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Abstract
This paper introduces a new approach to automatic mesh generation over 

composite geometry. This approach is based on an adaptation of advancing 
front mesh generation techniques over curved surfaces, and its main 
features are : 

elements are generated directly over multiple parametric surfaces: 
advancing front propagation is adapted through the extension to 
composite geometry of propagation direction, propagation length, and 
target point concepts, 
each mesh entity is associated with sets of images in each reference 
entity of the composite geometry, 
the intersection tests between segments are performed in the parametric 
domain of their images. 

Keywords: Adaptivity, advancing front, mesh generation, composite 
geometry, virtual topology, defeaturing. 



288     G. Foucault et al. 

1. Introduction

The recent integration of FEA in CAD has greatly reduced the median time 
requirements to prepare FE models [1]. 

However, the preparation of FE models from CAD models is still a 
difficult task when it contains many shape details, and when its Boundary 
Representation (B-Rep) is composed of a large number of faces, many of 
them being much smaller than the desired FE size. Such configurations are 
often at the origin of poorly-shaped elements and/or over-densified 
elements, not only increasing the analysis time, but also producing poor 
simulation results.

Several efforts have been made to avoid poorly-shaped elements and 
over-densified mesh elements generated from an unprepared (for analysis) 
CAD model [2-5]. In these approaches, well-known mesh topological 
transformations perform mesh element removal, e.g. decimation of surface 
meshes, or collapsing the faces of a tetrahedron in order to remove it. One 
limitation of these operators is that entity collapsing operations are not 
intrinsically suited for through hole removal, and need more complex 
extensions. Therefore, hole details may require specific treatments such as 
removing these details in the initial CAD model.

Other approaches consist in adapting CAD models directly. For 
example, feature recognition and extraction processes can be used to 
simplify details like fillets and blends [6, 7], bosses, pockets [8], and holes. 
These approaches generate tree-structured simplified models, where each 
simplification is identified as a feature. 

Lee et al. [9] propose a feature removal technique which starts from a 
feature tree and provides the ability to suppress and subsequently, reinstate 
features independently from the order in which they were suppressed, 
within defined limitations [9]. Most of these approaches manage a restricted 
set of feature types, and interactions between features remains a major 
issue. Moreover, even recognized features are often difficult to suppress, 
which makes these approaches non-robust and very restrictive when used 
alone. Nevertheless, these approaches are efficient when used to remove 
holes and bosses prior to mesh simplification. However, feature suppression 
does not guarantee that the object’s boundary decomposition can be directly 
used for meshing. In this context, virtual topology techniques can 
contribute afterwards to adapt the boundary decomposition.  

Virtual topology approaches proposed by Sheffer et al. [10] and Inoue 
et al. [11] aim at editing the B-Rep definition of a CAD model in order to 
produce a new topology that is more suited to mesh generation constraints. 
These approaches implement split and merge operators aimed at clustering 
adjacent surfaces into nearly planar regions in order to generate a new B-
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Rep topology that is more suited to mesh generation, while preserving its 
geometry. However, face clustering algorithms proposed in [10, 11] show 
limitations in the context of FE models preparation: they do not support the 
definition of edges and vertices interior to faces, while these non-manifold 
surface configurations are required for various needs (modelling boundary 
conditions, taking into account specific features and sharp curves lying 
inside faces). 

In a previous work, we have introduced alternate virtual topology 
concepts, dedicated to mesh generation requirements, designated as 
Meshing Constraints Topology (MCT) [12]. One of the basic and most 
important features of the MCT is enabling non-manifold surface 
transformations: edge deletion, vertex deletion, edge splitting, edge to 
vertex collapsing, vertices merging. The MCT preparation algorithm is 
based on local analysis of faces and edges regarding mesh generation 
constraints (local face width, normal vector deviation across edges, etc.) 
enabling the definition of interior edges and vertices on faces when 
required.

