
5A.4

Efficient Delaunay Mesh Generation from
Sampled Scalar Functions

Samrat Goswami1, Andrew Gillette2, and Chandrajit Bajaj3

1 Institute for Computational and Engineering Sciences, University of Texas at
Austin samrat@ices.utexas.edu

2 Department of Mathematics, University of Texas at Austin
agillette@math.utexas.edu

3 Department of Computer Sciences and Institute for Computational and
Engineering Sciences, University of Texas at Austin bajaj@cs.utexas.edu

Abstract: Many modern research areas face the challenge of meshing level
sets of sampled scalar functions. While many algorithms focus on ensuring
geometric qualities of the output mesh, recent attention has been paid to
building topologically accurate Delaunay conforming meshes of any level set
from such volumetric data.

In this paper, we present an algorithm which constructs a surface mesh
homeomorphic to the true level set of the sampled scalar function. The pre-
sented algorithm also produces a tetrahedral volumetric mesh of good quality,
both interior and exterior to the level set. The meshing scheme presented sub-
stantially improves over the existing algorithms in terms of efficiency. Finally,
we show that when the unknown sampled scalar function, for which the level
set is to be meshed, is approximated by a specific class of interpolant, the
algorithm can be simplified by taking into account the nature of the inter-
polation scheme so as to circumvent some of the critical computations which
tend to produce numerical instability.

1 Problem and Motivation

A wide variety of science and engineering applications rely on accurate level set
triangulation. This is especially true for multiscale models in biology, such as
macromolecular structures extracted from reconstructed single particle cryo-
EM (Electron Microscopy), cell-processes and cell-organelles extracted from
TEM (Tomographic Electron Microscopy), and even trabecular bone models
extracted from SR-CT (Synchrotron Radiation Micro-Computed Tomogra-
phy) imaging. Computational analysis of these models for estimation of nano,
micro, or mesoscopic structural properties depends on the mesh representation
of the contour components respecting their topological features.

496 Samrat Goswami, Andrew Gillette, and Chandrajit Bajaj

(a)

(b) (c) (d)

(e) (f)

(g) (h)

Fig. 1. Various stages of our algorithm. (a) A rectilinear grid with sample values of
an unknown function at the grid points. Within cells, the function is approximated
with a trilinear interpolant. For the purpose of visualization only, we collect a set
of points (green) on the surface and display them. A narrow region of the surface
is magnified below. (b) Another view of the data (right) and the same view of the
mesh generated by Marching Cubes [22]. Note that the mesh is disconnected in
the thin region. (c) The mesh generated by the restricted Delaunay triangulation
of only edge and grid points. Blue facets have a grid point as at least one of their
vertices. This point set is still not sufficient to produce a Delaunay-conforming mesh.
(d) The mesh generated by addition of sample points of Σ. The topology is now
recovered (Property I). (e,f) Geometrical refinement for progressively smaller value
of ε. (g) Even in the magnified portion of the thin region, the triangles approximate
the geometry nicely (Property II). (h) All the points involved in construction of the
mesh including grid points (blue), edge points (green), and new points added by
the algorithm (red). Observe that in order to recover the topology and reduce the
geometric error in the approximation, many surface sample points are added to the
point set.

Our goal is to find an algorithm to solve the following problem. The input
to the algorithm is a rectilinear sampling of a bounded domain of an unknown
scalar function F . The rectilinear grid need not be uniform; it may be adaptive
as in the case of an octtree. The user then specifies a local interpolant to
generate a level set approximation for any isovalue v; we use Σ to denote this
level set of the interpolating function. Since the function F is unknown, we
must assume that the local interpolant produces a good approximation of the
function F within each cell of the grid. Our algorithm is general enough to
use any local interpolant, however, in our experience, a trilinear interpolant
is the most natural choice.

Our goal is construct a mesh in an efficient manner such that the following
properties hold:

I Topological Guarantee: M is homeomorphic to Σ.

5A.4 Efficient Delaunay Mesh Generation from Sampled Scalar Functions 497

II Geometrical Guarantee: The Hausdorff distance from M to Σ is within
a user-specified bound ε.

III Delaunay Conformity: M is a subcomplex of the Delaunay triangula-
tion of the vertex set of M .

IV Adaptivity: The user can decimate part of the volumetric data and still
preserve properties I, II, and III.

Once a surface M is generated that is Delaunay conforming, it is possible
to improve the mesh quality by applying any Delaunay refinement algorithm.
We detail such an algorithm in Section 4.1. Figure 1 visually illustrates a
toy data set (a), the failure of a typical isocontouring method, in this case
Marching Cubes, in reconstructing the level set (b), generation of the correct
topology by our algorithm (c-d), geometric refinement (e-g), and the final
Delaunay-conforming surface sample (h).

At this point, we emphasize the novelty of our approach. Although there
exist algorithms which can be applied to solve the problem as stated, such
algorithms are devised in a more general setting and thus do not exploit the
natural structure of the volumetric data. Our approach has a number of unique
advantages over its predecessors. As part of the algorithm, we collect some
of the grid points around Σ and use them to build a Delaunay conforming
mesh efficiently. Once the surface mesh is created and forced to conform to
the Delaunay triangulation of the point set, these grid points can either be
removed or used to construct an interior or exterior tetrahedral volume mesh.

