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Summary. A method for decompose the triangulated surface into quadrilateral
patches using Morse theory and Spectral mesh analysis is proposed. The quadrilat-
eral regions extracted are then regularized by means of geodesic curves and fitted
using a B-splines creating a new grid on which NURBS surfaces can be fitted.

1 Introduction

One of the most important phases in the reconstruction of 3–D model from tri-
angular meshes is the the process of fitting high-level surface primitives such as
NURBS (Non-Uniform Rational B-Splines) from them. Triangular meshes of-
ten exhibit several deficiencies. They are often too large or too high-resolution
and typically contain elements with inadequate shapes. On the other hand,
NURBS have become the standard in modern CAD/CAM systems, because of
their ease of use and and their ability to deal at high-level with local surface
modifications. Although NURBS have the capacity to represent arbitrarily
curved surfaces, they still present problems when one wants to model fine
details. This is due to how the NURBS surface are defined where parameters
such as: knots, weights, and control points must be controlled by the CAD
user to achieve a certain shape. In addition, NURBS surfaces also require to
be placed on a networks of curves that usually have a quadrilateral topology.

The majority of the work reported in the literature on re-meshing meth-
ods, is focused on the problem of producing well formed triangular meshes
(ideally Delaunay). However, the ability to produce quadrilateral meshes is of
great importance as it is a key requirement to fit NURBS surface on a large
3-D mesh. Quadrilateral topology is the preferred primitives for modelling
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many objects and in many application domains. Many formulations of sur-
face subdivision such as SPLINES and NURBS, require complex quadrilateral
bases. Recently, methods to automatically quadrilateralize complex triangu-
lated mesh have been developed such as the one proposed by Dong et al.
[5]. These methods are quite complex, hard to implement, and have many
heuristic components.

A method for decompose the triangulated surface into quadrilateral patches
using Morse theory and Spectral mesh analysis is proposed. The quadrilateral
regions obtained from this analysis is then regularized by means of comput-
ing the geodesic curves between each corner of the quadrilateral regions and
then a B-splines curves are fitted to the geodesic curves on which NURBS
surfaces are fitted. Such NURBS surfaces are optimized by means of evolu-
tive strategies to guaranty the best fit as well as C1 continuity between the
patches.

This paper is organized as following: In Section 2, an introduction to Morse
theory is presented. In Section 4, the proposed method for the adjustment of
surfaces by means of optimized NURBS patches is presented. In Section 7.1
is presented a comparison between Branch’s method and Eck and Hoppe’s
method. In Section 7, the results with the proposed model are discussed, and
finally in Section 8, conclusions are presented.

2 Morse Theory

In a general way, spectral mesh analysis tries to infer topological features of
the object through mathematical functions. This produces a spectrum which
becomes a set of eigenvectors and eigenvalues of a matrix which has been
inferred from the triangular mesh. The spectral analysis is supported by the
Morse Theory. This theory chooses some representative points from the ver-
texes of the triangular mesh, critical Morse points.

Given a real function on a surface, Morse theory connects the differential
geometry of a surface with its algebraical topology. This theory describes the
connectivity of the surface from the configuration of the points where the
gradient function decays. Such points are called critical points (these are:
minimum, maximum and saddle points). The Morse theory has been used
by the graphics and computer visualization community to analyze different
real functions. For example, in terrain data analysis, Morse theory is used to
identify topological features, while controlling the plane’s simplification and
organizing the features in a multi-resolution hierarchy [1], [4].

Let S be a smooth, compact 2-manifold without a boundary and let h :
S → R be a smooth map. The differential of h at the point a is a linear map
dha : TSa → TSh(a), mapping the tangent space of S at a to that of R at
h(a) (The tangent space of R at a point is simply R again, with the origin
shifted to that point). In a formal way: let a ∈ S ⊂ Rn a point in a continuous
neighborhood parametrized by (u, v) [5]: a point a ∈ S is called critical h(a),
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if hu(a) = hv(a) = 0 (its calculated two partial derivatives, and are called
critical when both are zero), otherwise, it is a regular point. The critical point
a is degenerate if huu(a)hvv(a)−2huv(a) = 0, otherwise, it is a Morse point. If
al critical points satisfies the Morse conditions, then the function h is a Morse
function.