Virtual topology models are basically defined using composite 
geometry. For instance, a composite face (designated below as a MC face)
is defined as a set of adjacent faces in original B-Rep structure, each of 
which associated with a bi-parametric surface. Consequently, using virtual 
topology for mesh generation requires the ability to automatically generate 
finite elements across composite geometry. At this point, mesh generation 
techniques aiming at this ability are based on the following concepts : 

global parameterization of a composite surface [13, 14]: this method 
defines a bijective projection between any point inside sets of surface 
patches and a global parametric domain. The bijective transformations 
proposed in  [13, 14] are both based on a cellular decomposition of each 
reference (non-composite) surface mapped into the global parametric 
space. Each cell is related to a reference surface image, and a global 
parametric space image. Any point of a cell in the global parametric 
space is represented using its barycentric coordinates, and projected in 
the equivalent cell of the corresponding reference surface using the same 
barycentric coordinates. This new parameterization enables a transparent 
use of parametric meshing schemes. Unfortunately, this type of approach 
is limited by: 

open and non-periodic surface requirements: this method can only be 
applied to open surfaces (homeomorphic to a disc), but not to periodic 
surfaces and closed surfaces homeomorphic to a n-torus. 
the determination of surfaces outer loops is not automatic, 
smoothness and planarity requirements: planar projection of distorted 
surfaces may cause high variations in the global parameterization 
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metrics, and often results, either in failures during mesh generation or 
highly distorted mesh results [13]. 

using direct 3D advancing front techniques on a tessellated (triangulated) 
representation of composite surfaces [15]: 

the mesh accuracy depends on the tessellation accuracy, 
more sophisticated discrete representations such as subdivision 
surfaces and higher order triangulations allow curved mesh generation 
but still generate approximation errors. 

In order to overcome these weaknesses, we are introducing, in this 
paper, a new approach to automatic mesh generation over composite 
geometry. This approach is based on an adaptation of advancing front mesh 
generation techniques over curved surfaces and its main features are : 

elements are generated directly over multiple parametric surfaces: 
advancing front propagation is adapted through the extension to 
composite geometry of propagation direction, propagation length, and 
target point concepts, 
each mesh entity is associated with sets of images in each reference 
entity of the composite geometry, 
the intersection tests between segments are performed in the parametric 
domain of their images. 

2. Preparing CAD models for meshing 

This section presents the FEA context, proposes a FE model preparation 
procedure, then sets up the MCT model (major input of the mesh generation 
process presented in this paper). 

2.1. The FEA context

Prior to FEA itself, the analyst specifies mechanical hypotheses and 
boundary conditions on the CAD model, i.e.  materials, loads and restraints. 
The analyst also specifies an analysis accuracy objective with regard to the 
engineering quantities (such as stresses) he is trying to compute. Based on 
his FEA skills, the analyst also specifies a priori a size map adapted to the 
component’s shape and to the analysis accuracy objective. This size map 
can either be rough to quickly obtain an approximate  solution or refined, 
generally for accuracy needs.
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This size map is a central issue in our automatic feature removal and 
topology adaptation processes because it represents the analyst intent with 
regard to the size of shape and topology features that can be neglected for 
analysis purposes. In fact, the size map is the principal input on which 
automatic feature removal and topology adaptation processes are based.

2.2. A three step approach to CAD automatic adaptation for FEA 

(a) Initial model
(b) Feature removal

(c) MCT adaptation (d) Mesh generation

      Fig. 1. Preparation of a CAD model for mesh generation 

A fully automatic adaptation process has been designed to prepare CAD 
models for FEA. The automatic simplification criteria are based on the 
imposed size map and the process takes place through the following three 
steps:

Step1- Feature removal: CAD design features (holes, fillets, pockets and 
protrusions) that are too small (with regard to the imposed size map) to 
affect analysis results are automatically identified as shape details (see       
fig. 1(b)). Two types of operations are used to automatically remove 
these details:

(a) Suppressing the feature directly in the feature-based model: this 
applies for details that have  been designed as features, and for 
which suppression does not affect any other feature 

(b) Performing a delete-face operation: this operation deletes detail 
faces and reconstructs a closed solid envelope by filling holes [8, 
9]. 

Step2- MCT adaptation: the B-Rep topology obtained after feature 
removal often requires additional preparation for mesh generation : small 
edges, narrow faces, must be transformed.  MCT operators and criteria, 
based on adjacency hypergraphs, have been designed for automatic 
topology adaptation (see       fig. 1(c)): 
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MCT criteria, based on the size map and on boundary conditions 
zones, automatically identify MCT operations required [16]:

irrelevant edges located in narrow faces or planar surfaces are 
removed by edge deletion,
irrelevant vertices located in small edges or smooth curves are 
removed by vertex deletion or edge contraction,
constricted sections of faces are collapsed by vertices merging. 

