3B.3

Mesh Sizing with Additively Weighted Voronoi
Diagrams

Lakulish Antani!, Christophe Delage?, and Pierre Alliez?

! TIT Bombay lakulish@cse.iitb.ac.in
2 INRIA Sophia-Antipolis firstname.lastname@sophia.inria.fr

Summary. We address the problem of generating mesh sizing functions from a set
of points with specified sizing values. The sizing functions are shown to be maximal
and K-Lipschitz, with arbitrary parameter K provided by the user. These properties
allow generating low complexity meshes with adjustable gradation.

After constructing an additively weighted Voronoi diagram, our algorithm pro-
vides fast and accurate answers to arbitrary point queries. We have implemented
our mesh sizing technique as a sizing criterion for the 2D triangle meshing compo-
nent from the CGAL library. We demonstrate the performance advantages of our
technique through experimental results on various inputs.

1 Introduction

Mesh sizing is one important aspect of the quality mesh generation problem.
The size of the elements may be either a consequence of the meshing algo-
rithm when no sizing constraints are provided as input, or may be explicitly
controlled by the user or by the physical simulation carried on over the mesh.
This paper addresses the latter case, where fine control over the mesh sizing
is sought after.

When generating a mesh from an input domain boundary and a set of
constraints, it is desirable for the output mesh to satisfy quality, geometry, as
well as sizing constraints. Quality herein refers to the shape of the elements.
Geometry refers to the preservation (or faithful approximation) of domain
boundary and constraints. Sizing refers to the maximum size of the elements
defined at each point in the domain to be discretized. The corresponding siz-
ing function may, for example, be derived from the accuracy of the simulation.
Obviously, sizing and geometric constraints are related as preserving or ap-
proximating the domain boundary and constraints influences the final sizing.
Similarly, quality constraints over the shape of the elements may influence the
mesh grading, and hence the final mesh sizing.

The current mesh generation algorithms may take as input a sizing func-
tion provided, for example, as a so-called background mesh (sizing values are



336 Lakulish Antani, Christophe Delage, and Pierre Alliez

specified at the nodes of this mesh and interpolated). Although specifying
values at some nodes of this mesh is certainly easy, in some cases the values
are known only on the domain boundary, and/or at very few points. Altering
these values so as to reflect global mesh gradation constraints, or interpolating
sizing values everywhere in the domain from a sparse set of values is a difficult
task. In general, the features that a good sizing function must possess are the
following:

e In the approximating case, the domain boundary and constraints are ap-
proximated to a high degree of accuracy.
The mesh grading is adjustable by the user.
The number of elements in the final mesh is as small as possible.

Alliez et al. [ACSYDO05] propose a default sizing function p(x) which pro-
vides the element size at each point x. In this case the approximating require-
ment listed above is met by basing the sizing function upon the estimated local
feature size (LF'S, described later) of the domain boundary. However, comput-
ing this function directly requires iterating over each point on the boundary,
which turns out to be intractable for large point sets.

In this paper we propose a method to compute sizing functions over arbi-
trary domains using additively weighted Voronoi diagrams, which eliminates
the need for iterating over each point where the sizing is specified. Although
we illustrate the potential of our technique through the example of LFS-based
sizing functions, our technique applies to arbitrary point sets and sizing val-
ues. More generally, the main message of this paper is that the additively
weighted Voronoi diagram is a powerful data structure for interpolating scat-
tered values. We now briefly review the background used in the narrative.

2 Background

2.1 Basic Definitions

In this section, we review a few basic definitions that we will use throughout
the rest of the paper.

Definition 1 The Local Feature Size of a point x on a shape S (denoted by
LFS(x)) is the distance from x to the medial axis of S.

Intuitively, the local feature size captures local thickness, separation and
curvature altogether. For example, regions of the shape which are thin or
have high curvature are indicated by low values of LF'S. To compute the
local feature size from a point set P sampled from a shape S, we need to
compute a good approximation of the medial axis of S. This can be done if
the shape S is “densely sampled”. Before discussing how the LF'S can be
computed, we need a few definitions.



3B.3 Mesh Sizing with Additively Weighted Voronoi Diagrams 337

Definition 2 A point sample P of a shape S is an e-sample if no point x on
S is farther than eLFS(x) from a point in P.