Additionally, as a result of noise in the input data or a poor choice of the
isovalue v, there may exist topological anomalies in the surface Σ. In mesh pro-
cessing literature, such anomalies have been referred to as “topological noise”
[26, 4]. The term “noise” indicates undesirable features of small geometric
size that prevent the mesh from being used for further processing. Methods
have been developed to remove such artifacts provided that the point sam-
ple of Σ is sufficiently dense near the anomalies; our method guarantees this
density. Therefore, the output mesh M can be applied without any further
refinement to any point processing algorithm that uses prior Delaunay-based
reconstruction of geometry to detect and selectively remove these topological
features.

Finally, algorithms involving volumetric data and meshes often become
computationally demanding due to the large size of data sets. The adaptivity
of the algorithm (property IV) provides one way to ease calculations by down-
sampling less important regions of the volumetric data.

2 Prior Work

Mesh generation techniques have received significant attention in the past two
decades. Two works in particular, one by Chew [12] and one by Edelsbrunner

498 Samrat Goswami, Andrew Gillette, and Chandrajit Bajaj

and Shah [15], have spawned important and relevant results in the field. We
will address the prominent successors of each of these works and compare the
relative advantage of our approach.

Chew provided one of the first meshing algorithms for curved surfaces
with provably good geometry in [12], although the algorithm as stated in
the paper could not guarantee topological correctness. Boissonnat and Oudot
showed how Chew’s algorithm can be applied to produce a dense sample of
Σ and subsequently mesh it. Oudot, Rineau and Yvinec recently improved
that method by including sliver exudation, that is, the process of removing
tetrahedra with very small dihedral angles from a mesh [24]. Alliez, Cohen-
Steiner, Yvinec and Desbrun have also adapted the method to produce nicely
graded meshes, i.e. meshes where the tetrahedra vary in size gradually based
on their distance to the surface [1].

Separately, Edelsbrunner and Shah established a criterion called the closed

ball property for ensuring that a mesh is Delaunay conforming [15]. We explain
the closed ball property in Section 3. Recent work by Cheng, Dey, Ramos, and
Ray uses this property to provide a method for constructing Delaunay con-
forming meshes that avoids the need to estimate local feature size [9]. This is a
significant development as approximating local feature size is computationally
expensive and not always numerically robust. Cheng, Dey and Ramos have
extended this strategy for piecewise smooth complexes [10]. Very recently, Dey
and Levine [14] have given a two phase algorithm to mesh isosurfaces from
imaging data.

All of these approaches to mesh generation are useful, however, they all
rely on an oracle to know whether an arbitrary ray intersects the surface Σ.
The implementation of such an oracle becomes computationally prohibitive
when applied to piecewise interpolated surfaces. For example, a common data
set size is 1003 vertices, meaning there exist 1003 functions in the piecewise
decomposition. Thus, a single ray may pass through over a hundred separate
function domains, making intersection calculations expensive. As we detail in
Section 4.2, a major advantage of the algorithm presented in this paper is
that we take advantage of the original rectilinear scaffolding from the data to
substantially reduce the computational overhead required.

Our work also improves upon existing methods for isosurface construc-
tion. Many well-known techniques exist for isosurfacing including marching
cubes [22], active snakes, dual contouring [28], and higher order interpolation
[6]. A variety of approaches have also been developed to provide hierarchical
isosurface extraction and interior meshing [27, 17, 18]. Shewchuk and Labelle
recently provided a straightforward isosurfacing and stuffing algorithm with
good quality tetrahedra [19]. Relatively few works, however, take into account
the effect of a trilinear interpolant within each grid cell [23, 11, 21]. Attali
and Lachaud gave an algorithm for construction of Delaunay conforming iso-
surfaces [2]. Their method, however, relies on a specific rule established by
Lauchaud in [20] that does not accommodate interpolation within grid cells.

5A.4 Efficient Delaunay Mesh Generation from Sampled Scalar Functions 499

Further, none of these techniques generalize easily to data that is sampled
adaptively or to arbitrary interpolants.

3 Background

The Voronoi and Delaunay diagrams of a point set P , denoted VorP and
DelP respectively, play an important role in the computations involved in
this paper. Due to page limitations, we do not go into the detail of their
construction and refer the reader to any standard computational geometry
textbook, e.g. [13].

Given a point set P chosen from the same space in which Σ is embedded,
the restricted Delaunay triangulation of P , denoted DelP |Σ , is defined to be
the set of Delaunay objects of DelP whose dual Voronoi objects have non-zero
intersection with Σ. If P is chosen in a way that respects the structure and
local feature size of Σ, DelP |Σ will be a mesh with the desired properties.

Edelsbrunner and Shah gave a sufficient criterion called the closed ball

property [15], sometimes referred to as the topological ball property, for DelP |Σ
to be homeomorphic to Σ. A Voronoi object V of dimension k satisfies the
closed ball property if V ∩ Σ = ∅ or V ∩ Σ is homeomorphic to a closed ball
of dimension k−1. Accordingly, a point set P is said to satisfy the closed ball
property if every Voronoi object of VorP satisfies the closed ball property.
Using the notion of transversality as defined in [16], their criterion can now
be stated precisely.

Theorem 1. [15] If Σ intersects each Voronoi object of Vor P transversally

and VorP satisfies the closed ball property, then DelP |Σ is homeomorphic to

Σ.

We will show in Section 4 that our algorithm produces a mesh satisfying the
closed ball property. This ensures that the mesh is Delaunay conforming (prop-
erty III from Section 1) and, by the theorem, that the mesh is homeomorphic
to Σ (property I).