At a critical point a, we compute the local coordinates of the Hessian of
h:

H(a) =

[
∂2h
∂x2 (a) ∂2h

∂y∂x
(a)

∂2h
∂x∂y

(a) ∂2h
∂y2 (a)

]
. (1)

The Hessian is a symmetric bilinear form on the tangent space TSa of S at
a. The matrix above expresses this function in terms of the basis ( ∂

∂x
(a), ∂

∂y
(a))

for TSa. A critical point a is called non-degenerate if the Hessian is non-
singular at a; i.e., detH(a) �= 0, a property that is independent from the
coordinate system. The Morse Lemma [7], states that near a non-degenerate
critical point a, it is possible to choose local coordinates so that h takes the
form:

h(x, y) = h(a) ± x2 ± y2. (2)

The number of minuses is called index i(a) of h at a, and equals the number
of negative eigenvalues of H(a) or, equivalently, the index of the functional
H(a). The existence of these local coordinates implies that non-degenerate
critical points are isolated.

Let λ1 ≤ λ2 be the two eigenvalues of the Hessian of h, with corresponding
eigenvectors. The index of a critical Morse point is the number of negative
eigenvalues of its Hessian. Therefore, this can be classified as: minimum, (in-
dex 0, h increases in every direction), saddle point (index 1, h changes in
decrements and increments four times around a point), and maximum (index
2, h decreases in every direction). The function h is called Morse function if
its critical points are not degenerated.

3 Morse Theory for Triangular Meshes

The application of the Morse theory for triangular meshes implies to discretize
Morse analysis. The Laplacian equation is used to find a Morse function which
describes the topology represented on the triangular mesh. In this sense, ad-
ditional points of the feature of the surface might exist, which produce a basis
domain which adequately represents the geometry of the topology itself and
the original mesh. The mesh can also be grouped into improved patches. In
this work, Morse theory is applied by representing the saddle points and its
borders by a Morse function which can then be used to determined a number
of critical points.
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This approximation function is based on a discrete version of the Lapla-
cian, to find the harmonic functions. In many ways, Morse theory relates the
topology of a surface S with its differential structure specified by the critical
points of a Morse function h : S → R [11] and is related to the mesh spectral
analysis.

The spectral analysis of the mesh is performed by initially calculating the
Laplacian. The discrete Laplacian operator on piecewise linear functions over
triangulated manifolds is given by:

Δfi =
∑
j∈Ni

Wij(fj − fi) (3)

where Ni is the set of vertices adjacent to vertex i and Wij is a scalar weight
assigned to the directed edge (i, j).

For graphs free of any geometry embedding, it is customary to use the
combinatorial weights Wij = 1/deg(i) in defining the operator. However, for
2-manifold mapped in �3, the appropriate choice is a discrete sets of harmonic
weights, suggested by Dong [5] and is the one used in this paper (see Equation
4):

Wij =
1
2
(cot αij + cot βij). (4)

Here αij and βij are the opposite angles to the edge (i, j).
Representing the function f , by the column vector of its values at all

vertices f = [f1, f2, . . . , fn]T , one can reformulate the Laplacian as a matrix
Δf = −Lf where the Laplacian matrix L each elements are defined by:

Lij =

⎧⎪⎨⎪⎩
∑

k Wik if i = j,

−Wij if (i, j) is an edge of S,

0 in other case.
(5)

where k is the number of neighbors of the vertex i. The Eigenvalues
λ1 = 0 ≤ λ2 ≤ . . . ≤ λn of the matrix L forms the spectrum of mesh S.
Besides describing the square of the frequency and the corresponding eigen-
vectors e1, e2, . . . , en of L, one can define piecewise linear functions over S
using progressively higher frequencies [13].

