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Summary. This paper presents methods and applications of sheet insertion in a
hexahedral mesh. A hexahedral sheet is dual to a layer of hexahedra in a hexahedral
mesh. Because of symmetries within a hexahedral element, every hexahedral mesh
can be viewed as a collection of these sheets. It is possible to insert new sheets into
an existing mesh, and these new sheets can be used to define new mesh boundaries,
refine the mesh, or in some cases can be used to improve quality in an existing mesh.
Sheet insertion has a broad range of possible applications including mesh generation,
boundary refinement, R-adaptivity and joining existing meshes. Examples of each
of these applications are demonstrated.
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1 Introduction

Sheet insertion is a technique for modifying the topology of a hexahedral mesh
and introducing new elements which geometrically correlate with the shape of
the sheet. These topological changes and the new elements introduced by the
insertion provide methods for defining, refining, and improving the quality of
a mesh. This paper will review several applications of sheet insertion including
pillowing, dicing, refinement, grafting, and mesh cutting and show how these
methods are related by the sheet insertion technique.

Every hexahedral mesh is defined as a collection of hex sheets. A hexahe-
dral sheet is dual to a layer of hexahedra and can be geometrically correlated
to the shape of the hexahedral sheet. A sheet of hexahedra can be easily
visualized by examining an equivalent structure in two dimensions. Given a
quadrilateral mesh, a layer of quadrilaterals is found by starting at the center
of a single quadrilateral and traversing through the opposite edge pairs of
connected quadrilaterals in both directions. The layer will always end by re-
turning to the original quadrilateral or reaching the boundary of the mesh, as
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shown in figure 1. A continuous line drawn through this layer of quadrilaterals
can be used visually to represent all of the quadrilaterals in the layer. This
line segment is known as a chord, and is dual to the layer of quadrilateral
elements.

Fig. 1. Rows of quadrilaterals.

This description can be extended to hexahedra in three-dimensions. A
layer of hexahedra can be visualized as a single manifold surface. This surface
is known as a ‘sheet’, where a sheet is dual to a layer of hexahedra. Each
hexahedron can be defined as a parametric object with 3 sets of 4 edges, where
all edges in a set are normal to the same parametric coordinate direction,
either i, j, or k. Starting from any hexahedron, we can create a sheet of
hexahedra by first obtaining a set of edges in one of the three parametric
directions. Next, we collect all neighboring hexahedra sharing these edges. For
each neighboring hexahedron obtain the set of edges in the same parametric
direction as the initial hexahedron. Using these edges, continue to propagate
outwards, collecting neighboring hexahedra. When all adjacent hexahedra are
collected in this manner, the result will be a layer of hexahedra that is manifold
within the boundary of the mesh (that is the layer will either terminate at
the boundary of the mesh, or will form a closed boundary within the mesh).
This layer of hexahedra can be visualized as a single manifold surface, known
as a sheet, where the sheet is dual to a layer of hexahedra (see figure 2).

Introduction of new sheets in a hexahedral mesh modifies the topology of
the existing mesh and introduces new layers of elements within the mesh. As
long as the sheets intersect according to a set of topological constraints for a
hexeahedral mesh [1, 2], the resulting mesh with the new sheet will still be a
hexahedral mesh. Using this principle, a hexahedral mesh may be modified by
inserting new hex sheets in specific manners depending upon the application
to realize new meshes, define new mesh boundaries, refine an existing mesh,
or improve the quality of a hexahedral mesh.
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Fig. 2. Sheets of hexahedra.

2 Motivation

Hexahedral meshing has been an active research topic for many years [3].
There have been a number of attempts at generalized meshing algorithms
such as plastering [4], whisker-weaving [5, 6, 7] and unconstrained plastering
[8]. While significant progress as been made and some of these algorithms
show promise for specific geometric types, hex meshing is still considered an
open problem [9].

The most successful algorithms for hexahedral mesh generation are based
on geometric primitives. For example, a mapping algorithm is based on a
parametric cube [10]. Blocking algorithms wrap a geometry in a known hexa-
hedral primitive [11, 12, 13, 14]. Submapping algorithms virtually decompose
a geometry into cube-shaped primitives [15]. Sweeping algorithms are based
on extrusions of 2D geometric shapes [16, 17, 18].

Sheet insertion offers techniques that can extend the capabilities of primi-
tive based algorithms. Because sheet insertion provides methods for modifying
hexahedral meshes, it can be considered as somewhat analogous to tetrahedral
mesh modifications such as edge swapping. Tetrahedral mesh modification op-
erations tend to be local and only affect the elements in the immediate area of
the change. However, due to the topological structure of hexahedral meshes,
modification of a hexahedral mesh affects the mesh in a non-local manner.
Sheet insertion quantifies the scope of the non-local changes and provides
effective tools for hexahedral mesh modification.

