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Summary. We present an effective strongly uncoupled method, which, given a
closed and watertight surface mesh, generates its Delaunay constrained tetrahedri-
sation into sub-domains. Uncoupled means here that once chosen, a sub-domain
interface will not be changed anymore. This method aims at preserving in the final
tetrahedral mesh the properties of the mesh which would have been produced by the
original sequential algorithm, namely the constrained input surface mesh and the
quality and properties of the volume mesh. To achieve these objectives, our method
reorders internal vertices insertion (applying the sequential constrained Delaunay
kernel) such that the data can then be fully decoupled in sub-domains without in-
troducing more constraints. Moreover, the interfaces are carefully chosen such that
the load is roughly the same in all parts, and such that the interfaces separating
the sub-domains are “invisible” in the final mesh. Successfully applied to out-of-core
large scale mesh generation, this method allowed us to generate in double precision
a 210 million tet mesh on a 4GB core memory single processor machine, and a 680
million tet mesh for a very complex geometry.

Introduction

In order to represent accurately complex geometries and to capture fine phys-
ical phenomena, high fidelity computational simulations involve more and
more quality and density constraints on meshes. Generating large and high
quality meshes can be achieved using a parallel approach, in order to gain
performance in both memory consumption and CPU time.

A fast and robust sequential mesher like [7] has typical scalable speeds
of about 5 million cells/minute on industrial cases in sequential mode. With
such a mesher, the size of a mesh is not a problem as long as it fits into core
memory. This tends to move the main focus to core memory limitation rather
than pure meshing speed. Indeed, hardware and manufacturing limitations
make non-distributed large core memory machines very expensive therefore
justifies research of out-of-core or distributed parallel alternative methods for
the generation of very large computational meshes.
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Much effort must also be put on getting meshing properties as close as
possible to the ones obtained with classical methods, such as density, number
of cells, and quality of cells, but also reliability, so as to limit as much as
possible the side effects of using these alternative methods.

Our method targets therefore memory usage distribution (rather than
speed gain, which will eventually be addressed afterwards), a full sequential
code re-use to ensure maximum reliability and the same mesh properties
as the sequentially generated mesh.
To reach these targets, the keys of our method are :

1. The internal edges division process reordering, in order to localize
data and to achieve sub-domain decoupling.

2. Built up of sub-domain interfaces such that they do not interfere with
further insertions of vertices through the constrained Delaunay kernel.

Following the classification of parallel meshing techniques found in [1], the
method presented here is a discrete domain decomposition method for Delau-
nay constrained mesh generation. Larwood et al. ([10]) propose to decompose
the input surface mesh by creating interfaces with two-dimensional Delaunay
triangulations. To make their method more robust and effective they also re-
ject some cutting regions depending on angle considerations. Said et al. ([12])
decompose the initial coarse mesh by re-meshing an interface made of coarse
tetrahedra faces.

What we propose goes beyond these approaches : in order to decompose
the initial coarse mesh, we create the sub-domain interfaces through a three-
dimensional Delaunay tetrahedrisation. This allows us to avoid imposing new
faces into the mesh, by simply “freezing” some tetrahedra faces to create an
interface. This generates interfaces which have a minimal impact in the result-
ing mesh, as if they had been produced by an a posteriori mesh partitioning
method applied to the assembled mesh.

The method is based on a recursive bisection. An important feature of
our approach is that each bisection determines the final interface between the
two newly created sub-domains, very much in the way it would have been
produced in the original sequential core-memory mesher. In other words, this
method addresses the constraints on the sub-domains interfaces only during
their construction and not afterwards, thus allowing a highly uncoupled algo-
rithm.

1 Distributed mesh generation

From sequential to distributed mesh generation

Given a boundary surface mesh, we compute its coarse Delaunay constrained
volume mesh. A state of the art implementation of the involved algorithms
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comes from Inria [7]. This is the sequential whole-in-core basis we use for our
distributed meshing method.

Following a recursive bisection approach, this tetrahedral mesh is then
recursively split into two parts until an arbitrary number ns of sub-domains
is reached. Each sub-domain is then saturated to its final density using the
original whole-in-core sequential algorithm.
The work flow of the method is summarized in figure 1.

The kernel of our method has two main steps:
1. bisection of a sub-domain mesh S;
2. topology information management between sub-domains.

To be efficient, the first step involves more or less complex sub-steps while the
second mainly requires careful design and implementation.
We will describe them with more details in the following sections. An illus-
trated example can be found in section (2.1)

1.1 Bisection

This bisection step does not target an optimal mesh decomposition. Thus,
for sake of implementation simplicity and to assess the interest of the overall
method, we chose to cut the mesh around a bisection plane. Our method can
however be generalised to other kinds of decomposition (see [2]). The only
prerequisits are :

1. The ability to locate a point relative to the cutting surface, i.e. to find on
which side it is.

2. The ability to tell if an edge intersects a given width area around the
cutting surface or not.

Note that we use here a mesh partitioning approach only in order to com-
pute a bisection plane which will be used for local mesh generation,

Choosing a good bisection plane

An easy way to choose the cutting plane is to compute the inertia axis of the
sub-domain mesh (see [3]). In other words, for a sub-domain S, we compute
the inertia matrix

M = (τi,j)i,j=1...3 with τi,j =
∑
x∈G

(xi − gi)(xj − gj)

where g = (gi)i=1...3 is the gravity center of S and G is the set of gravity
centers of tetrahedra in S.