4 Literature Review

There are many research results that deals with fitting surface model on tri-
angular meshes. We will review some of them.

Loop [10] generates B-spline surfaces on irregular meshes. These meshes
do not require a known object topology, and therefore, they can be configured
arbitrarily without carrying a sequence of the 3D coordinates of the points
set. The advantage of this method is that it uses different spline types for the
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surface approximation. The algorithm was tested using synthetic data with
low curvature.

Eck and Hoppe [6] present the first solution to the fitting problem of B-
spline surfaces on arbitrary topology surfaces from disperse and unordered
points. The method builds an initial parametrization, which in turn is re-
parametrized to build a triangular base, which is then used to create a quadri-
lateral domain. In the quadrilateral domain, the B-spline patches adjust with
a continuity degree of C1. This method, although effective, is quite complex
due to the quantity of steps and process required to build the net of B-spline
patches on the adjustment surface.

Krishnamurthy and Levoy [9] presented a novel approach to adjust NURBS
surface patches on cloud of points. The method consists of building a polyg-
onal mesh on the points set first. Then on this mesh, a re-sampling is per-
formed to generate a regular mesh, on which NURBS surfaces patches can be
adjusted. The method has poor performance when dealing with complex sur-
faces. Other limitations are the impossibility to apply the method to surfaces
having holes, and the underlying difficulty to keep continuity on the NURBS
surface patches.

Park [12] proposed a two-phase algorithm. In the first phase, a grouping
of the points is performed by means of the k-means algorithm to create a
polyhedral mesh approximation of the points, which is later reduced to a
triangular mesh, on which a quadrilateral mesh is built. In the second phase,
the initial model is used to build a net of NURBS patches with continuity C1.
Park’s proposal assumes that the cloud-of-points is closed in such a way that
the NURBS patches network is fully connected. This implies that the proposed
method is not applicable to open surfaces. The use of NURBS patches implies
an additional process keeping continuity at the boundary, making the method
computationally expensive even when the irregularity of the surface does not
require it.

Boulanger et al. [3] describe linear approximation of continuous pieces by
means of trimmed NURBS surfaces. This method generates triangular meshes
which are adaptive to local surface curvature. First, the surface is approxi-
mated with hierarchical quadrilaterals without considering the jagged curves.
Later, jagged curves are inserted and hierarchical quadrilaterals are trian-
gulated. The result is a triangulation which satisfies a given tolerance. The
insertion of jagged curves is improved by organizing the quadrilaterals’ hi-
erarchy into a quad-tree structure. The quality of triangles is also improved
by means of a Delaunay triangulation. Although this method produces good
results, it is restricted to surfaces which are continuous and it does not accu-
rately model fine details, limiting its application for objects with an arbitrary
topology.

Gregorski [8] proposes an algorithm which decomposes a given points-
set into a data structure strip tree. The strip tree is used to adjust a set of
minimal squares quadratic surfaces to the points cloud. An elevation to bi-
cubic surfaces is performed on the quadratic surfaces, and they are merged
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to form a set of B-spline surfaces which approximates the given points-set.
This proposal can not be applied to closed surfaces or surfaces which curve
themselves. The proposal is highly complex because it has to perform a degree
elevation and a union of patches on B-spline patches at the same time that a
continuity degree C1 is performed among adjacent patches.

Bertram [2] proposes a method to approximate in an adaptive way to
disperse points by using triangular hierarchical B-splines. A non-uniform dis-
tribution of sampling on the surface is assumed, in such a way that zones
with a high curvature present a denser sampling that zones with a low cur-
vature. This proposal uses patches for data adjustment which add quality to
the solution.