MCT operators then automatically edit the topology hypergraphs and 
their underlying geometry [12]: edge and vertex deletion, edge 
splitting, edge to vertex collapsing, 

Step3-Meshing the MCT model: a mesh is automatically generated from 
the MCT model (see       fig. 1(d)): the front is initialized by meshing MC
edges (composite edges), then the mesh is propagated inside MC faces
(composite faces) by the adapted advancing front technique presented in 
this paper. 

2.3. Meshing Constraints Topology (MCT)

The MCT is represented as a B-Rep structure, providing a full description 
of orientation and topological links between entities, as shown in fig. 2. In 
this structure, MCT entities are defined versus reference entities as a 
outlined below: 

Definitions
The reference model is the B-Rep model obtained after performing step 1 
in the process presented above (after feature removal and prior to topology 
adaptation).
Reference entities (reference face, reference edge, reference vertex) are 
topological entities of the reference model. Their underlying geometry is 
represented through a single mathematical definition: 

the surface underlying a reference face is a Riemannian surface: plane, 
sphere, torus, NURBS, etc 
the curve underlying a reference edge is a Riemannian curve: line, 
circle, ellipse, NURBS, etc 

MCT entities (MC face, MC edge, MC vertex) are composite topological 
entities created for mesh generation requirements. Their geometry is 
defined as sets of adjacent reference entities: 

The composite surface underlying a MC face is designated as a 
PolySurface, defined as the union of reference faces, 
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Fig. 2. (top) the MCT composition diagram (bottom) reference topology 
composition diagram 
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The composite curve underlying a MC edge is designated as a 
PolyCurve, defined as the union of reference edges. 

Thus, PolyCurves and PolySurfaces can feature tangency and curvature 
discontinuities. Fig. 3 illustrates a MC edge composed of a set of adjacent 
reference edges. MC faces featuring interior MC edges and interior MC
vertices can be considered as special non-manifold faces. 

V1

V2

V3

Reference model

E1

E1 E2

E2

V2V1 V3

V1 V3

MCT model

{E1,E2}

V1 V3

Geometry

Topology

{E1,E2}

Fig. 3. (a) The geometry and topology of two adjacent edges in the reference
model. (b) The geometry and topology of the MCT model obtained by merging 
edges E1 and E2.

3. Advancing front triangulation

This section briefly recalls the main steps in the advancing front method 
applied to mesh generation over curved parametric surfaces (see ref  [17]). 
Section 4 will present the adaptation of this classical scheme in the context 
of mesh generation over composite geometry. 

3.1. Advancing front triangulation steps 

After its initialization with the generation of nodes on vertices and oriented 
front segments on edges, the triangulation of a parametric surface  [17] is 
based on a procedural loop involving the following steps: 

While the front is not empty: 
Let the candidate front element PAPB be the smallest element of the front,
Compute 1 the angle between the candidate front element and its 

previous neighbour, and 2 the angle between the candidate front  and 
its next neighbour,

Identify the front configuration using 1 and 2, among the six front 
configurations illustrated in fig. 4. 

If the front configuration type lies between 1 and 5 (reference to fig. 4),
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Then triangles are generated using neighbouring fronts (see fig. 5) and 
continue the loop.

Else,
Compute the optimal candidate node location POPT to generate a 

triangle that fulfils both element’s shape and size requirements (see 
§3.2),

Search a node PF of an existing front segment inside the area 
determined by two circles CM and COPT (see Fig. 5):

CM being centred on PM (middle of the candidate front), and 
which radius is 1.5�||PMPOPT||

COPT being centred on POPT  and which radius is 3
2 ||PM POPT||

If PF is found, then PC = PF, else PC=POPT
Verify that the triangle (PA, PC, PB) does not overlap existing 

triangles, if so, create the triangle (PA, PC, PB) and replace 
candidate front element PAPB with front elements PA PC, and PC PB.

Fig. 4. The 6 front configurations and their specific triangulation process 

Fig. 5. (a) Triangle created from the candidate node at the optimal location (b) 
Triangle created from an existing node located inside the search area 

3.2. Computing the optimal candidate node location 

Given a candidate front element PAPB and an isotropic size map function 
H(x,y,z), the optimal candidate node is located by following a surface path 
starting from PM = (PA+PB)/2 and progressing in the orthogonal direction to 
PAPB, until reaching a distance d from PM.
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Fig. 6. Creation of the optimal point location 

The distance d is calculated as a compromise between elements shape and 
size requirements (see fig. 6):   

3 ( ) || ||
2 T S A Bd w H wMP P P    

wT controls the size map respect, whereas wS controls the elements 
shape quality. Past experience has shown that (wT, wS)=(0.65, 0.35) is a 
good compromise between these two contradictory requirements. 