Definition 3 The poles of a sample point x on a surface S are the two farthest
vertices of the Voronoi cell of x, one on each side of S.

It can be shown [AB98] that for an e-sampling P of a shape S, the medial
axis of S can be approximated by the set of poles of all points in P.

2.2 Sizing Function

It has been shown [ACSYDO05] that if p(z) is the maximal K-Lipschitz func-
tion that is nowhere greater than LFS(x), then u(x) possesses the features
described in the previous section. This sizing function is defined as:

p(x) = min (Kd(x,y) + LFS(y)), (1)
yeonN

and is shown to be one maximal such K-Lipschitz function. Here, 02 de-
notes the boundary point set, and d(z, y) denotes the usual Euclidean distance
between = and y. K is a “gradation parameter”, which determines, effectively,
the relative levels of detail required at or near the boundary of the object, as
compared to the details around regions of high curvature and/or low thick-
ness or separation. Previous methods have used a somewhat special case of
the above sizing field function, such as [MTT99] and [ORYO05], which use a
1-Lipschitz version of the above function (i.e., K = 1).

Note that this is only one form of the sizing function. Since it is based on
the Euclidean distance to boundary points and local feature size, it is purely
geometric in nature. However, we could use other functions in place of the
local feature size to capture other properties of the data. Once the values
of such a function are known for all points on the boundary, it can be used
without any modifications to later stages of the algorithm.

2.3 Additively Weighted Voronoi Diagrams

Consider a point set P = {p1,...,pn}, and a set of weighted sites S =
{s1,...,8,} such that s; = (p;, w;) where w; is the weight of the point. The
additively weighted distance from a point z to a site s; = (p;, w;) is defined
as:

dy(si,x) = d(pi, ©) — wi. (2)
The additively weighted Voronoi cell of s;, V(s;) is defined as:
V(si) = {z € RT| V] dy(si,2) < do(s5,2)}. (3)

The additively weighted Voronoi diagram V' (.S) is the cell complex whose
d-cells are the additively weighted Voronoi cells V (s;).



338 Lakulish Antani, Christophe Delage, and Pierre Alliez

3 Computing the Sizing Function

We can now recast the problem of computing the sizing function u(zx) for a
point x in a point set in terms of some operations on an additively weighted
Voronoi diagram. Suppose P = {p1,...,pn} is the set of sample points using
which the mesh is to be reconstructed. Then we consider the set of sites
S = {(ps, w;)} with centers at the sample points and weights given by w; =
—%(m. We see that:

ulr) = min(Kd, (s:, ) (4)

By definition, point = belongs to the Voronoi cell V(s;) of the site si
if and only if there is no site s; such that dy(sj,z) < d4(sg,x). In other
words, the minimum in the above definition of p(x) occurs with ¢ = k. (Since
K > 0.) The LOCATE operation of an additively weighted Voronoi diagram
does exactly this: It computes the following quantity:

s* = argn1sin(Kd+(s,z)). (5)

Therefore, evaluating p(z) simply involves locating z in the additively
weighted Voronoi diagram, and computing the additively weighted distance
to the corresponding site s*. Thus, a broad outline of the procedure to evaluate
wu(x) given a point set P would be:

1. Compute the Voronoi diagram of P.

2. Extract the poles from the set of Voronoi vertices. Assuming an e-
sampling, the poles approximate the medial axis.

3. For each boundary point p;, compute LFS(p;) by finding the distance to
the closest pole to p;.

4. Compute the additively weighted Voronoi diagram of S, the set of sites
derived from P [BDO05].

5. For each query point =, compute p(z) by finding the additively weighted
Voronoi cell it belongs to and computing the additively weighted distance
to the corresponding site.

Further optimizations can be made, based on the insertion algorithm for
additively weighted Voronoi diagrams [BD05]. The algorithm spends less time
on “hidden” sites as compared to the time spent on other sites. Therefore, we
first sort the sites in descending order of their weights. As a result, a site s
which would finally (when the algorithm terminates) be hidden by some other
site s’ would never be processed by the algorithm, since it would already have
encountered s’ and would simply be marked as hidden.



3B.3 Mesh Sizing with Additively Weighted Voronoi Diagrams 339

4 Experiments
We have implemented the above algorithm in C++, using the CGAL li-

brary [FGK"00]. Our test machine is a Pentium 4 PC running Linux at
1.8GHz. Our implementation is illustrated with the data sets shown by

Fig. 1(a) and 1(b).

