣∣
η(t0)

(ax, ay, az)T dt. (1)

As Φe|E is C1 over I, a necessary condition for Φe|E to have an extremum in
t0, interior to I, is that dΦe|E(t0) = 0, i.e.,

ax
∂Φe

∂r
(t0) + ay

∂Φe

∂s
(t0) + az

∂Φe

∂t
(t0) = 0.

Similarly, let F be a face of R that passes through the point (px, py, pz) and
has basis ((ax, ay, az), (bx, by, bz)). This face can be parametrized with two
variables as follows:

η : U ⊂ IR2 −→ IR3

(u, v)T �−→ (axu + bxv + px, ayu + byv + py, azu + bzv + pz)
T

.

428 Philippe P. Pébay and David Thompson

The derivative dΦe|F ∈ L(IR2, IR) of Φe|F = Φe ◦ η : U −→ IR is

dΦe|F (u0, v0) = dΦe (η (u0, v0)) ◦ dη (u0, v0) (2)

=
(

∂Φe

∂r
,
∂Φe

∂s
,
∂Φe

∂t

)∣∣∣∣
η(u0,v0)

⎛⎝ax bx

ay by

az bz

⎞⎠(du
dv

)
. (3)

As Φe|F is C1 over U , a necessary condition for Φe|F to have an extremum in
(u0, v0), interior to U , is that dΦe|F (u0, v0) = 0, which may be restated as

ax
∂Φe

∂r
(η (u0, v0)) + ay

∂Φe

∂s
(η (u0, v0)) + az

∂Φe

∂t
(η (u0, v0)) = 0

bx
∂Φe

∂r
(η (u0, v0)) + by

∂Φe

∂s
(η (u0, v0)) + bz

∂Φe

∂t
(η (u0, v0)) = 0.

Finally, as Φe is C1 over R, a necessary condition for Φe to have extremum in
(r0, s0, t0), interior to R, is that dΦe(r0, s0, t0) = 0, i.e., ∇Φe(r0, s0, t0) = 0. ��

Note that the proof mainly relies on the fact that, for a C1 function over
an open domain, an extremum is a critical point. However, the converse is not
true and thus each (Ci) is stronger than the corresponding (Ci0). Therefore,
using (Ci) rather than (Ci0) can yield non-extremal critical points – just con-
sider r �→ r3 in 0. In order to eliminate such “false positives”, we would need to
evaluate second- and higher-order derivatives, which would incur further com-
putational costs, and even this would not always suffice as degenerate cases
may occur. Therefore, rather than degrading computational performance, the
trade-off we make is to accept the stronger (Ci) conditions and extra points
that are not required by the (Ci0) conditions. This may even be beneficial
in terms of geometric approximation, as non-extremal critical points can be
the locus of important geometric features (e.g., saddle points). In short, (Ci)
conditions mean that all of the differences between the linear and higher order
isocontouring implementations can be attributed to critical points of Φe.

2.1 Creating the Partition

In §2, we presented the requirements a tetrahedral element must meet for
isocontouring algorithm to work. As we noted earlier, higher order elements
that have non-simplicial domains (such as hexahedra, pyramids, etc.) will
have to be decomposed into tetrahedra T . However, these tetrahedra must
additionally meet the requirements (C1) to (C4). As explained in Remark 1,
(C4) is satisfied by hypothesis; therefore the partition is subdivided until it
meets criteria (C1), (C2), and (C3). Because not only a single scalar field, but
a set κ of such fields may be of interest, these criteria must be satisfied for all
fields in κ. Once this is achieved, the final partition is said to be κ-compatible.
For the sake of legibility, we only discuss here the case where κ = {Φ}, but
the method remains the same when κ is not a singleton.