4 Algorithm

In this section, we describe the algorithm, analyze its efficiency and present
some simplifying results for a specific choice of local interpolant. Figure 2
shows an overview of the process in two dimensions.

4.1 Algorithm Description

Our algorithm is motivated primarily by the work of Cheng et al. in [9] who
build a Delaunay conforming approximation of the level set of any general

500 Samrat Goswami, Andrew Gillette, and Chandrajit Bajaj

(a)

(b)

(c) (d)
(e)

Fig. 2. A 2D example using bilinear interpolation of Σ demonstrating the impor-
tance of the closed ball property. (a) Grid points (dark blue) and edge points (light
blue) relevant to our algorithm are shown. Note that in the 3D case we form a layer
of grid points twice as thick. (b) A portion of the Voronoi diagram is shown in red
and a location where the closed ball property is violated is circled. (c) Since the
closed ball property is violated, the restricted Delaunay diagram (black) has incor-
rect topology in the circled region. (d) Red points are inserted where the closed
ball property is violated and the restricted Delaunay graph is formed (black). (e)
By including those grid points interior to Σ, we efficiently produce an interior mesh
that does not alter the Delaunay conforming surface mesh.

implicit function. Since our problem is focused on locally interpolated func-
tions, we take advantage of the natural scaffolding of the input grid to sub-
stantially improve the computational efficiency of the algorithm. Moreover,
we also show that once the Delaunay conforming surface mesh is extracted,
it is quite straightforward to build a tetrahedral volumetric mesh of good
quality. We call the algorithm for extracting a surface mesh DelSurfMesh
and the extension to build a Delaunay tetrahedral interior or exterior mesh
DelVolMesh.

In [9], the authors start with a small sample of points lying on the surface to
be meshed. They keep refining the mesh until its vertex set satisfies the closed
ball property, thereby providing a Delaunay conforming mesh homeomorphic
to Σ. To ensure that a point set P satisfies the closed ball property, it is
necessary to check the intersection of Σ with each Voronoi edge, facet, and
cell of Vor P . While checking intersections is a computationally expensive task
for a general implicit function, it is even more burdensome for the case of a
piecewise locally interpolated function as given in our problem. For example,
to determine if a certain Voronoi edge intersects Σ more than once, it is
necessary to search all voxels containing any subset of Σ which are stabbed
by the Voronoi edge, as Voronoi edges may be incident upon many voxels.
Matters become worse for Voronoi facets or cells which may touch large regions
of the domain.

It is in regards to this difficulty that our approach becomes significant.
We exploit the “gridded” nature of the input data set to put O(1) bounds
on our intersection calculations. To start, we construct an initial sampling by

5A.4 Efficient Delaunay Mesh Generation from Sampled Scalar Functions 501

computing all the points where a grid edge intersects Σ. These points serve
as the initial sampling of Σ. However, if we compute the Voronoi diagram of
these E points alone, the Voronoi cells can intersect an arbitrary number of
voxels, meaning we will still have trouble verifying and enforcing the closed
ball property. To circumvent this problem, we compute a protective layer of
grid points near Σ which we denote G. The selection of G traps Voronoi cells
of E points into a few voxels. As the algorithm progresses, it adds more points
to the existing samples and the nature of the insertion process ensures that
the Voronoi cells of these new points are also trapped in a constant number of
voxels. We derive bounds on the size of Voronoi cells of the initial samples and
the new points for uniform and non-uniform rectilinear gridding (Octtree) in
Section 4.2.

We now give the pseudocode of the algorithm DelSurfMesh and describe
the specifics of the steps subsequently (Figure 3).

DelSurfMesh(Σ)
1 Compute the point set E sampling Σ.
2 Compute the protective layer G of grid points.
3 Compute the Voronoi and Delaunay diagrams of E ∪ G.
4 Insert new sample points (N) repeatedly until Vor (E ∪ G ∪ N) satisfies

closed ball property.
5 Output the Restricted Delaunay triangulation Del (E ∪ G ∪ N)|Σ .

Fig. 3. Pseudo-code of the DelSurfMesh algorithm.

We have already described how we choose the initial set of points on (E)
and near (G) the surface Σ. The next task is to ensure that the closed ball
property holds for the set of points. For a general interpolant within every
grid cell, we employ the method given in [9]. For completeness, we briefly
describe how the closed ball property can be violated and what measures are
to be taken. This process is thus divided into three sub-steps CBP VE for
Voronoi edges, CBP VF for Voronoi facets, and CBP VC for Voronoi cells.
As we show in Section 4.3, one can simplify this process considerably further
if the typical trilinear interpolant is used, thereby improving the robustness
and efficiency of the algorithm.

• CBP VE: A Voronoi edge V E violates the closed ball property if it in-
tersects Σ in more than one point. If this occurs, the intersection point
which is farthest from the Delaunay triangle dual to V E is inserted into
the triangulation.

• CBP VF: A Voronoi facet V F violates the closed ball property if it inter-
sects Σ in more than one component or if the intersection includes a closed
loop in the interior of V F . In either case, the intersection point farthest
from the Delaunay edge dual to V F is inserted into the triangulation.