The remainder of this paper provides an overview of several algorithms
utilizing sheet insertion. The scope of each algorithm is different, depend-
ing on the application for which the algorithm was initially intended. The
common thread running through these algorithms is that they introduce new
sheets into an existing hexahedral mesh. The new sheets are then utilized
to affect changes to the original mesh including geometric boundary modifi-
cation, refinement, quality improvement, and mesh adaptivity. We provide a
survey of these sheet insertion algorithms, and then offer several examples of
how sheet insertion can be utilized to generate hexahedral meshes in complex
geometries, adaptively conform a mesh topology to specific supposed analytic
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Fig. 3. A basic pillowing operation starts with an initial mesh (A) from which a
subset of elements is defined to create a shrink set. The shrink set is separated from
the original mesh and ‘shrunk’ (B), and a new layer of elements (i.e., a dual sheet)
is inserted (C) to fill the void left by the shrinking process.

properties within a simulation, improve the mesh quality within an existing
mesh, or control mesh sizing.

3 Methods

This section provides an overview of hexahedral mesh modification methods
that rely on sheet insertion, including pillowing, dicing, refinement, mesh cut-
ting and grafting.

3.1 Pillowing

Pillowing is a method for inserting a single sheet into an existing hexahedral
mesh. Initially proposed by Mitchell et al. [19], a pillowing operation provides
a means for eliminating problematic mesh topology.

The basic pillowing algorithm is as follows:

1. Define a shrink set - Divide the existing mesh into two sets of elements: one
set for each of the half-spaces defined by the sheet to be inserted. Choose
one set as the shrink set. The set with the fewest number of elements is
typically chosen as the shrink set.

2. Shrink the shrink set - Create a gap region between the two element sets
(see figure 3).

3. Connect with a layer of elements - Create a fully-conformal mesh with
the new sheet inserted between the original two element sets.

It is often desirable to smooth the resulting mesh after the sheet insertion
to obtain better nodal placement and higher quality elements. The speed of
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the pillowing algorithm is largely dependent on the time needed to find the
shrink set. The number of new hexahedra created will be equal to the number
of quadrilaterals on the boundary of the shrink set.

Pillowing is an operation for inserting a single sheet into an existing mesh.
It is a useful multipurpose, foundational tool for operations on hexahedral
meshes and is the basis for other mesh modification tools, including refine-
ment, grafting, and mesh-cutting.

3.2 Dicing

The dicing algorithm [20] was created to efficiently generate large, refined
meshes from existing coarse meshes by duplicating sheets within the coarse
mesh. Each sheet is copied and placed in a parallel configuration to the sheet
being copied. The basic method for dicing is as follows:

1. Define the sheet to be diced - See sheet definition in introduction.
2. Dice the edges - Split or dice the list of edges found in the previous step

the specified number of times.
3. Form the new sheets - Redefine the hexahedra based on the split edges.

Utilizing the dicing method, the number of elements increases as the cube
of the dicing value. For instance, if an existing mesh is diced four times (i.e.,
each of the sheets in the existing mesh is split four times), the resulting mesh
would have 64X as many elements as the original mesh. Because all search
operations can be performed directly, the dicing algorithm can produce large
meshes at very efficient speeds (see figure 4).

3.3 Refinement

The size of a hexahedral mesh is relative to the sheet density in the mesh.
Increasing the element count within a region of the mesh can be accomplished

Fig. 4. The original mesh (left) contains 1,805 hex elements before dicing. Each
sheet in the original mesh is copied three times resulting in a mesh that is 33 larger,
with 48,735 hex elements.
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by increasing the density of the sheets in the region. Refinement algorithms
typically utilize predefined templates to increase the element density. These
templates and the algorithms that insert them ensure manifold sheet struc-
tures within the mesh to maintain mesh validity [21, 22]. A basic refinement
algorithm is constructed as follows:

1. Define the region or elements to be refined - Replace the hexahedra in the
refinement region with a predefined template of smaller elements.

2. Cap the boundary of the refinement region to ensure conformity to the rest
of the mesh. - Create a second set of templated elements which transition
from the refinement template back to the original mesh size. Figure 5
demonstrates this process.

3.4 Mesh cutting

The mesh-cutting [23] method is an effective approach for capturing geometric
surfaces within an existing mesh topology. The mesh-cutting method utilizes
the pillowing and dicing methods mentioned previously to insert two sheets
which are geometrically similar to the surface to be captured. By utilizing two
sheets, a layer of quadrilaterals results that approximates the desired surface
where each of the new quadrilateral is shared between the hexes in the two
new sheets. The mesh-cutting method entails the following steps:

Fig. 5. Refinement of a hex mesh using refinement templates. Refinement region is
shown as a dashed line.
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1. Define the pillowing shrink set - Divide the existing mesh into two sets
of elements. One of these element sets will be the shrink set, and a sheet
(pillow) is inserted between the two sets of elements.