A different approach is presented by Yvart et al. [14], which uses triangular
NURBS for dispersed points adjustment. Triangular NURBS do not require
that the points-set has a rectangular topology, although it is more complex
that NURBS. Similar to previous works, it requires intermediate steps where
triangular meshes are reconstructed, re-parametrization processes are per-
formed, and continuity patches G1 are adjusted to obtain a surface model.

5 Quadrilateralization of Triangular Meshes Using
Morse Theory

Representation by means of NURBS patches requires building a regular base
on which it is possible to estimate the set of parameters which permit the
calculation of surfaces segments which correctly represent every region of the
objects. Representation of an object by means of small surface segments, im-
proves the fitting quality in comparison with representation by means of a
single continuous surface. Because each segment can be better fitted to lo-
cal features, which permits modelling small details without excessive loss of
surface smoothness.

Construction of a regular base consists of converting a triangular repre-
sentation of the quadrilaterals set, which permits a complete description of
the object’s geometry. In general, NURBS surfaces requires a regular base.
This does not indicate that the surface is rectangular. However, building a
rectangular base permits to easily and directly regularize equidistantly each
one of its sides. Because of complex and diverse forms which free form objects
can take, obtaining a quadrilateral description of the whole surface is not a
trivial problem (See Algorithm 1).

Localizing Critical Points

The procedure proposed at this paper estimates an initial quadrilaterization
of the mesh, using spectral analysis by means of the Morse theory. Initially,
the quadrilateral’s vertexes are obtained as a critical points-set of a Morse



2.4 Automatic Extraction of Quadrilateral Patches 205

Algorithm 1: Quadrilateralization method of a triangular mesh.
Quadrilateralization();
begin

1. Critical points computation;
2. Critical points interconnection;

end

function. Morse’s discrete theory guarantees that, without caring about topo-
logical complexity of the surface represented by triangular mesh, a complete
quadrilateral description is obtained. That is to say, it is possible to completely
divide objects’ surfaces by means of rectangles. In this algorithm, an equation
system for the Laplacian matrix is solved by calculating a set of eigen-values
and eigen-vectors for each matrix (Equation 5).

Morse-Smale Complex is obtained from the connection of a critical points-
set which belongs to a field of the Laplacian matrix. The definition of a field of
the matrix is obtained by selecting the set of vectors associated to a solution
value of the equation. As Morse function represents a function in the mesh,
each eigen-value describes the frequency square of each function. Thus, select-
ing each eigen-value directly indicates the quantity of critical points which the
function has. For higher frequency values, a higher number of critical points
will be obtained. This permits representing each object with a variable num-
ber of surface patches. The eigen value computations assigns function values
to every vertex of the mesh, which permits determining whether a vertex of
the mesh is at critical points of the Morse function. In addition, according
to a value set obtained as the neighborhood of the first ring of every vertex,
it is possible to classify the critical points as maximum, minimum or “saddle
points.” Identification and classification of every critical point permits build-
ing the Morse-Smale complex.

Critical points Interconnection

Once critical points are obtained and classified, then they should be connected
to form the quadrilateral base of the mesh. The connection of critical points is
started by selecting a “saddle point” and by building two inclined ascending
lines and two declined descending lines. Inclined lines are formed as a vertex
set ending at a maximum critical point. Reversely, a descending line is formed
by a vertex path which ends at a minimum critical point. It is allowed to join
two paths if both are ascending or descending.

After calculating every paths, the triangulation of K surface is divided into
quadrilateral regions which forms Morse-Smale complex cells. Specifically, ev-
ery quadrilateral of a triangle falls into a “saddle point” without ever crossing
a path. The complete procedure is described in Algorithm 2:



206 John William Branch, Flavio Prieto, and Pierre Boulanger

Algorithm 2: Bulding method of MS cells.
Critical points interconnection();
begin

Let T={F,E,V} M triangulation;
Initialize Morse-Smale complex, M=0;
Initialize the set of cells and paths, P=C=0;
S=SaddlePointFinding(T);
S=MultipleSaddlePointsDivission(T);
SortByInclination(S);
for every s ∈ S in ascending order do

CalculeteAscedingPath(P);
end
while exists intact f ∈ F do

GrowingRegion(f, p0, p1, p2, p3);
CreateMorseCells(C, p0, p1, p2, p3);

end
M = MorseCellsConnection(C);

end

6 Regularization of the Quadrilateral Mesh

Because the surface needs to be fitted using NURBS patches, it is necessary
to regularize the quadrilaterals obtained from the mesh. In Algorithm 3, the
proposed method to regularize these quadrilaterals is presented.