• CBP VC: A Voronoi cell V C violates the closed ball property if it in-
tersects Σ in more than one component, if the intersection includes an

502 Samrat Goswami, Andrew Gillette, and Chandrajit Bajaj

isolated component of Σ inside V C, or if the intersection includes a sur-
face of positive genus with one or more disks removed.

Fig. 4. Top row shows three samples scenarios where the closed ball property is
violated for a Voronoi Edge (left), Voronoi Facet (middle) and Voronoi Cell (right).
The bottom row shows the cases where the closed ball property is satisfied for
Voronoi objects of the corresponding dimension (in the top row).

Note, the above properties are to be checked in the order given. Once a
violation is detected, a new point is inserted into the existing Delaunay tri-
angulation, the triangulation is updated, and the processes must begin again.
Figure 4 shows different situations that can arise in this context.

Mesh Refinement

Although the topology of M is now correct, it may be possible that the geom-
etry of M is not approximated sufficiently for an application purpose. Hence,
we allow a user input ε and refine M as follows. For each Voronoi edge V E
that intersects Σ, we compute the unique point p ∈ V E ∩ Σ and the cir-
cumcenter c of the dual Delaunay face to V E. If the distance between p and
c is more than ε, we add p to the vertex set and regenerate the restricted
Delaunay mesh. Every Voronoi edge dual to a restricted Delaunay facet is a
normal approximation to Σ locally meaning the distance between p and c is
an upper bound for the Hausdorff distance from Σ to the restricted Delaunay
mesh. Hence, this process will yield a mesh satisfying property II.

In our current implementation, we maintain the 3D Vor/Del diagram of
the point set throughout the process. Very recently, it was shown by Dey and
Levine that this is not necessary [14]; one can recover the geometry while
manipulating only the 2D mesh data structure of the surface, as long as there
are enough points sampling a topologically correct approximation of Σ.

5A.4 Efficient Delaunay Mesh Generation from Sampled Scalar Functions 503

Tetrahedral Meshing of Interior/Exterior

At this stage, we have an accurate mesh approximation of the level set both
topologically and geometrically. Since the mesh is already embedded in a
Delaunay mesh that includes some grid points, we already have a tetrahedral
mesh of both the interior and exterior of Σ. In order to improve the quality
of the mesh elements, we use the algorithm DelVolMesh defined as follows.

Without loss of generality, we describe how DelVolMesh is used to gen-
erate a tetrahedral mesh of the interior of Σ. The input to DelVolMesh is
Del (G ∪ E ∪ N), the volumetric mesh generated from DelSurfMesh. Note
that Del (G∪E∪N) has the output of DelSurf Mesh, Del (G∪E∪N)|Σ , as
a subcomplex. We form a set G′ of all grid vertices of the original rectilinear
scaffolding which have function values less than the isovalue and do not belong
to G. These points are distributed through the interior of Σ evenly (or evenly
relative to an adaptive gridding) and we add them to the Delaunay mesh of
the volume.

Here, our protective layer of grid points is crucially important. As we add
the points of G′, some triangles of the Delaunay mesh will necessarily change
but the Delaunay triangles among surface points (E and N vertices) will be
unaffected. This is a direct consequence of the fact that a point of G′ is, by
construction of G, closer to points of G than to points of E ∪ N . Therefore,
Del (E ∪ N ∪ G ∪ G′) will still have M as the restricted Delaunay diagram.
By throwing out the points of G exterior to Σ, we are left with a tetrahedral
mesh of the volume with good quality tetrahedra and a Delaunay conforming
surface mesh. The 2D analogue of DelVolMesh is shown in Figure 2 (d)
and (e).

4.2 Efficiency

Since our algorithm uses the natural structure of the rectilinear input data
to construct Voronoi and Delaunay diagrams, we are able to provide two
important results that reduce the computational burden. We state and discuss
the significance of each one.

Theorem 2. There is an O(1) bound on the number of voxels that a Voronoi

cell of an E or N point may intersect. In the case of uniform rectilinear

gridding with voxels that are cubes, this bound is four voxels.

Proof. We prove the following lemma for the simplest case in 2D which will
be the crux of the argument for the proof of the more general cases.

Lemma 1. For data given on an equally spaced 2D grid, the Voronoi cell of

an E point is bounded within two pixels.

Proof. Let e ∈ E lie on the edge ε be between grid points g1, g2 ∈ G and let
V C(e) be the (2D) Voronoi cell defined by e. There exist two lines perpen-
dicular to ε, one passing through the midpoint of g1 and e and one passing

504 Samrat Goswami, Andrew Gillette, and Chandrajit Bajaj

through the midpoint of g2 and e. By definition, V C(e) is necessarily con-
tained between these two lines which bounds V C(e) to a single column of
pixels.

Now consider one of of the two pixels containing both g1 and g2. Denote
its other vertices as g3 and g4. Let s denote the side length of a pixel. Then
both ||e−g3|| > s/2 and ||e−g4|| < s/2. For any point f on the edge between
g3 and g4, observe that ||f − g3|| ≤ s/2 or ||f − g4|| ≤ s/2. Therefore, each
point on the edge between g3 and g4 is closer to one of those grid points than
it is to e, and hence cannot belong to V C(e). This bounds V C(e) to the two
pixels containing ε, proving the lemma. A picture version of this proof appears
in Figure 5a. �

(a) (b) (c)

g1

g1 g2

g2

g3g3
g4g4

e
e

s s2

Fig. 5. (a) A picture proof of Lemma 1. The Voronoi cell of the edge point e must lie
in the shaded region bounded by the solid lines (green). By symmetry, this restricts
the Voronoi cell to a two pixel range. (b) A picture proof of Theorem 2 in the general
2D case. Here, each pixel has dimensions s1 by s2 with �s1/s2	 = 3. By symmetry,
the Voronoi cell of e is restricted to a six pixel range. (c) A Voronoi cell of an edge
point in 3D, visibly contained within four voxels.