4.4 κ-Compatible Tessellations 429

From now onwards, it is assumed that all critical points are isolated.
This requirement is necessary so that the set of all critical points is finite, since
a polynomial function can only have a finite number of isolated critical points;
its implications are discussed at the end of this section. In this context, the
general scheme of our method applied to the input parameters M (initial
mesh) and Φ (field interpolated over M) is

Partition-Mesh(M,Φ)
1 C ← DOF-Criticalities(M,Φ)
2 (T0, S) ← Triangulate-Boundaries(M,C)
3 Correct-Triangle-Topology(M,Φ, S, T0)
4 (T1, S) ← Tetrahedralize-Interior(M,T0, C)
5 Correct-Tetrahedral-Topology(M,Φ, S, T1)
6 return T1

The output of the scheme is a tetrahedral subdivision T1 of M . We now discuss
each step in details,and theoretically establish the validity of the approach.

DOF-Criticalities

This algorithm locates the critical points of Φ inside each element and of the
restrictions of Φ to all element faces and edges. It takes M and Φ as inputs and
yields a set C of critical points. Bdy1(R) and Bdy2(R) respectively denote
the set of 1- and 2-dimensional boundaries of the parametric domain R.

DOF-Criticalities(M)
1 for e ← |M |
2 do Find critical points of Φe in R
3 Store critical points indexed by volumetric DOF node.
4 for f2

i ∈ Bdy2(R)
5 do if ∇Φe|f2

i
= 0 not marked,

6 then Find critical points of Φe|f2
i

7 Store critical points of Φe|f2
i

in Cf2
i

8 Mark Φe|f2
i

as done
9 for f1

i ∈ Bdy1(R)
10 do if ∇Φe|f1

i
= 0 not marked,

11 then Find critical points of Φe|f1
i

12 Store critical points of Φe|f1
i

in Cf1
i

13 Mark Φe|f1
i

as done
14 return C =

(
∪i Cf1

i

)
∪
(
∪i Cf2

i

)
Note that, because finding critical points is a time-consuming process, we do
not wish to process shared edges or faces multiple times. This extra work
is avoided by storing critical points indexed by the DOF with which they
are associated – critical points on a face are stored with the index used to

430 Philippe P. Pébay and David Thompson

retrieve the coefficients for that face’s degrees of freedom, and likewise for
edges. Therefore, DOF-Criticalities operates on the mesh a whole, and
not independently on each element. The issue of how to actually find the
critical points is a complex and challenging problem of its own. We have not
specifically researched this issue, and we handle it as follows:

• for edge critical points, where the problem amounts to finding all roots of
a polynomial in a bounded interval, we have implemented exact solvers
for up to quartic equations (and hence, quintic interpolants), and a Lin-
Bairstow solver for higher order equations;

• for face and body critical points, where the problem amounts to finding all
roots of a polynomial system within a bounded domain, we solve exactly
if the system is linear, and otherwise make use of the PSS package [4, 5].
However, we think that this aspect deserves much further investigation.

If one assumes that the polynomial system solver always terminates in finite
time, then DOF-Criticalities does as well. As mentioned earlier, because
restrictions of the field to edges and faces are marked as they are done, each
is processed only once even when it is shared by several elements.

Remark 2. The methodology we present requires the ability to detect all criti-
cal points on arbitrary line segments and triangular faces in the domain of an
element. Most polynomial system solvers require a power-basis representation
of a system to be solved and that is not usually how finite elements are rep-
resented. Given that we wish to perform this change of basis as infrequently
as possible, it behooves us to find a way to derive the restriction of Φe to a
line or face from the full representation of Φe.

Triangulate-Boundaries

Once the critical points have been located, the second step of our scheme
consists in triangulating the two-dimensional boundaries of all elements. This
ensures that all volumetric elements that reference a particular face use the
same triangulation – otherwise our model could have cracks along element
boundaries3. In order to satisfy (C2) on a given element e, a restriction of
Φe to a face of the tessellation of e is not permitted to have a critical point;
therefore, we “eliminate” the critical points of the restriction of Φe to the
faces of e by inserting them in the list of points to be triangulated. The
algorithm Triangulate-Boundaries thus takes the mesh M and its related
set of critical points C as inputs, and returns a triangulation T0 of the set of
faces in M . In this algorithm, the method Face-Center takes a face as its
input and returns its parametric center, and Star2(c,Q1, . . . , Qn) creates a

3Discontinuous Galerkin elements can be accommodated by using different in-
dices (as opposed to a shared index i) for edges and faces of adjoining elements.
Cracks would occur, but they would be faithful representations of the interpolant
discontinuity.