2. Dice the new sheet - Split the newly inserted sheet into two sheets utilizing
an approach similar to dicing.

3. Move the shared quadrilaterals to the surface - Find all of the quadrilat-
erals that are shared by the hexes between the two sheets. These quadri-
laterals become the mesh on the surface being cut (see figure 6).

Because the quadrilaterals between the two new sheets approximate the
surface, the mesh topology must be fine enough to capture the detail of the
surface being inserted. Because the resulting quadrilaterals only approximate
the inserted surface, if the resulting quadrilateral mesh is too coarse, the
surface may not be approximated adequately.

3.5 Grafting

The term ‘grafting’ is derived from the process of grafting a branch from
one tree into the stem, or trunk, of another tree. In meshing, the grafting
method was developed to allow a branch mesh to be inserted into the linking
surface of a previously hexahedrally swept volume [24]. The grafting method
offers a reasonably generalized approach to multiaxis sweeping. The method
for creating a graft (i.e., capturing the geometric curve) can be outlined as
follows (see also figure 7):

1. Create a pillowing shrink set - The shrink set is defined as the set of hexes
which have one quadrilateral on the surface and which are interior to the
bounding curves of the graft.

Fig. 6. Mesh cutting utilizes an existing mesh and inserts new sheets to capture a
geometric surface (the existing mesh is shown in (A) where the spherical surface is
the surface to be captured.) The resulting mesh after mesh cutting is shown in (B),
with a close-up of the quadrilaterals on the captured surface being shown in (C).
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Fig. 7. A view of the hex sheets that were inserted into one of the trunk volumes
by the grafting algorithm. The figure on the left highlights the sheets where they
intersect the surface of the volume. The figure on the right shows the orientation of
the sheets in the interior of the mesh.

2. Insert the pillow (sheet) -Inserting the second sheet to satisfy the hexahe-
dral constraint for capturing the geometric curves used in the graft.

At this point, there are often database adjustments needed to ensure that
the new mesh entities are associated with the correct geometric entities.

4 Applications

Because hexahedral sheet insertion operations are extremely flexible, there
are numerous possible applications. This section demonstrates a few of these
applications. The meshes in this section were developed using Cubit [25],
developed at Sandia National Laboratories, SCIRun [26], developed at the
University of Utah, or a combination of the two tools. The processes for
completing these models are not yet fully automated, but there is ongoing
development to make these processes robust and usable.

4.1 R-Adaptivity

Sheet insertion can be used to divide a model and refine the mesh in a given
region. Figure 8 shows an R-adaptive mesh capturing a shock a wave. An
initial sheet is placed that is aligned with the shock wave and mesh-cutting
techniques are used to capture the shock wave. Additional sheets are then
added to provide the required resolution around the shock wave.

Adaptive smoothing operations can be utilized to control orthogonality
and mesh spacing close to the adaptive region. The mesh after several opera-
tions of layer smoothing is shown in figure 9.
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Fig. 8. Sheets can be placed within a mesh to capture analytic features, such as
shock waves. The original mesh is shown on the left. After several sheet insertion
operations to place layers of elements roughly conforming to a supposed shock, the
newly modified mesh is shown on the right. Mesh generated using Cubit.

Fig. 9. Smoothing of R-adaptive region using Cubit

4.2 Boundary Layers

Sheet insertion techniques can be used in a similar manner to capture bound-
ary layers as shown in airfoil mesh in figure 10. Inserted sheets can provide
additional resolution at the boundary. The number of layers and the distri-
bution of the sheets could be specified according to the requirements of the
application.

Additionally, new geometric features can be added by the sheet insertion
process. For example, the geometry in figure 11 was split through the center
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of the airfoil. This model provides a mesh that is more closely aligned with
streamlines through the entire model. Because varying applications may pose
different requirements on the analysis model, the flexibility provided by the
sheet insertion techniques can be very valuable.

Fig. 10. Sheets of hexahedra can be inserted to capture boundary layers. Mesh
generated in Cubit.

Fig. 11. Sheets of hexahedra added to better resolve streamlines of model. Mesh
generated in Cubit.

4.3 Mesh Generation

Hexahedral sheet insertion also provides techniques that can be used to gener-
ate complex meshes. The typical mesh-cutting technique involves embedding
the desired geometry into an existing hexahedral mesh that envelopes the ge-
ometry. One or more sheets are then inserted into the mesh which capture the
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missing, but desired, geometric features. Additional sheets may be inserted to
improve the element quality at the boundary.