Continuing with the 2D case and the same notation, suppose that each
pixel is a rectangle with side lengths s1 and s2. Suppose ε has length s1. As
in the proof of the lemma, we can immediately restrict V C(e) to a column
of pixels. Consider only the range of 2�s1/s2� pixels closest to ε. This range
contains the two squares of side length s1 with ε as one edge. Therefore, we
may repeat the analysis in the proof of the lemma using the corners of this
range instead of the corners of the pixel. Hence, V C(e) is bounded within
2�s1/s2� pixels. Figure 5b shows a simple example.

Now consider the 3D case where each voxel has dimensions s1, s2, and s3

and again assume e ∈ E lies on the edge ε with side length s1. There are two
planes perpendicular to ε which bounds V C(e) to a flat grid of voxels. In either
of the two rectilinear dimensions of this grid, we apply the same analysis as
above to conclude that V C(e) intersects at most 2(�s1/s2�+ �s1/s3�) voxels.
Note that this constant reduces to 4 when s1 = s2 = s3.

The proof for points of type N is similar. Finally, we note that as we add
more E and N points to the diagram, the Voronoi cells can only get smaller.

5A.4 Efficient Delaunay Mesh Generation from Sampled Scalar Functions 505

Therefore, the presence of other E or N points in the diagram is irrelevant to
the bound. �

Theorem 2 has significant implications for solving the ray intersection
problem discussed in Section 2. A priori, Voronoi cells may touch an arbi-
trary number of voxels which cause an explosion in computational time when
checking if the closed ball property is satisfied. With Theorem 2, the compu-
tational time can be bounded in advance.

Notably, the actual bound depends on the gridding scheme of the input,
not the choice of interpolant. Accordingly, the width of the protective layer
of grid points collected during the algorithm depends on the gridding scheme
as well. For the case of adaptive gridding in an octtree construction, the user
must require the “level difference” between two adjacent cells to be no more
than some fixed number k. Given k, a loose bound on the number of voxels
a Voronoi cell of an E or N point may intersect is 4k2, as an edge is incident
on at most k2 cells in each of the other two orthogonal direction. This bound
may be improved to 4 for E points and 3k + 1 for N points by considering
limiting cases and using the convexity of Voronoi cells.

We have inserted the G points in order to decrease computations required
to check the closed ball property, however we have increased the complexity of
the Voronoi and Delaunay triangulations themselves. By Theorem 3 below, the
new edges and facets formed by the addition of these G points do not add any
significant burden to the closed ball property confirmation process. Further,
these facets and edges are used in the algorithm DelVolMesh described in
Section 4.1.

Theorem 3. Let V F be a Voronoi facet formed between two grid points and

V E a Voronoi edge formed among three grid points at any point in the algo-

rithm. Then V F ∩ Σ = ∅ and V E ∩ Σ = ∅.

Proof. It suffices to prove the theorem for E points, since the addition of N
points only makes existing Voronoi elements smaller. First we treat the 2D
case. Consider a pixel with grid points g1, g2, g3, g4 and two edge points p and
q. (If the pixel has more (four) or fewer (zero) edge points, the theorem is
vacuous.) The edge points may occur on adjacent or opposite edges of the
pixel, as shown in Figures 6 a and b, respectively. We consider the adjacent
case first and suppose that the edges on which p and q lie intersect at g4. Let
R denote the region bounded by the rectangle formed with p and q as opposite
corners (the shaded yellow regions of Figure 6). Note that Σ ⊂ R since we
have chosen a bilinear interpolant. Hence, it suffices to show that the Voronoi
edges formed between g1, g2 and between g1, g3 do not intersect R. If x is a
point on the Voronoi edge between g1, g2 then by definition ||x−g1|| = ||x−g2||
and ||x − z|| ≥ ||x − g2|| for all z ∈ G ∪ E − {g1, g2}. However, if x ∈ R then
||x − q|| < ||x − g2||, based on the labelling of Figure 6a. Hence, the Voronoi
edge between g1, g2 cannot intersect R. Similarly, the Voronoi edge between
g1, g3 cannot intersect R, proving this case. The case where p and q lie on
opposite edges is similar.

506 Samrat Goswami, Andrew Gillette, and Chandrajit Bajaj

The proof for the 3D case is analagous to the 2D case. It suffices to prove
the claim for a closed Voronoi facet between two grid points g1, g2 as this
includes the relevant Voronoi edges. Consider just one of the voxels into which
this facet extends. In each of the rectinear directions away from the g1, g2

edge, there exists a closest point of E. Taking these two E points and the
g1, g2 edge, we uniquely define a box. Using the definitions of the Voronoi
diagram construction, we can similarly show that Σ lies outside of the box
and the Vornoi facet lies inside it, thereby proving the theorem. �

(a) (b)

g1g1 g2g2

g3g3 g4g4

p

p

qq

Fig. 6. Proof of Theorem 3 in the 2D case. We show that Σ lies entirely inside
the shaded yellow region, while the Voronoi edges formed between two grid points
necessarily lie outside of it.