4.4 κ-Compatible Tessellations 431

triangulation composed of triangles cQ1Q2,..., cQnQ1 (with the requirement
that c is contained in the interior of the convex hull of {Q1, . . . , Qn}).

Triangulate-Boundaries(M,C)
1 for f2

i ← each 2-boundary of every 3-D finite element
2 do if |Cf2

i
| > 0

3 then c ← Cf2
i ,0

4 else c ← Face-Center(Bdy2
i (IR))

5 Ti ← ∅
6 Q ← corner points of face i

⋃
isolated critical points

of all bounding edges of face f2
i , ordered in a

counterclockwise loop around f2
i .

7 for j ∈ {0, . . . , |Q| − 1}
8 do Insert Star2(c,Qj , Q(j+1)mod|Q|) into Ti

9 Cf2
i

′ ← {Cf2
i
\ Ci,0}

10 for c ∈ Cf2
i

′

11 do Find t ∈ Ti such that c ∈ t
12 Remove c from Cf2

i

′

13 Remove t from Ti

14 Subdivide t into 2 or 3 triangles tk
15 Insert tk into Ti

16 return T0 = ∪iTi

All sets involved in Triangulate-Boundaries are finite, and no recursion
is involved. Therefore, this procedure terminates in finite time. In addition,

Proposition 2. Upon completion of Triangulate-Boundaries, (C1) is
satisfied on the edges of the triangulation T0 that either belong to M or are
subdivisions of edges or faces of M , and (C2) is satisfied across T0.

Proof. By construction, Triangulate-Boundaries inserts in T0 all critical
points of restrictions of Φ to edges of M . Since this process cannot create
novel critical points on these edges, the first part of the proposition ensues.
Compliance with (C2) across T0 is ensured because all critical points of re-
strictions of Φ to faces of M have been inserted as vertices of T0, and no new
such critical point may have been created. ��

Note that that there is no guarantee that (C1) is satisfied across T0 upon com-
pletion of Triangulate-Boundaries, as shown in the following example:

Example 1. Consider a face fi, illustrated in Fig. 2(a), such that the restriction
of the field to the interior of fi has 3 critical points (denoted a, b, and c), and
each of the restrictions of the field to the edges of fi has at least one critical
point (denoted d, f , h, i, j, and k). The triangulation displayed in Fig. 2(b)
is obtained once all Star2 procedures have performed by taking a as the first
internal critical point to be inserted. The final tessellation, shown in Fig. 2(c),
has eliminated the remaining interior critical points b and c by making them

432 Philippe P. Pébay and David Thompson

h g

d

f

e

j

m

n

a

b

c

i

k

(a)

h g

d

f

e

j

m

n

a

b

c

i

k

(b)

h g

d

f

e

j

m

n

a

b

c

i

k

(c)

h g

d

f

e

j

m

n

a

b

c

i

k

(d)

Fig. 2. An example face f2

i with critical points shown as blue dots
(maxima), red dots (saddles), and green dots (minima). (a) The input to
Triangulate-Boundaries. (b) Resulting triangulation of f2

i after all Star2 pro-
cedures of Triangulate-Boundaries have been performed. (c) The triangulation
at the completion of Triangulate-Boundaries. (d) The new critical points intro-
duced by the first stage of Correct-Triangle-Topology.

nodes of the triangulation; however, as illustrated in Fig. 2(d), new critical
points have appeared, on the restrictions of Φe to edges ab, ag, am, and cg.