Figure 12 shows an all hexahedral mesh of a human hand while and fig-
ure 13 shows the internal detail of one finger of this model. This mesh was
generated in SCIRun using a sheet insertion operation, similar to mesh cut-
ting. Once the initial mesh was captured as desired, four additional layers of
hexahedra were added at the boundary (for a total of five boundary layers)
that are oriented orthogonally to the surface. This was accomplished by dic-
ing the original sheet used to capture the surface of the hand. The resulting
mesh contains 379,429 hexahedra elements, and the mesh contains all posi-
tive Jacobian and well shaped hexahedra. Figure 14 shows the spread of scaled
Jacobian element quality.

Fig. 12. All hexahedral mesh of a human hand created by mesh cutting. The original
triangle mesh of the hand that was utilized in controlling the placement of the
hexahedral boundary layer was provided courtesy of INRIA by the AIM@SHAPE
Shapes Repository http://shapes.aim-at-shape.net/index.php). Mesh generated in
SCIRun.

Biomedical applications are a source of very difficult modeling problems.
Figure 15 shows a model of an all hexahedral mesh of a human skull and
cranial cavity. The meshes were formed by first creating a rectilinear mesh
that was sized such that the bounding box was slightly larger than the skull.
Triangular meshes of the skull and the cranial cavity were then inserted into



244 Merkley, Ernst, Shepherd, Borden

Fig. 13. Cut-away view of one of the fingers for the all-hexahedral mesh of a human
hand showing the internal structure of the mesh.

Fig. 14. Distibution of element quality by the scaled Jacobian metric for the hand
model.
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the rectilinear mesh to capture the surface data. The level of detail captured
in this technique is proportional to the level of detail of the triangular surface
mesh. Additional sheets where inserted at the surface to improve the quality
of the mesh at the surface. Figure 16 shows a cut-away view of the mesh
(accomplished again with a mesh-cutting operation) to give a view of the
internal structure of the mesh. The mesh of the skull contains 77,775 elements
consisting of well-shaped hexahedra with all positive Jacobian measures. The
quality distribution for the elements of this mesh is shown in figure 17.

Fig. 15. All hexahedral mesh of a human skull and cranial cavity. The original
triangle mesh of the skull that was utilized in controlling the placement of the
hexahedral boundary layer was provided courtesy of INRIA by the AIM@SHAPE
Shapes Repository http://shapes.aim-at-shape.net/index.php). Mesh generated in
SCIRun.

4.4 Grafting

The grafting algorithm [27] was developed to allow a volume to be imprinted
and merged with another volume after the initial volume was meshed. The
grafting algorithm locally modifies the initial mesh to conform to the geometry
of the second, unmeshed volume. One application of this algorithm has been
generating swept meshes for models with two independent sweep directions.

For example, suppose an engineer is interested in analyzing the fluid flow
through the valve housing shown in figure 18. The fluid region with the valve
partially closed is shown in figure 19. Notice that there is an independent sweep
direction corresponding to each pipe opening from the valve. To generate a
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Fig. 16. Cutaway view showing the interior structure of the all hexahedral mesh of
a human skull and cranial cavity. Cutaway created in Cubit.

Fig. 17. Distribution of element quality by the scaled Jacobian metric for the skull
model. The black bars represent the quality of the interior cranial mesh, while the
white bars are representative of the skull bone.
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mesh of this region with grafting, one would first mesh the two volumes that
are split by the valve plate as shown in figure 19. The remaining unmeshed
volume can then be grafted onto the meshed volumes as shown in figure 20.
The grafting operation introduces a minimal, local change to the mesh as
shown in figure 7.

Fig. 18. A valve housing

Fig. 19. The fluid region of the valve housing in figure 18 with the valve partially
closed (left) and the initial, pre-grafting swept mesh (right)
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Fig. 20. The area of the mesh that has been modified by grafting. The figure on
the left shows the imprint of the branch volume onto the trunk volumes. The figure
on the right shows the final mesh on the branch. Mesh created in Cubit.

5 Conclusion

Generalized hexahedral sheet insertion is an effective technique for modify-
ing hexahedral meshes, including defining new mesh boundaries, refining the
mesh, and improving the quality of an existing mesh. The technique is very
flexible and can be applied in a variety of methods to modify a mesh, includ-
ing R-adaptivity, refinement, boundary layer insertion, mesh generation, and
mesh improvement.

The examples presented here have shown that sheet insertion can greatly
decrease the effort required to construct a high quality mesh on difficult mod-
els. In particular, sheet insertion as a mesh generation tool for biomedical
models shows great promise. This method could easily be extended into other
promising areas. Geotechnical analysis requires models similar to those found
in biomedical applications—they are often irregularly shaped and possess little
or no topology that can be used to define the structure needed by traditional
hexahedral meshing schemes. Additionally, sheet insertion methods, like mesh
cutting and grafting, can also be utilized to dramatically reduce the level of ge-
ometric decomposition that is traditionally required to generate a hexahedral
mesh on complex geometries.
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