4.3 Simplifying Results

Thus far, we have addressed how the inclusion of the grid points G reduces
computational overhead. We now examine how particular choices of the in-
terpolant can further ease the calculations. First we consider the process
CBP VF. If V F ∩ Σ �= ∅, then the intersection is a compact 1-manifold
by the transversality assumption. All compact 1-manifolds are homeomorphic
to a finite collection of line segments and circles and we distinguish between
the case of no circles and at least one circle. If no circles exist, the closed ball
property is violated if and only if more than two edges of the facet intersect
Σ which is easy to check.

If at least one circle occurs in the intersection of Σ and a Voronoi facet,
calculations can become more subtle. In the case of trilinear interpolation,
these types of intersections do arise in two fashions. First, there exist con-
figurations of relative function values that produce a tunnel topology inside
a single voxel, for example, Case 13.5.2 as defined in [21]. In some cases, a
Voronoi facet will pass through the entire tunnel, causing an interior loop in
its intersection with Σ. In this case, we can detect the topology of the cell by
the function values and add the “shoulder points” as described in [21]. The
shoulder points are positioned so that the Voronoi diagram breaks these inte-
rior loops on Voronoi facets, thereby easing calculations. Alternatively, it may

5A.4 Efficient Delaunay Mesh Generation from Sampled Scalar Functions 507

occur that the interior loop of a Voronoi facet passes through multiple voxels,
which still provides some difficulties. We conjecture that this phenomenon
happens only if the interpolated function is non smooth at a voxel edge or
vertex and are working to simplify this problem.

Now we turn to CBP VC. For this process, use of the trilinear interpolant
provides much stronger results to simplify calculations. First, if Σ intersects
a Voronoi cell, the intersection manifold must have a boundary component by
the following Theorem.

Theorem 4. If each facet of a Voronoi cell V C has empty intersection with

Σ and Σ is defined by a trilinear interpolant, then V C∩Σ = ∅. That is, there

cannot be a component of Σ entirely inside a single Voronoi cell.

Proof. The trilinear interpolation method precludes the existence of isolated
surface components within a single voxel. Therefore, every component of Σ
has a point of G in its interior and hence is sampled by at least six points of
E, corresponding to the six rectilinear directions. Thus, each component of Σ
intersects at least six Voronoi cells. A similar proof holds if the data is not
given on a rectilinear grid. �

Therefore, the process of checking the closed ball property for a Voronoi cell
is reduced to checking if the intersection along the facets of a cell is a single
closed curve (or empty). A priori, the possibility remains that the intersection
surface is a manifold of positive genus with a disc removed. Detection of such
cases has been discussed in detail in [9]. However, if our algorithm is applied
in the common case of trilinear interpolation with voxels that are cubes, these
difficult cases can also be excluded, leading to a much simpler algorithm.

Theorem 5. Let V C be a Voronoi cell whose facets and edges satisfy the

closed ball property and let Σ be defined by a trilinear interpolant on a uniform

grid with voxels that are cubes. Then the closed ball property is satisfied for

V C if and only if V C ∩ Σ has a single boundary component.

Proof. It suffices to exclude the minimum case where V C ∩ Σ is homeomor-
phic to a torus with a disc removed. To generate such a surface by trilinear
interpolation on a grid of cubes requires more than four voxels since the in-
tersection of Σ with a voxel face cannot contain closed loops. By Theorem 2,
the surface therefore intersects more than one Voronoi cell. �

5 Implementation and Results

We have used CGAL [8] to build and maintain the Voronoi and Delaunay
diagram of the point set. We also needed to compute the intersection of a ray
with the surface Σ inside certain voxels; for this task, we have used another
publicly available library called SYNAPS [25].

508 Samrat Goswami, Andrew Gillette, and Chandrajit Bajaj

As described in the problem statement in Section 1, only the parameter ε is
needed to run the algorithm on a given data set. This input dictates the desired
upper bound on the Hausdorff distance between the surface approximation M
and the interpolated surface Σ. Given this parameter, we reduce the amount
of computation needed by snapping some of the points of E in the following
manner. If there exist points g ∈ G and e0, e1, e2 ∈ E such that the ei are on
grid edges incident to g and d(g, ei) < ε for i = 0, 1, 2, we snap the three ei

points onto the common point g. Since all ei points are within ε distance of
the grid point and Σ passes through each ei, the closet point of Σ to g cannot
be more than ε away, which is within the user specified limit of tolerance.

Fig. 7. Performance of the meshing algorithm. The top row shows the geometry,
surface mesh, a closeup on the surface mesh and a cut-away of the volumetric tetra-
hedral mesh for 1CID. The second and the third rows show the same for 1MAG
and Bone, respectively.

Although we have reduced the complexity of the ray-surface intersection
problem as describe in Section 4, we still have to compute it for a constant
number of voxels for every Voronoi edge. This was accomplished by param-
eterizing the Voronoi edge segment between two Voronoi vertices p0 and p1

with a real number t. Inside every candidate voxel, we then detect the in-

5A.4 Efficient Delaunay Mesh Generation from Sampled Scalar Functions 509

tersection points of the segment with the interpolating polynomial function
using the Algebraic solver available in the library SYNAPS. If an intersection
point lies inside the corresponding voxel, we consider it as a valid intersection.

The performance of the algorithm on biological entities at various scales
is shown in Figure 7.