Remark 3. Line 14 of Triangulate-Boundaries allows for 2 different ways
to subdivide a triangle, depending on whether the face critical point lies
within or on the boundary of the triangle; for instance, in Fig. 2(c), trian-
gles ahm and afg are split in, respectively, 2 and 3 triangles. In practice, to
avoid unnecessary creation of quasi-degenerate triangles, the implementation
of Triangulate-Boundaries uses a predefined threshold (that can be re-
lated to the distance of the critical point to the closest triangle edge, or to a
triangle quality estimate of the subdivided triangles) below which a critical
point is moved to the appropriate edge; for instance, in the example illustrated
in Fig. 2(c), point b is considered as belonging to ah, even if it slightly off.

Correct-Triangle-Topology

This algorithm searches for critical points in the restriction of Φe to each
unmarked edge of T0. When points are found, they are inserted into T0, and
iteratively repeats the procedure until (C1) and (C2) are satisfied throughout
the entire triangulation of the faces of M . Fig. 3(b) shows this procedure
applied to Example 1.

4.4 κ-Compatible Tessellations 433

Correct-Triangle-Topology(M,Φ, S, T0)
1 while S not empty
2 do Pop t from S
3 C ← ∅
4 for e ← marked edges of t
5 do Insert critical points of e into C
6 for c ← C
7 do Find t ∈ T1 s. t. c ∈ t
8 Remove t from T1 and S
9 U ← Star2(c, t)

10 for t′ ← U
11 do if Mark-Triangle(t′)
12 then Push t′ onto S
13 Insert t′ into T0

Proposition 3. If, for all e in M , all critical points of the restriction of Φe to
any face of e are isolated, then Correct-Triangle-Topology terminates.
In addition, upon termination, (C1) and (C2) are satisfied across T0.

Proof. For brevity, the proof is not provided here: it can readily be obtained
by reducing the proof of Proposition 5 to the 2-dimensional case.��

Remark 4. Because there is no need to refine below a certain size for visualiza-
tion purposes, our implementation uses a tolerance ε ∈ IR+ so that, in line 5,
a new critical point p of the restriction of Φ to a marked edge is inserted only
if there is no p′ in C such that |p − p′| < ε. Therefore, the procedure may
terminate before (C1) and (C2) are fully satisfied, but are satisfied up to ε.

Tetrahedralize-Interior

Each element interior is now tetrahedralized, and although we treat the whole
mesh, there is here no issue of inter-element consistency, as this part of the
scheme only regards element interiors. As in Triangulate-Boundaries, we
“eliminate” critical points of Φe that are interior to e by adding them to the
set of points to be tetrahedralized. Therefore, the tetrahedralization of each
element e is constrained by the triangulations of the faces of e that result
from Correct-Triangle-Topology, and by the critical points of Φe that
are interior to e. Additionally, when the finite element is starred into a set of
tetrahedra, we know that the triangular base of each tetrahedron and its 3
bounding edges will not have any critical points since those have already been
identified and inserted into the triangulation of the two-dimensional boundary
of the element. However, the remaining 3 faces and 3 edges must be marked
because Φe restricted to their domain may contain critical points. This is
accomplished by Mark-Tetrahedron, which sets a bit code for each edge
and face not on the base of the given tetrahedron (which must be properly
oriented when passed to the subroutine). The algorithm is then as follows:

434 Philippe P. Pébay and David Thompson

Tetrahedralize-Interior(M,T0, C)
1 S ← ∅
2 T1 ← ∅
3 for e ← |M |
4 do Let T ⊆ T0 be all triangles on Bdy2(R)
5 if |Ce| > 0
6 then c ← Ce,0

7 else c ← Element-Center(R)
8 V ← Star3(c, T)
9 for t ← V

10 do if Mark-Tetrahedron(t)
11 then Push t onto S
12 for c ∈ {Ce \ Ce,0}
13 do Find t ∈ V s. t. c ∈ t
14 Remove t from V and S
15 U ← Star3(c, t)
16 for t′ ← U
17 do if Mark-Tetrahedron(t′)
18 then Push t′ onto S
19 Insert t′ into V
20 Insert V into T1

21 Return (T1, S)

All sets involved in Tetrahedralize-Interior are finite, and no recursion
is involved. Therefore, this procedure terminates in finite time. In addition,

Proposition 4. (C3) is satisfied across the tetrahedralization T1 upon com-
pletion of Tetrahedralize-Interior. Moreover, any sub-tetrahedralization
of T1 satisfies (C3) as well.