4. Extension to composite geometry 

This section presents mesh generation data-structures and algorithms 
aiming at the extension of advancing front triangulation techniques to the 
context of composite geometry. 

4.1. Association between the mesh and the reference model 

A key component of composite geometry mesh generation is handling the 
images of FE nodes and segments on their adjacent reference entities.

Definitions:
A reference point, noted Pi, is an Euclidian point located on one single 

reference entity (face, edge, or vertex, defined in §2.3), which is not 
necessarily a node of the final mesh. 

A reference sub-segment, noted PiPi+1, is a curvilinear segment defined 
by two reference points and located on one single reference edge or face. 
The shape of a reference sub-segment lies on the surface of the reference B-
Rep.

In our data-structure, a node of the mesh is associated with (see Fig. 7(a)): 
its underlying MCT entity (defined in §2.3), 
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one reference entity (defined in §2.3), 
its images on its adjacent reference entities (see fig. 7(a)), each of them 
defined by their parametric coordinates. 

And a segment of the mesh is associated with: 
its underlying MCT entity, 
PA and PB, its two extremity nodes, 
an image curve defined as a sequence of N reference sub-segments PAP1,
P1P2, …, PN-1PB (see fig. 7(b), fig. 8(c), and fig. 9), each of them being 
associated with : 

a reference entity, 
its image on this reference entity, 
a set images on its adjacent reference entities. 

E2
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F3

E1

E2

E2P(V1)

V1

E2

F2

F1

E1V

(a)
(b)

PA

PB

PA

PB

Node

Reference point

Reference sub−segment

Segment

E1

Image of a node on an 
adjacent reference entity

Image of a reference point
on adjacent reference entity

Fig. 7. Links between mesh elements and reference topology (a) a mesh node 
lying on a MC Vertex (b) a mesh segment lying on a MC Edge (PolyCurve)

(a) (b) (c)

Fig. 8. (a) reference topology (b) MCT model (c) image curves of segments 
lying on reference entities 
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4.2. Meshing MC edges

Conventions:
Fj
ix represents  parametric coordinates (ui,vi) underlying reference point Pi

, on reference face Fj.
Sj represents the parametric surface equation underlying face Fj. Thus Pi =
Sj( Fj

ix ).
Variables t designate curve parameter associated with a reference 
geometry, while variables t’ designate curve parameter associated with  a 
composite geometry. 

The MCT meshing process begins with the generation of a set of nodes on 
MC vertices. Then nodes are intercalated on MC edges. Given an MC edge
parametric curve PolyC(t’) and the size map function H(x,y,z), the method 
presented in [18] generates optimal parametric coordinate for each node Pi :

'it  with 0,1,.., segi N , and Nseg being the number of segments of the MC
edge discretization. When nodes parameters t’i are defined, the mapping 
function of the PolyCurve provides, for any t’, the corresponding reference 
edge E and the parametric coordinate (on this reference edge) t written as : 

(E , t) = PolyC (t’)

Each node is then initialized with the following procedure (see fig. 7(a)): 

A process described in [18] generates t’i nodes coordinates on PolyC(t’),
respecting the size map H(x,y,z)
For each parameter t’i:

(Ei , ti) = PolyC (t’i)
Create the node Pi = Ei(ti),
For each face Fj adjacent to Ei:

Create the image of Pi  by projecting it on Fj : Fj
ix  = proj(Fj, Pi)

For each segment (t’i, t’i+1) (see Fig. 7(b)):
Let PA and PB be the current segment nodes, located on PolyC(t’) at 
t’A=t’i and t’B=t’i+1 respectively 
Construct segment PAPB on the MC edge
Let P[t’] be the list of reference points of the segment sorted by t’

parameter 
P[t’A]=PA and P[t’B]=PB
For each reference vertex Vj of PolyC(t’):

Let t’(Vj) be the parameter of the reference vertex Vj on PolyC(t’)
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If '( ) ' ; 'j A Bt V t t then create a reference point P(Vj)=Ej(t’(Vj))
and add P[t’(Vj)] = P(Vj)