Algorithm 3: Quadrilateral mesh regularization method..
Regularization();
begin

1. Quadrilateral selection;
2. Selection of a border of the selected quadrilateral and its opposite;
3. Regularization using B-splines with lambda density;
4. Regularized points match by means of geodetics FMM;

4.1 Smoothing of geodetic with B-splines;
5. Points generating for every B-spline line with lambda density;

end

One of the quadrilaterals is selected from the mesh, and later a border is
selected from each quadrilateral and its opposite. The initially selected border
is random. The opposite order is searched as one which does not contain the
vertexes of the first one. If the first selected border has vertexes A and B, it
is required that the opposite border does not contain vertexes A and B, but
the remaining, B and C.

Later, B-splines are fitted on selected borders with a λ density, to guarantee
the same points for both borders are chosen, regardless of the distance between
them. In general, a B-spline does not interpolate every control point; therefore,
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(a) Critical
points.

(b) Quadrilateralized object.

Fig. 1. Quadrilaterization of a complex curve surface.

they approximate curves which permit a local manipulation of the curve, and
they require fewer calculations for coefficient determination.

Having these points at selected borders, it is required to match them. This
is done with FMM (Fast Marching Method). This algorithm is used to define
a distance function from an origin point to the remainder or surface in a
magnitude order of O(nlogn). This method integrates a differential equation
to obtain the geodetic shortest path by traversing the triangles vertexes.

At the end of the regularization process, B-splines are fitted on geodetic
curves and density λ points are generated at every curve which unite the
border points of quadrilateral borders, to finally obtain the grid which is used
to fit the NURBS surface.

7 Results Analysis

The results obtained at each one of the intermediate stages of the proposed
algorithms in this paper are shown in Figure 1. This object called Mask is
composed of 84068 points. The reconstruction of the object took an average
time of 32 minutes on a dual Opteron PC .

7.1 Comparison Between Branch’s Method and Eck and Hoppe’s
Method

The metric for adjustment error measurement previously described, was used
in this thesis to measure the adjustment error for each patch before and after
the optimization by means of an evolutive strategy. The obtained results show
the effectiveness of the proposed method. During the tests were used (μ+λ)−
ES and (μ, λ)−ES evolutionary strategies, but the perform of the (μ+λ)−ES
was superior in terms of error reduction. This behavior is because (μ+λ)−ES
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incorporate information from parents and children to next generation, which
maintain the best individuals during the evolutionary process, even though in
this way the process can be fall in local minimal. In contrast with (μ, λ)−ES
which can forget and so exclude the information of the best individuals. In
terms of execution time, (μ, λ)−ES had a negligible advantage over (μ+λ)−
ES. Only results of the (μ + λ) − ES are provided. During the evolutionary
process, the weighting factors are restricted to the [0, 1] interval. If as a results
of a mutation, a recombination or a simple initialization, the weighting factors
are outer to this interval, its value is set to zero, or set to one, according to
the case.

On the other hand, the work by Eck and Hoppe [6] performs the same
adjustment by means of a network of B-spline surface patches adaptatively
refined until they obtain a given error tolerance. The process of optimization
performed by Eck and Hoppe reduces the error by generating new patches,
which considerably augments the number of patches which represent the sur-
face. The increment of the number of patches reduces the error because the
regions to be adjusted are smaller and more geometrically homogeneous. In
the method proposed in this thesis, the optimization process is focused on
improving the adjustment for every patch by modifying only its parameteri-
zation (control points weight). Because of that, the number of patches does
not augment after optimization process. The final number of patches which
represent every object is determined by the number of critical points obtained
in an eigenvector associated with the eigenvalue (λ) selected from the solution
system of the Laplacian matrix, and it does not change at any stage of the
process.