Proof. Let p be a critical point of the field Φ; then, 2 cases may occur:

1. p is contained in the interior of an element e ∈ M . In this case, p belongs
to Ce (and to no other Ce′) and thus, thanks to Star3, p is a tetrahedron
vertex in T1.

2. p is contained on the boundary of an element e ∈ M . In this case, it is also
a lower-dimensional critical point, i.e., a critical point for the restriction
of Φe to one of its faces or edges, because the fact dΦe vanishes in p
ensures that the left hand side of (1) (if p is on an edge) or (2) (if p
is on a face) vanishes as well. Therefore, p belongs to Cf .

i
for an edge

f1
i or a face f2

i and hence has been made a triangle vertex of T0 by
Triangulate-Boundaries. Since all triangles of T0 become tetrahedral
faces in T1, then p is a tetrahedron vertex in T1.

In both cases, upon completion of Tetrahedralize-Interior, p is a tetra-
hedron vertex in T1. Therefore, for all t ∈ T1, p is not a critical point of Φt

interior to t. As this is true for any critical point p of the field Φ, it follows

4.4 κ-Compatible Tessellations 435

that T1 satisfies (C3). Finally, as (C3) is satisfied on any tetrahedron t ∈ T1,
it is also satisfied on any tetrahedral subdivision of t: indeed, if one could
find a tetrahedron t′ ⊂ t and a critical point p of Φ contained in the interior
of t′, then p would also be in the interior of t, which would contradict the
hypothesis; ad absurdum, the result ensues.��

Correct-Tetrahedral-Topology

A this point, a brief summary of what has been obtained through the 3 first
stages of our scheme will most likely be useful to the reader. A tetrahedral-
ization T1 of the initial mesh M has been obtained, such that

• (C3), and (C4) by hypothesis, are satisfied;
• (C1) and (C2) are satisfied on all edges and faces of T1 that either belong

to M or are subdivisions of edges or faces of M .

However, there is no guarantee that (C1) and (C2) are satisfied on all edges
and faces of T1 that are not included (stricto or lato sensu) in M .

Example 2. Consider the scalar field defined by Φ2(x, y, z) = x2−y2 +z over a
single Lagrange Q2 element with linear geometry and coordinates in [−1, 1]3,
as illustrated in Fig. 3(c): each restriction of Φ2 to the faces perpendicular to
the z-axis has a critical point at the corresponding face center (labeled 7 and
11), and each restriction of Φ2 to the edges perpendicular to the z-axis has a
critical point at the corresponding edge midpoint (labeled 6, 23, 20, 24, 22, 14,
and 26 for those that are visible), whereas Φ2 proper does not have any critical
point. Upon completion of Tetrahedralize-Interior, all of these points
have been inserted in T1 which contains, among others, edges from the element
center to points 6, 20, 22, and 26. It is easy to check that the restrictions of
Φ2 to each of these edges have a critical point at the edge midpoint, and thus
(C1) is not satisfied across T1, that therefore requires further modification.

We must therefore examine how, in general, T1 can be modified so in order to
satisfy (C1) and (C2). A natural question is to wonder whether it is possible
to perform a series of edge-face flips on the T1 so that the final tessellation
satisfies the desired properties.

Example 3. Given the triangulation of a face in Fig. 2(c) for which additional
critical points (of the restrictions of the field to some of the new edges) have
appeared, one can easily perform a series of edge flips so that the final con-
nectivity satisfies (C1), as shown in the resulting tessellation in Fig. 3(a).