For j=0 to size (P[t’])-1:
Let Pj and Pj+1 be the j-th and j+1-th nodes of P[t’]
Create a reference sub-segment Pj Pj+1 on reference edge Ej=PolyC(
(t’(Pj)+ t’(Pj+1))/2 ) 
For each reference face Fk adjacent to the reference edge Ej:

Create the image of Pj Pj+1 on Fk

PA
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Node of segment
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P1

P2

P3 P4

PolyCurve

Fig. 9. Images of a segment lying on multiple reference edges and faces

4.3. Creating the optimal candidate node from a candidate segment 

Conventions:
( )Fj

uv tC  represents a curve in the parametric space of reference face Fj.

The equivalent curve in the Euclidian space is ( )Fj tC = ( )Fj
j uv tS C .

N(S, P) represents the normal vector to  surface S at point P, where: 
  S can be a MC face, a PolySurface, a reference face, or a parametric 
surface.
  P can be an Euclidian point of S or, a parametric coordinate of S.

Given a candidate front element starting at PA and ending at PB,
constructing the optimal candidate node POPT on the PolySurface SPoly of a 
MC face FMCT can be achieved by creating : 

PM  the middle point of the curvilinear segment PAPB

plane , orthogonal to PAPB and containing PM

Path C(t’) defined as the intersection curve between plane  and SPoly,
oriented with regard to the orientation of the advancing front. 
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The main part of this procedure is the creation of the path C(t’),
illustrated in fig. 10 and fig. 11, and it is processed as follows: 

Initialize j=0, P0 = PM, Lmax = d (where d is defined in section §3.2 ) 
Do

Set Aj = N(SPoly, Pj ) (PB-PA) (PolySurface normal vector is 
defined in §4.4 see fig. 11) 
Find face Fj adjacent to Pj and contained in SPoly, such as Aj is
interior to face Fj at Fj

ix (see section 4.4 presenting interior 
directions on a face) 
If Fj is not found, then break the loop, 
Create the path ( )Fj

uv tC  intersecting Fj with plane , starting from 
Pi, with start direction A3D,0=Aj, accuracy max, target length LFj =
Lmax - || C(t’) ||  and increment length ds (see algorithm in section 
4.5.4)
Add curve ( )Fj tC  to C(t’)

initialize Pj+1 with the last point of ( )Fj tC
j=j+1

While || C(t’) || < Lmax
POPT is located at parameter t’OPT of the curve C(t’) such as || C(t’OPT)
||= Lmax

Fig. 10. The optimal location of candidate node POPT from candidate segment 
PAPB is determined using path C(t’) intersecting the PolySurface with a plane  
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Fig. 11. The PolySurface path C(t’) is constituted by multiple curves lying on 
reference faces of the PolySurface

4.4. Definition of PolySurface normal vectors for discontinuous 
configurations

Section 4.3 underlined that the generation of paths on PolySurfaces requires 
the definition of normal vectors at locations where tangency and curvature 
discontinuities occur: 

on a reference edge shared by two reference faces of the PolySurface
(see Fig. 11), 
on a reference vertex shared by multiple reference faces of the 
PolySurface (see Fig. 12). 

Then, we define the normal vector at sharp locations Pi of a PolySurface
SPoly by a simple weighted average of adjacent faces normal vectors. The 
weights used are the normalized spanning angles j of faces Fj adjacent to 
point Pi and contained in SPoly (see Fig. 12):

1

1

( , )
( , )

n
j ij

Poly i n

j

Fj

j

N P
N S P     

Fig. 12. Spanning angle and normal vectors along PolySurface discontinuities
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4.5. Creation of an intersection curve between a reference face and a 
plane

Section 4.3 also underlined that the generation of plane-PolySurfaces
intersection paths relies on a procedure creating an intersection path 
between a reference face and a plane. Given a plane  and a reference face 
Fj, the problem is to create a path starting from a given point P0, and 
following the intersection curve CFj(t) between  and Fj. A target point Pn
can be optionally prescribed as the ending point of the path. The path CFj(t)
is represented as a polyline ( )Fj

uv tC defined in the parametric space of face 

Fj. The polyline ( )Fj
uv tC  is constructed by:

calculating a small displacement 3D in the Euclidian space, 
calculating uv equivalent to 3D in the parametric space (detailed in 
§4.5.1),
correcting the displacement error  (detailed in §4.5.1) by projecting the 
incremented point on the intersection plane .