(a) Hipo-fine point set (3183 (b) Bird point set (621 points).
points).

Fig. 1. Example 2D point sets.

The sizing functions generated by the algorithm for the above two data
sets are shown by Fig. 2 and 3. In both sets of figures, red indicates lower
values, and blue indicates higher values of the sizing function.

% r '
(a) K = 0.1 K=1 () K

Fig. 2. Sizing functions generated by our implementation for the point set bird,
with three different parameters K.

‘

= 100

(b)

As illustrated, for K = 0.1 (smooth grading), the sizing function takes
its lowest values (equivalently, indicates highest detail) in regions which are



Lakulish Antani, Christophe Delage, and Pierre Alliez

ek )

= 100

Fig. 3. Sizing functions generated by our implementation for the point set
hipo-fine, with three different parameters K.

thinner or have higher curvature. On the other hand, for K = 100, the sizing
function takes its lowest values all around the boundary. This is as expected,
as higher values of K give a higher weight to the distance term d(x,y) with
respect to the LFS(y) term, and vice-versa. To analyze the performance of
our implementation, we measure the following quantities (results are shown
by Figs 4 and 5):

e Time required to build the data structures. This includes steps 1 through 4
of the algorithm above, i.e., computing the Voronoi diagram, extracting the
poles, computing LFS and constructing the additively weighted Voronoi
diagram.

e Average time to query the sizing function at a point. This quantity was
measured by querying 100 random points inside a loose bounding box of
the domain and by computing the mean query time.

nnnnnn

. . B T
B - + i .
fw s g e TS gt S e oo )
& 0.0006 ;
¥

nnnnnn

aaaaaa

s
K

(a) Time to build data structures vs. K (b) Average query time vs. K

Fig. 4. Performances of our implementation for the point set hipo-fine.



3B.3 Mesh Sizing with Additively Weighted Voronoi Diagrams 341

e
w 0.00025 ¥ s
N K
¥ 4
LY el g
. i
0.8 " ;“,
s 2p
O
s
»
(a) Time to build data structures vs. K (b) Average query time vs. K

Fig. 5. Performances of our implementation for the point set bird.

The shape of the graphs occurs due to the following reason. While in-
serting sites into the additively weighted Voronoi diagram, a lower value of
K leads to overall lower weights, and consequently a smaller number of sites
contained within other sites. Higher values of K increase the number of such
sites, and hence more processing time is required to handle this. This same
issue results in a slowdown with increasing K while querying the value of the
sizing function.

To measure how the performance of our implementation depends upon
the input size, we use an ellipse data set. We consider the ellipse defined
by the implicit equation i—i + %—2 = 1 with @ = 10 and b = 4. The ellipse was
generated with a varying number of points and the performance was measured
for each case. Results are depicted by Fig. 6. For any given number of points,
the shape is as in the previous cases. The time increases with the number of
points as expected.

The performance of the implementation was also tested on a 3D point set
sampled on the bimba model, obtained by scanning a physical statue. We used
several versions of the point set with increasing numbers of points (from 100
to 55,000) randomly sampled from the original point set. Results are depicted
by Fig. 7.

We also compare the performance of our method with the naive approach
which examines every boundary point when computing the sizing function.
The comparison was performed using the ellipse point set with K = 0.1.
Results are shown by Fig. 8.

Figures 9, 10 and 12 illustrate our sizing function when provided as input
to a 2D mesh generator based upon Delaunay refinement. A plot of the number
of vertices in the butterfly mesh versus K is shown in Fig. 11. The number of
vertices decreases with increasing K and then stabilizes. This is due to the fact
that the amount of details given to areas with smaller LF'S values decreases



342 Lakulish Antani, Christophe Delage, and Pierre Alliez

Build Time + fug. Query Time +

o.014
o.012

.01
o.008
0.006
0.004

0,002

(a) Time to build data structures vs. (b) Average query time vs. No.
No. of points vs. K points vs. K

Fig. 6. Performance of our implementation for the point set ellipse.

Tine to build data structures ¢

(a) Bimba point set.  (b) Time to build data structures vs.
No. of points vs. K

fug. auery time o

0.0016
0.0014
0.0012
0.001
00008
0.0006
0.0004
o.0002 [

(¢) Average query time vs. No. of points
vs. K

Fig. 7. Performance of our implementation for the 3D point set bimba.