Nevertheless, it is unclear whether it is always possible to retrieve a tessella-
tion that satisfies (C1) using only edge flips. Although this may be the case,
we have not further explored this path, because the matter is more compli-
cated as both (C1) and (C2) must be satisfied in a problem that is intrinsically
three-dimensional: for instance, although any 2-D triangulation can always be
converted to a Delaunay triangulation by a finite sequence of edge flips, but

436 Philippe P. Pébay and David Thompson

h g

d

f

e

j

m

n

a
i

k

c

b

(a)

h g

d

f

e

j

m

n

a

b

c

i

k

(b) (c)

Fig. 3. (a) A triangulation satisfying (C1) with edge flips from Fig. 2(c). (b) An-
other triangulation satisfying (C1) using Correct-Triangle-Topology and the
same initial tessellation. (c) Topology-based tetrahedralization of a single Lagrange
Q2 element with linear geometry for the field Φ2(x, y, z) = x2 − y2 + z.

this result does not extend to 3-D tetrahedralizations [2], making us skepti-
cal of the flipping approach. We therefore took a different route, guided by
Proposition 4, as not only T1 satisfies (C3), but we also know that will not be
altered by subsequent subdivisions of T1. Rather than attempting to identify
a set of “problem” entities and prove that they may always be flipped into a
satisfactory configuration, we introduce each critical point of a restriction of
Φ to a new entity into the tessellation. Any edges and faces created by this
operation must then be examined as well for critical points of Φ restricted
to their respective domains. However, it is only necessary to focus on critical
points of the restrictions of Φ to the previously marked edges and faces, as
others already satisfy (C1) and (C2), thanks to Triangulate-Boundaries.

Correct-Tetrahedral-Topology(M,Φ, S, T1)
1 while S not empty
2 do Pop t from S
3 C ← ∅
4 for e ← marked edges of t
5 do Insert critical points of e into C
6 for f ← marked faces of t
7 do Insert critical points of f into C
8 for c ← C
9 do Find t ∈ T1 s. t. c ∈ t

10 Remove t from T1 and S
11 U ← Star3(c, t)
12 for t′ ← U
13 do if Mark-Tetrahedron(t′)
14 then Push t′ onto S
15 Insert t′ into T1

4.4 κ-Compatible Tessellations 437

Remark 5. The same approach as that explained in Remark 4 is used here,
using a tolerance to avoid refining below a certain size. Therefore, and for
the same reason, this allows the algorithm to possibly terminate faster than
normally possible if all critical points created on new edges and faces and the
refinement proceeds had to be inserted without regard to the distance to an
already inserted vertex.

Proposition 5. If, for all e in M , all critical points of the restriction of Φe

to any arbitrary face are isolated, then Correct-Tetrahedral-Topology
terminates. In addition, upon termination, (C1), (C2) and (C3) are satisfied.

Proof. To establish this result, it is sufficient to make sure the algorithm
terminates, starting from any arbitrary face of an arbitrary element in M . So,
let fi be one of the faces of an arbitrary e ∈ M , and we then shall prove that
Correct-Tetrahedral-Topology terminates.

First, remark that if the restriction Φe|fij
of Φe to one edge fij of fi has

a non-isolated critical point, then the derivative of Φe|fij
vanishes along a

nonempty open segment of fij , and therefore has an infinity of zeros. Because
this derivative is itself a univariate polynomial function, it can thus only be
zero everywhere, and thus Φe|fij

is constant along the edge. Therefore, the
only case when non-isolated critical points along a bounding edge of fi arises
is when the interpolant is constant along that edge, and therefore no other
points than its endpoints are contained in P . P is indeed a finite set, as
polynomials can only have a finite number of isolated critical points.