Figure 2 contains a couple of objects (foot and skidoo) reported by Eck and
Hoppe. Every object is shown triangulated starting with the points cloud. The
triangulation is then adjusted with a patch cloud without optimizing and the
result obtained after optimization. The adjustment with the method proposed
in this thesis, represents each object, with 27 and 25 patches, while Eck and
Hoppe use 156 and 94 patches. This represents a reduction of 82% and 73%
fewer patches respectively, in our work.

With respect to the reduction of the obtained error in the optimization
process in each case, with the proposed method in this thesis, the error reduces
an average of 77% (see Table 1), a value obtained in an experimental test
with 30 range images (see Table 1). Among these appear the images included
in Figure 2. The error reported in Eck and Hoppe for the same images of
Figure 2 allow a error reduction of 70%. In spite of this difference which is
given between our method with respect to Eck and Hoppe’s method, we should
emphasize that error metrics are not the same, Eck and Hoppe’s method is a
measurement of RMS, ours method corresponds to an average of distances of
projections of points on the surface.

Another aspect to be considered in the method comparison is the number
of patches required to represent the object’s surfaces. In Eck’s work, the num-
ber of patches used to represent the object’s increase is an average of 485% in
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relation to the initial quadrilaterization, while in the method proposed in this
thesis, the number of patches to represent the surface without optimization,
and the optimized one, is constant.

Image Initial Error Optimization Error Error Reduction(%)
1 19,43 4,41 77,30
2 12,15 2,21 81,81
3 14,25 3,12 78,11
4 13,47 2,74 79,66
5 11,45 2,12 81,48
6 15,26 3,21 78,96
7 14,84 3,14 78,84
8 18,45 3,54 80,81
9 12,12 2,04 83,17
10 14,32 3,31 76,89
11 15,31 3,91 74,47
12 16,70 4,09 75,51
13 20,05 4,48 77,66
14 18,23 4,27 76,58
15 13,24 3,12 76,44
16 19,32 4,45 76,97
17 17,32 4,01 76,85
18 15,24 3,45 77,36
19 16,24 3,69 77,28
20 11,25 2,65 76,44
21 17,32 3,56 79,45
22 14,25 3,25 77,19
23 11,22 2,35 79,06
24 13,26 3,21 75,79
25 14,15 4,25 69,96
26 16,25 4,21 74,09
27 14,25 3,69 74,11
28 18,23 4,56 74,99
29 12,20 2,98 75,57
30 19,43 4,41 77,30

Reduction Average 77,34

Table 1. Percentage of reduction of the error by means of optimization using our
method.

8 Conclusion and Future Work

A novel method of quadrilateralization by means of spectral analysis of meshes
and Morse theory has been proposed, starting from a triangular mesh. This
method is topologically robust and guarantees that the complex base be al-
ways quadrilateral, thus avoiding ambiguities between quadrilaterals.

As future work, determination of the quantity of critical points in the
following way:

• Quadrangulation refinement to take surface geometrical singularities (to be
defined) into account, and optimization in terms of angles in quadrangles.
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(a) Triangu-
lated model
P(20,021
points)

(b) 27 patches
model (Branch
method)

(c) 27 patches
model (Branch
method)

(d) Triangu-
lated model
P(37,974 points)

(e) 25 patches
model (Branch
method)

(f) 25 patches
model (Branch
method)

Fig. 2. Comparison Between Branch’s Method and Eck and Hoppe’s Method.

• To solve the problem of the determination of the control points, explore
the use of nonlinear optimization methods, that can be applied efficiently
by means of a parallel implementation.
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