The 1CID data set was obtained via blurring the coordinates of the atoms
available from the Protein Data Bank (PDB) [7]. The resulting 3D scalar
volume represents the electron density of the protein molecule T Cell Surface
Glycoprotein CD4 . The goal in this case is to extract a well-sampled Delaunay
conforming surface mesh so that one can analyze the secondary structure using
the unstable manifolds of the index 1 and index 2 saddle points of a suitable
distance function [5].

1MAG, shown in the second row of Figure 7, is the PDB entry of the
ion channel Gramicidin A, obtained from soil bacteria Bacillus brevis. The
molecular surface has many tunnels as shown in the left most sub-figure in
the second row. However, only the tunnel in the middle is topologically sig-
nificant as it is important to preserve the property of the ion channel. Once
the isosurface has been extracted, it is therefore necessary to remove all the
other tunnels and preserve the main tunnel. The algorithm for such removal
of topological features has been described in [4] which relies on a Delaunay
conforming isosurface in order to detect and remove unwanted topological
features.

Finally, Bone data is shown in the third row of Figure 7. This data set is
provided by our collaborator from the University of Rome. The goal here is
to mesh the internal bone structure for stress-strain analysis.

The size of the 1CID volume data set is 1283. It took 1 second to build
the initial triangulation, 45 seconds to enforce the closed ball property, and
35 seconds to recover the geometry for ε = 0.00001. The size of the 1MAG
dataset is 1283. It took 1.5 seconds to build the initial triangulation, 20 seconds
to enforce the closed ball property, and 28 seconds to recover the geometry for
ε = 0.00001. The size of the Bone dataset is 643. It took 5 seconds to build
the initial triangulation, 65 seconds to enforce the closed ball property, and
89 seconds to recover the geometry for ε = 0.0001. Note, the time taken to
mesh does not depend on the size of the volume data set since we were able to
enforce that the ray-surface intersection calculation is of constant complexity.
However, as the level set passes through more voxels, the number of points
(E ∪ G) increases and that increases the time complexity of the algorithm.

6 Conclusion

We have presented an improvement over traditional level set meshing ap-
proaches. In particular, we claimed that the isosurfaces extracted via well-
known approaches such as marching cubes or dual contouring are not suitable
as they not only fail to capture the topology in a provable manner but also do

510 Samrat Goswami, Andrew Gillette, and Chandrajit Bajaj

not produce sufficient samples for the extracted approximation to be embed-
ded in the Delaunay triangulation of the sampled set of points. On the other
hand, there are elegant approaches for meshing general implicit surfaces, yet
these algorithms suffer from the computational overhead of computing the
intersection of a ray and the level set. Typically, the level set of a sampled
scalar function is approximated via a number of piecewise interpolating func-
tions and therefore finding the intersection of a ray with the level set requires
a large number of checks. In light of this, we have presented an algorithm
which not only overcomes the sampling issue of traditional isosurfacing tech-
niques but also adopts a well-known provable algorithm [9] for generating a
good sample of the isosurface efficiently. We have also shown that for the
commonly used trilinear interpolant, many of the difficult cases that arise in
implementation of the algorithm can be avoided, thereby improving numerical
robustness.

P1P1

P2P2

P3

P3

P4

P4

Fig. 8. Data may be partitioned to run the algorithm in parallel. In this 2D example,
the voxels indicated by the Pi are to be processed. One can send data from each Pi

voxel to a separate processor, along with the collar of protective voxels around it
indicated by the same color shading. Two iterations are shown.

Scope

As noted earlier, the scope of this algorithm is immense. First, we have not
assumed any particular interpolation scheme in order to prove that we need
to check only a few voxels when detecting ray-surface intersection. Therefore,
it is possible to extend the algorithm to any higher order interpolant, for
example cubic A-patches [3]. Second, adaptive sampling of the scalar function
poses no problem to this algorithm as explained previously. Finally, since
we exploit the local nature of the interpolated surface Σ, the algorithm can
easily be parallelized which is especially important for the large data sets
often used in the multiscale biological models we have discussed. Figure 8
indicates how a data set might be partitioned to speed up computational
time the analogous 2D case. The different colored pixels marked with Pi can
be processed concurrently on separate processors as the Voronoi cells of the

5A.4 Efficient Delaunay Mesh Generation from Sampled Scalar Functions 511

E and N points in those pixels are guaranteed to be inside the protective
collar of surrounding pixels. We note that not all pixels can be processed
concurrently as the protective collars must be non-overlapping. However, by
iterating the process, the most difficult computations can be done in parallel.

Limitations

One limitation of our algorithm is that it tends to generate more samples due
to the layer of G points that we use to restrict the search space. Therefore it is
necessary to apply adaptive sampling of the scalar function such that bigger
voxels are automatically created in regions of less detail and smaller voxels
in regions of high detail. By the results of Section 4.2, the efficiency of the
algorithm remains the same.

Future Work

The extracted mesh typically has a “gridding” artifact because of the influence
of the grid. Further, sometimes the uniformity of the grid causes it to be
over-sampled. Therefore, ideally, one would decimate the grid so that the G
vertices lie close to the medial axis after the isovalue is known. We plan to
develop a scheme for such an optimal placement of the grid vertices. Also,
the efficiency of the core computation requires a scaffolding structure. Hence,
once the Delaunay conforming surface mesh is extracted, it is not clear how
the surface can be decimated (if needed) by throwing away some of the grid
vertices, while still efficiently checking that the resulting (decimated) point
sample satisfies the closed ball property.