Now assume the restriction Φe|fi
of Φe to the interior of fi has n ∈ IN∗

critical points. The innermost loop of Correct-Tetrahedral-Topology
will insert these n points, and yield a triangulation of fi in N ∈ IN∗ triangles
ti,k, such that ∪N

k=1ti,k = fi and

(∀ 1 ≤ k, k′ ≤ N) k �= k′ ⇐⇒
◦
ti,k ∩

◦
ti,k′= ∅,

where all the points of C are vertices of some of ti,k (
◦
t is the interior of t in the

sense of the natural topology induced on t by embedding it in IR2). Therefore,
none of the restrictions of Φe to ti,k has an internal critical point (otherwise
this point would belong to C, which is impossible because all points of C are
vertices of some of ti,k).

However, the restriction of Φe to some edges of this triangulation of fi may
have critical points4. Denote η such an edge. If the restriction of Φ to η has any
non-isolated critical point, then the same argument as above holds and thus
the corresponding edges do not need to be further refined. On the contrary, if
such an edge critical point is isolated (in this case, the edge must be internal
to fi, as all isolated critical points along the edges of fi have been inserted
priorly), then Correct-Tetrahedral-Topology recursively proceeds on

4In other words, the subdivision of fi cannot create new face critical points, but
it can create new edge critical points.

438 Philippe P. Pébay and David Thompson

η. However, the process terminates because all face critical points are supposed
to be isolated according to the hypothesis. Therefore, for each critical point
pi of the restriction of Φe to fi, there exists a neighborhood of pi in which all
directional derivatives of Φe are nonzero and thus, there exists a finite number
of triangle subdivisions after which no edge critical points are left (because
such a critical point implies one directional derivative is equal to 0).

Finally, upon completion of the algorithm, for the same reasons as for
Tetrahedralize-Interior, (C3) is satisfied for each tetrahedron of the
final partition (the final tetrahedra are subdivisions of initial tetrahedra that
all satisfied (C3), according to Proposition 4).��

Example 4. Consider the same case as Example 2: the execution of Correct-
Tetrahedral-Topology results in the insertion of the 4 previously men-
tioned edge midpoints (3 of which are visible in Fig. 3(c), labeled 3, 19, and
25) in a sub-tetrahedralization of T1 that becomes the final tessellation, across
which conditions (C1) through (C4) are satisfied. In this case, only one level
of refinement was necessary, as none of the edges and faces created upon
insertion of the 4 aforementioned edge midpoints violates (C1) or (C2).

Remark 6. Note that the hypothesis of Proposition 5 is very stringent, as it is
not limited to faces of the mesh, but extends to all possible faces. In fact, it
is sufficient that the restrictions of Φe to any face of the successive partitions
of e only has isolated critical points. However, as this condition depends on
the particular subdivision path, it is, albeit weaker, more difficult to prove.

3 Application to Isocontouring

We now illustrate the application of our method to isocontouring, and the
discuss an additional benefit of κ-tessellation that comes as a side-effect. Con-
sider the following scalar field:

Φ3 : [−1, 1]3 −→ IR
(x, y, z)T �→ x2 + y2 + z2(z − 1),

interpolated over a single Q3 Lagrange element with linear geometry, i.e.,
a tricubic (hence with total degree 9) cell obtained by tensorization of cubic
Lagrange interpolants. The test consists of representing the 0-isocontour of Φ3,
which is tricky because an entire lobe of the resulting isosurface is contained
within the element.

Figure 4, left, shows that if a linear isocontouring marching cubes tech-
nique is applied (after uniform subdivision of the hexahedron into 48 tetrahe-
dra), then a substantial part of Φ−1(0) is missing. This example is interesting
because the missing part of Φ−1(0) is not a disconnected component and,
therefore, (C3) is not violated for this particular isovalue. While intuition
may suggest that a linear isocontouring technique should retrieve the correct

4.4 κ-Compatible Tessellations 439

Fig. 4. Tricubic isocontouring of Φ3 for the isovalue 0, using a linear isocontouring
technique (left), and using our approach (right).