Fig. 13. Displacement vector created at each iteration of the plane-surface 
intersection path computation  

4.5.1. Approximating a 3D displacement on a surface by a parametric 
displacement

Algorithms creating plane-face intersection paths are based on the 
transformation of a 3D displacement into its equivalent parametric vector. 
Consider a parametric point xi on surface S(u,v), Pi its Euclidian space 
equivalent and 3D an infinitesimal 3D displacement tangent to S at Pi:

3D = du dv
u v
S S
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Let us consider the tangent (to S at point Pi) plane frame 

xiu v u v
S S S S

and uv with coordinates (du,dv,0) in this 

tangent plane frame. We can state that (see Fig. 13): 
( )P uvT3D ix

where Tp (xi) is the transformation matrix relating the 3D space frame and 
the tangent plane frame :

( )P
xi

xi

x x y z z y
u v u v u v
y y z x x zT

u v u v u v u v u v
z z x y y x
u v u v u v

i
S S S Sx

First order approximation 

Let Pi+1 be the surface point obtained by the displacement (du,dv) from 
point Pi : 

1 1 1 ( , ) and ( )i i iu du v dvx P S x
The 1st order Taylor expansion of the surface S(x) equation about a point xi
gives:  

1 1 1 3 1( )P i i P uv D
xi xi

du dv T
u v i
S SP P R x R R

Where R1 is the remainder term of the first-order Taylor expansion. 
Therefore, uv = Tp

-1� 3D can be considered as a first order 
approximation of the parametric space displacement that is equivalent to 

3D.

Second order approximation 

Remainder R1 of the first order approximation can estimated by a 2nd order 
Taylor expansion : 

2 2 2 2 2

1 22 22 2xi xi xi

du dv du dv
u v u v
S S SR R
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Where R2 is the remainder term of the second-order Taylor expansion. 
Now, correcting uv by projecting R1 in the tangent plane frame 

reduces the approximation error: 

2 2 2 2 2
1

1 1 2 2'= ( )  with 
2 2uv uv P

xi xi xi

du dvT du dv
u v u v

- i
S S Sx R R

   
In the remaining of the text, uvis used as a 2-dimensional vector (the third 
component of uv, being equal to 0 is neglected).

4.5.2. Verifying interior directions on a reference face 

The creation of a path in a reference face Fj requires to verify that the path 
remains interior to Fj when advancing in a given direction uv. Given an 
initial point Fj

ix  in the parametric space of Fj, the parametric direction 

uv=(du, dv)=(  cos ,  sin ) is interior only if   exists so that   > 0 and 
Fj
ix + � uv is interior to Fj.

Three topological configurations of the initial point Fj
ix must be handled 

differently:
If Fj

ix  is on an edge, then uv is interior to Fj if �� [ 1 ; 1+ ] where 

1 is the angular direction of  coedge tangent t1 at Fj
ix in the parametric 

space (see fig. 14(a) ) 
If Fj

ix  is on a vertex, then uv is interior to Fj if �[ 2 ; 1+ ] where 1

and 2 are the angular direction of coedges tangent vectors t1 and t2 at 
Fj
ix  preceding and succeeding the vertex (see fig. 14(b))

Otherwise, uv is interior to Fj (see fig. 14 (c)) 

x

F

x
x

x in facex in edge x in vertex

F F

(a) (b) (c)

Fig. 14. interior directions of a point x on a face F for various topological 
configurations of x 
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Verifying if an Euclidian direction 3D is interior to Fj at a point Pi is 
achieved by transforming 3D to its equivalent bi-parametric vector uv at 
parameter Fj

ix  using equation (3) presented in section 4.5.1. 