Acknowledgement: This research was supported in part by NSF grants IIS-
0325550, CNS-0540033 and NIH contracts P20-RR020647, R01-9M074258,
R01-GM07308.

References

1. P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun. Variational tetrahedral
meshing. In SIGGRAPH 2005, pages 617–625, 2005.

2. D. Attali and J.-O. Lachaud. Delaunay conforming iso-surface, skeleton extrac-
tion and noise removal. Comp. Geom.: Theory and Appl., 19:175–189, 2001.

3. C. Bajaj, J. Chen, and G. Xu. Modeling with cubic A-patches. ACM Transac-
tions on Graphics, 14(2):103–133, 1995.

4. C. Bajaj, A. Gillette, and S. Goswami. Topology based selection and curation
of level sets. In TopoInVis 2007, Accepted.

5. C. Bajaj and S. Goswami. Automatic fold and structural motif elucidation from
3d em maps of macromolecules. In ICVGIP 2006, pages 264–275, 2006.

6. C. Bajaj, G. Xu, and Q. Zhang. Smooth surface constructions via a higher-order
level-set method. In Proc. of CAD/Graphics 2007, Accepted.

7. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig,
I. Shindyalov, and P. Bourne. The Protein Data Bank. Nucleic Acids Research,
pages 235–242, 2000.

512 Samrat Goswami, Andrew Gillette, and Chandrajit Bajaj

8. CGAL Consortium. CGAL: Computational Geometry Algorithms Library.
http://www.cgal.org.

9. S.-W. Cheng, T. Dey, E. Ramos, and T. Ray. Sampling and meshing a surface
with guaranteed topology and geometry. SCG ’04: Proc. of the 20th Annual
Symposium on Computational Geometry, pages 280–289, 2004.

10. S.-W. Cheng, T. K. Dey, and E. A. Ramos. Delaunay refinement for piecewise
smooth complexes. In SODA, pages 1096–1105, 2007.

11. E. Chernyaev. Marching cubes 33: Construction of topologically correct isosur-
faces. Technical Report. CERN CN/95-17, 1995.

12. L. Chew. Guaranteed-quality mesh generation for curved surfaces. In Proc.
SoCG ’93, pages 274–280, 1993.

13. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

14. T. Dey and J. Levine. Delaunay meshing of isosurfaces. In Proc. Shape Modeling
International [to appear], 2007.

15. H. Edelsbrunner and N. Shah. Triangulating topological spaces. Intl. Journal
of Comput. Geom. and Appl., 7:365–378, 1997.

16. V. Guillemin and A. Pollack. Differential Topology. Prentice-Hall Inc., Engle-
wood Cliffs, New Jersey, 1974.

17. I. Guskov, A. Khodakovsky, P. Schroder, and W. Sweldens. Hybrid meshes:
multiresolution using regular and irregular refinement. In SCG ’02: Proc. of the
18th Annual Symposium on Computational Geometry, pages 264–272, 2002.

18. K. Hormann, U. Labsik, M. Meister, and G. Greiner. Hierarchical extraction of
iso-surfaces with semi-regular meshes. In SMA ’02: Proc. of 7th ACM Sympo-
sium on Solid Modeling and Applications, pages 53–58, 2002.

19. F. Labelle and J. Shewchuk. Isosurface stuffing: Fast tetrahedral meshes with
good dihedral angles. In SIGGRAPH (to appear), 2007.

20. J.-O. Lachaud. Topologically defined iso-surfaces. In DCGA ’96: Proc. 6th Intl.
Workshop on Discr. Geom. for Comp. Imagery, pages 245–256, 1996.

21. A. Lopes and K. Brodlie. Improving the robustness and accuracy of the marching
cubes algorithm for isosurfacing. In IEEE Transactions on Visualization and
Computer Graphics, volume 9, pages 16–29, 2003.

22. W. Lorensen and H. Cline. Marching cubes: A high resolution 3d surface con-
struction algorithm. In ACM SIGGRAPH ’87, pages 163–169, 1987.

23. B. K. Natarajan. On generating topologically consistent isosurfaces from uni-
form samples. The Visual Computer, 11:52–62, 1994.

24. S. Oudot, L. Rineau, and M. Yvinec. Meshing volumes bounded by smooth
surfaces. In Proc. 14th Intl. Meshing Roundtable, pages 203–219, 2005.

25. G. D. Reis, B. Mourrain, R. Rouillier, and P. Trébuchet. An environment for
symbolic and numeric computation. In Proc. Internat. Conf. on Mathematical
Software, pages 239–249, 2002.

26. Z. Wood, H. Hoppe, M. Desbrun, and P. Schroder. Removing excess topology
from isosurfaces. ACM Transactions on Graphics, 23(2):190–208, April 2004.

27. Z. Wood, P. Schroder, D. Breen, and M. Desbrun. Semi-regular mesh extraction
from volumes. In VIS ’00: Proc. of the Conference on Visualization 2000, pages
275–282. IEEE Computer Society Press, 2000.

28. Y. Zhang, C. Bajaj, and B.-S. Sohn. Adaptive and quality 3d meshing from
imaging data. In Proc. of 8th ACM Symposium on Solid Modeling and Appli-
cations, pages 286–291, June 2003.