topology of Φ−1(0) in the interior of the hexahedral element, in fact Φ−1(0) is
not a 2-dimensional submanifold of IR3 at (and only at) point (0, 0, 0) (where
Φ−1(0) is not simply connected). Therefore, Φ−1(0) is not a surface and this
causes the isocontouroing algorithm to fail, as illustrated. Moreover, the Im-
plicit Function Theorem shows that for any value of α in] − 2, 0[, Φ−1(α)
is a surface, but can also easily check that for such values of α, it is not
connected; in fact, it has 2 disjoint connected components, one of which is
entirely contained in the interior of the element. Hence, in this case, (C3) is
indeed violated; which also causes the linear isocontouring technique to fail
(by missing this connected component).

From what we already know of our topology-based technique, we can ex-
pect it to properly retrieve Φ−1(α) for these problematic values of α in]−2, 0[,
and it does indeed. However, what was not initially expected, is that it could
fix the case when α = 0, as we do not expect the technique to handle non-
manifold isocontours. Nonetheless, as shown in Figure 4, right, our topology-
based method is able to construct the correct topology of the non-simply con-
nected Φ−1(0). And in fact, this not an anecdotal effect valid for this example
only, but we can see that this is always the case: by “eliminating” critical
points from the final tessellation, the method ensures that (thanks to the Im-
plicit Function Theorem), the isocontour is locally a 2-dimensional manifold
within the interior of each element. In other words, the scheme produces a
tessellation that not only satisfies criteria (C1) through (C4), but addition-
ally ensures that the isocontour is indeed a surface inside each element. Note
that this extends to the lower-dimensional case, for the same reason: the iso-
contours inside the faces of the final tessellation are simply connected curves.

440 Philippe P. Pébay and David Thompson

4 Conclusions

We have outlined an algorithm for partitioning finite elements to which is
associated a scalar field into a κ-compatible tessellation, and proved that
it works and terminates under a limited set of assumptions. This technique
allows to easily adapt visualization and other post-processing tools to higher
order elements. We have illustrated this methodology with the isocontouring
operation.

Future work will include estimating the computational complexity of the
algorithm as a function of input parameters such as the order of the inter-
polant, and improving multivariate polynomial system solution strategies.

References

1. Michael Brasher and Robert Haimes. Rendering planar cuts through quadratic
and cubic finite elements. In Proceedings of IEEE Visualization, pages 409–416,
October 2004.

2. Barry Joe. Three dimensional triangulations from local transformations. SIAM
Journal on Scientific and Statistical Computing, 10:718–741, 1989.

3. Rahul Khardekar and David Thompson. Rendering higher order finite element
surfaces in hardware. In Proceedings of the first international conference on
computer graphics and interactive techniques in Australasia and South East Asia,
pages 211–ff, February 2003.

4. Gregorio Malajovich. PSS 3.0.5: Polynomial system solver, 2003. URL http://

www.labma.ufrj.br:80/~gregorio.
5. Gregorio Malajovich and Maurice Rojas. Polynomial systems and the momentum

map. In Proceedings of FoCM 2000, special meeting in honor of Steve Smale’s
70th birthday, pages 251–266. World Scientific, July 2002.

6. M. Meyer, B. Nelson, R.M. Kirby, and R. Whitaker. Particle systems for efficient
and accurate finite element subdivision. IEEE Trans. Visualization and Computer
Graphics, 13, 2007.

7. J.-F Remacle, N. Chevaugeon, E. Marchandise, and C. Geuzaine. Efficient visual-
ization of high-order finite elements. Intl. J. Numerical Methods in Engineering,
69:750–771, 2006.

8. W. J. Schroeder, F. Bertel, M. Malaterre, D. C. Thompson, P. P. Pébay,
R. O’Bara, and S. Tendulkar. Framework and methods for visualizing higher-
order finite elements. IEEE Trans. on Visualization and Computer Graphics,
Special Issue Visualization 2005, 12(4):446–460, 2006.