4.5.3. Verifying if a parametric segment crosses outside the face domain 

During the construction of the path intersecting face Fj and plane with
accuracy max (see section 4.5), it is necessary to verify for each offset 
PiPi+1, if it crosses outside the domain of Fj (see fig. 13). If so, the 
PolySurface path should be continued on next face Fj+1. This is achieved as 
follows (see fig. 15): 

Let Pk be the list of intersection points between plane  and edges 
bounding Fj
For each Pk

Let P’k � PiPi+1 be the closest point of PiPi+1 to Pk

If ||Pk-P’k|| < max and 1
Fj Fj
i ix x is not interior to Fj, then PiPi+1

crosses outside Fj

(a) (b)

Fig. 15. Segment crossing an edge of the face Fj (a) Euclidian space (b) 
parametric space of Sj

4.5.4. Creating the path

Fig. 16. Construction of the path following the plane / reference face 
intersection curve 
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In this section, we describe the algorithm creating the path CFj(t) on surface 
S of reference face Fj intersecting the plane  while respecting the 
following constraints: 

Let P0 be the initial point of CFj (t),
Let A3D,0 be the initial tangent vector
The distance between any point of CFj (t) to the plane  must respect the 
accuracy constraint max
The length of each new segment of the polyline must be limited to ds
The path computation is stopped when : 

The segment intersects any edge or vertex of the face 
Its length reaches the target length LFj

max

The segment pass through the target point Pn

i=0 ; stop = false 
Do

3D = 3 ,

3 ,|| ||
D i

D i

ds
A
A

2 2 2 2 2

2 2

1
3

1

2 2

( )  

' ( )
xi xi xi

Fj
P i D

Fj
P i

du dv
du dv

u v u v

T

T

uv

uv uv
S S S

x

x

1
Fj
ix = Fj

ix + uv' and Pi+1 = Sj( 1
Fj
ix )

Let Pproj be the normal projection of point Pi+1 on , and =Pproj–Pi+1
be the error vector,  
While || || > max

uv = 1
1( )Fj

P iT x   (1st order approximation of , see § 
4.5.1)

1
Fj
ix  = 1

Fj
ix + uv.

If Fj
ix 1

Fj
ix  leaves the domain of Fj, then:

Pi+1 =  Pk  (intersection between  and the face boundary, 
see § 4.5.3),

1
Fj Fj
i kx x

stop = true 
If Fj

ix 1
Fj
ix  reaches the target point Pn, then:
Pi+1 = Pn

1
Fj Fj
i nx x

stop = true 
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Add 1
Fj
ix  to the parametric polyline ( )Fj

uv tC
A3D,i+1 = N(Sj, Fj

ix )� N
If A3D,i+1 � A3D,i < 0 then A3D,i+1 = - A3D,i+1
i=i+1;  

While (||CFj(t)|| < LFj
max and stop=false) 

The number of parametric points constituting the polyline ( )Fj
uv tC  is equal 

to LFj
max/ds+1 , but only few points are really required to respect the 

accuracy constraint max of the plane/surface intersection. In order to reduce 
the number of polyline points, an additional procedure is included during 
path creation in order to keep the minimum number of points that is 
necessary to respect max.

4.6. Image of a segment on a PolySurface

Fig. 17. Construction of the image of segment PAPB on a PolySurface ( 
F1, F2 )

Sections 4.3, 4.4, and 4.5 presented optimal candidate node generation on a 
PolySurface. This section presents another algorithm needed to extend 
advancing front mesh generation to composite geometry: generating a 
segment on a PolySurface.

Constructing the image curve of a segment PAPB on a MC face F consists in 
projecting it on the underlying PolySurface Spoly. The projection is 
calculated as a plane-surface intersection: 

The normal vector to PolySurface SPoly along  the segment is averaged 
by:
Navg = (N (SPoly,PA) + N (SPoly,PB))/2
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The plane , parallel to Navg and containing points PA and PB, is defined 
by its normal N = Navg (PB-PA) and its origin P  =PA

Create a path C(t’) intersecting Spoly with plane  with: 
starting point P0=PA  and target point Pn=PB,
start direction A0 = N (Spoly,PA) N ,
ds = || PB – PA || / nseg, where nseg is the number of sub segments of the 
polyline.
accuracy max = �|| PB – PA || 

j=0,
 Find face F0 adjacent to P0  such as A0  is interior to face F0 at P0 (see
section 4.4 presenting interior directions on a face) 
Do

 Create the path CFj(t) by intersecting face Fj with plane ,
starting from Pj, with start direction A3D,0=Aj, and (if Pn lies on 
Fj) ending at Pn (algorithm section 4.5.4) 
 Add curve CFj(t) to C(t)
 initialize Pj+1 with the last point of CFj(t)
Aj+1= N (SPoly,Pj+1) N
Fj+1= face adjacent to Pj+1 such as: 