3B.3 Mesh Sizing with Additively Weighted Voronoi Diagrams 343

0.5 0.0035
Tine %o bulld dats structures Cold)
Tihe %o huild dats structures Cnew

g, query tihe Coldy
gl auery time Cnew

7
s
A
o7 & A
»:", R 0.0025
a.6 i

0,002

tine (2
tine (o>

o.0015

0,001

0.0005

° 5 SO
o 500 Tooe 1500 2000 2500 o 00 1000 1500 2000 2500

L ot vert no. of vertice

(a) Time to build data structures vs. (b) Average query time vs. No. of
No. of points points

Fig. 8. Comparison between the naive exhaustive method for obtaining the sizing
function and ours. (The older method is in red, ours is in green.)

with increasing K, and the sizing function becomes increasingly uniform in
the interior of the mesh.

vy
R AvAva:

4%? Ve

‘%%2%}»
VA
Sy N e

Fig. 9. Mesh generation of the USA map by Delaunay refinement.



Lakulish Antani, Christophe Delage, and Pierre Alliez

344

v
Pay

V)
P{ﬂl‘bﬂ

VAVAS

Fig. 10. Mesh generation of a butterfly by Delaunay refinement.

Mo. ©f mesh vertices +

+

Lb b bET

4

30088

25eee

20@g8

15808

EEES SWETYNTY-)

oy

18808

Seea

4.5

3.5

2.5

8.5

No. of vertices in the butterfly mesh against K.

Fig. 11



3B.3 Mesh Sizing with Additively Weighted Voronoi Diagrams 345

Fig. 12. Mesh generation of the Estonia map by Delaunay refinement.

5 Conclusions and Future Work

In this paper we show how the additively weighted Voronoi diagram can be
used as a powerful data structure for speeding up nearest-point queries. By
incorporating the additively weighted Voronoi diagram into an algorithm for
computing mesh sizing functions, we avoid iterating over every input point at
each point query. The resulting implementation is much faster than previous
methods in practice, and the sizing field computed by our method is not an
approximation, so we do not end up sacrificing accuracy for speed. Although
we used LFS as an example point-wise sizing, it could be replaced by some
other (application-specific) sizing values.



346 Lakulish Antani, Christophe Delage, and Pierre Alliez

The next step in our implementation is to integrate it into the next release
of the CGAL library, so that it can be used as a sizing criterion for both
CGAL’s 2D and 3D mesh generators. There is also much scope for further
work on the sizing function itself. The current sizing function is K-Lipschitz,
however it would be interesting to develop sizing functions which possess
other interesting properties, such as higher-order continuity. Some Voronoi-
based interpolation methods are discussed and compared in [BHBUO06], and
can make a good starting point for further work in this direction.

References

[ABYS]

Nina Amenta and Marshall Bern. Surface reconstruction by voronoi
filtering. In SCG ’98: Proceedings of the fourteenth annual symposium
on Computational geometry, pages 39-48, New York, NY, USA, 1998.
ACM Press.

[ACSYDO05] Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Des-

[BDO5]

[BHBUOG]

[FGK*00]

[MTT99]

[ORYO05]

brun. Variational tetrahedral meshing. ACM Trans. Graph., 24(3):617—
625, 2005.

Jean-Daniel Boissonnat and Christophe Delage. Convex hull and
voronoi diagram of additively weighted points. Algorithms - ESA 2005,
18th Annual European Symposium, pages 367378, 2005.

Tom Bobach, Martin Hering-Bertram, and Georg Umlauf. Comparison
of Voronoi based scattered data interpolation schemes. In Proceedings
of International Conference on Visualization, Imaging and Image Pro-
cessing, pages 342-349, 2006.

A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schonherr.
On the design of CGAL, a computational geometry algorithms library.
Softw.—Pract. Ezp., 30(11):1167-1202, 2000.

Gary L. Miller, Dafna Talmor, and Shang-Hua Teng. Data generation
for geometric algorithms on non-uniform distributions. Int. J. Comput.
Geometry Appl, 9(6):577-599, 1999.

Steve Oudot, Laurent Rineau, and Mariette Yvinec. Meshing volumes
bounded by smooth surfaces. In Proc. 1jth International Meshing
Roundtable, pages 203219, 2005.