 Fj+1  Fj,
Fj+1 SPoly,
Aj+1 or -Aj+1 is interior to Fj

If Aj+1 is not interior to Fj, then Aj+1=- Aj+1
j=j+1

While Pj Pn

4.7. Calculating intersection points between segments 

The creation of a triangle during the advancing front method mainly relies 
on the intersection test between newly created segments and existing 
segments. The intersection point of two segment is determined by the 
intersection of their image curves in the parametric space of reference faces 
(see fig. 18). 
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Fig. 18. Segments AB and CD are intersecting on reference face F1

5. Examples and results 

This section illustrates results obtained applying the MCT preparation 
process and the mesh generation algorithm described in this paper. We start 
with Fig. 19. to illustrate that our contribution overcomes the main 
limitations of meshing composite surfaces using a single parametric 
description.  The contribution presented in this paper is: 

independent of surface topology: closed surfaces homeomorphic to a 
sphere or to a n-torus can be meshed as well as open surfaces. 
not limited by stretched geometries and steep metrics variations: highly 
stretched surfaces, such as the one representing a glove, result in good 
quality meshes. 

Fig. 20. illustrates the quality distribution of meshes, evaluated by a 
classical shape criterion (inscribed radius divided by the maximum triangle 
edge length), and by the geodesic size criterion. The geodesic size criterion 
(defined in [17]) is related to the difference between the actual area of a 
triangle and its optimal area with regard to the size map. 

Cutter: results presented in Fig. 21represent an automatically generated 
MCT generated using our adaptation process (detailed in [12, 16]) : the B-
Rep entities representing the cutter size label, and other irrelevant edges 
have been removed. Fig. 20 shows that shape and size quality distributions 
are both very good (few triangles are significantly smaller than the expected 
size).
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Fig. 19. Models after topology adaptation and meshes obtained on closed 
composite surfaces. The remaining MC edge (colored in blue) has been used 
for the advancing front initialization. For these configurations, approaches 
based on a mapping into a unique parameterization would likely fail. 

Mesh quality

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

0.25 0.5 0.75 1

Shape Quality
(cutter)
Size Quality
(cutter)
Shape Quality
(piston)
Size quality
(piston)

Fig 20. Quality distribution of the Cutter and Piston meshes 
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(a)

(b)

(c)

Fig. 21. Mesh generated on a CAD model representing a cutter. 

Quarter of piston: fig. 22 shows a piston CAD model, split into one 
quarter due to symmetry considerations. The original CAD model features 
many narrow faces and small edges, which are  irrelevant for mesh 
generation. On this sample part, the MCT simplification process [12, 16] 
operated 60 edges deletions, 62 vertex deletions, and collapsed one edge to 
a vertex. The number of faces has been reduced from 71 to 21, the number 
of edges from 182 to 76, and the number of vertices from 113 to 63. Again, 
size and shape quality distributions are quite satisfying as illustrated in  
fig. 20.  

(a) (b) (c)

Fig. 22. Mesh obtained on a CAD model representing a quarter of piston 
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6. Conclusion

This paper presents an extension of the advancing front method to surfaces 
composed of multiple parametric faces, avoiding the construction of a 
global parameterization and by the way, overcoming the weaknesses of this 
type of approaches. This extension is intended to be used in the scope of a 
MCT adaptation procedure that prepares FE models from CAD models. 
Unlike previous re-parameterization based schemes, the proposed method 
has no limitations concerning the type and topology of composite surfaces 
involved.

The main limitation of the current approach concerns its weakness when 
applied to poorly prepared feature models. For example, a failure in the 
feature-removal preparation step often cause the presence of small features 
disturbing the convergence of advancing front mesh generation. The ideal 
feature-removal algorithm would transform the initial model into a model 
that conforms to the specified size map. Further work could overcome this 
weakness by improving the robustness of feature-removal and advancing 
front mesh generation processes. 

Future potential directions in this research include: 
Extension to elements with higher degree: quadratic triangles (T6) can be 
easily generated on the exact geometry by inserting a middle node on 
each segment’s image curve. This method should include a quality 
criterion to avoid squeezed elements in highly curved zones. The 
segment-swapping and node moving optimization steps will require 
quality criteria adapted to curved mesh elements. 
Extension to mixed-dimensional models: extending feature-removal and 
MCT preparation algorithms to 3D geometric models mixing curves 
(meshed with beam elements), surfaces (meshed with shell elements), 
and solids (meshed with solid elements).
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