The inertia axis is given by an eigenvector associated to the highest sin-
gular value of M1. This method is very fast and uses the locality of data, i.e.,

1It can be simply computed by a successive power method.
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the more the domain gets divided, the more the inertia axis captures the mesh
topology. More information on this subject can be found in [5].

This inertia axis minimises the sub-domain spread (in some sense) from
itself. So to minimise the size of the interface, the cutting plane is chosen
orthogonal to it with the following considerations in mind:

1. the number of sub-domains may not be a power of two;
To be able to generate a final number of sub-domains which is not neces-
sarily a power of two, we partition this sub-domain with a ratio not equal
to one half.

2. a good load balance may be critical to get a mesh with the smallest number
of sub-domains possible and is almost required for most parallel applica-
tions that may use such partition.
To achieve a good load balancing in the subsequent bisection steps, care
should be taken that two coarse tetrahedra at this stage will not hold
the same number of tetrahedra in the final mesh. Evaluating the target
mesh metric and computing tetrahedral volume in that metric gives an
acceptable a priori final load evaluation, hence a more accurate load is
used to select the cutting plane position. For a tetrahedron T we compute:∫

T

dλ =
∫∫∫

T

1
h3(x, y, z)

dx dy dz

where λ is an approximation of the metric in S and h(x, y, z) approximates
the desired size at x, y, z.
This step will really make a difference in terms of performance and first
shot distribution on a non uniform mesh2.

Refining the mesh around the bisection plane

In this step, vertices are inserted around the cutting plane following a volume
constrained Delaunay kernel (see [5]):

Let Ti be the Delaunay tetrahedrisation of a set of points (Pk)k∈{1..i}. Then,
Ti+1 , the result of the insertion of point P = Pi+1 in Ti can be written

Ti+1 = Ti − CP + BP

where :

• CP is the set of elements whose circumsphere contains P . In order not to
lose faces given in the input surface mesh this set can be slightly restricted
(and then corrected) such that no required face is an internal face of CP .

2Our method excludes over-decomposition techniques that often compensate load
imbalance consequences by computing more sub-domains than desired and mapping
several ones on each processor.
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Fig. 1. Method work flow

• BP is the set of elements formed by joining P with the external faces of
the elements in CP .

To allow graded mesh generation the inserted vertices are computed by
dividing the existing coarse edges that intersect a given area around the bi-
section plane.

Let the refined zone be the area around the cutting plane which is refined
to its final vertex saturation.

The vertices insertion is conducted such that the refined zone is composed
of a layer at least two tetrahedron wide on each side of the cutting plane. This
will leave some degree of freedom in the next step for choosing the interface
faces inside this area.

After this point insertion step, the refined zone is almost meshed as it
would have been in the fully sequential method. With very large and fine
meshes, this unbalanced vertex insertion often triggers precision issues in the
constrained Delaunay sequential mesher. This is especially true when it comes
to cavity computation and points localization. Some sequential algorithms
have been slightly tuned to address these issues better.
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Choosing the interface

Let the cutting zone be a one-tetrahedron layer wide area on each side of
the cutting plane. By construction, the cutting zone is included in the refined
zone.

The interface between two sub-domains is formed by selecting faces of
tetrahedra from the cutting zone. Since this volume zone was refined to its
final saturation in the previous step, the selected surface is already consistent
with the overall size and does not have to be re-meshed or refined.

The interface between two sub-domains chosen at this step will remain
unchanged until the end of the mesh generation. This choice takes therefore
into account the following heuristic criteria:

1. As we target minimal communication between sub-domains, we should
minimize the number of faces in the interface.

2. As the quality of each interface element will condition the final quality of
the final mesh, we need to retain the best shaped ones.

3. To avoid over constrained tetrahedra (i.e. with several faces in sub-domain
interfaces or input boundary surface mesh), the interface should be as flat
as possible.

These simple heuristics lead to a multi-criteria optimization problem. We
solve it with local optimizations. Working on a per tetrahedron optimization
basis quickly shows its limits as it cannot optimize some frequent patterns.
If we use instead all tetrahedra around an interface vertex, we are able to
achieve better interface smoothing.

This method can lower the interface size by approximately thirty percent
while retaining the best shaped faces.

1.2 About constrained Delaunay meshing

Let I be the set of all the faces in the interface build in the previous step and
Z be the set of all the elements from the cutting zone with a face in I.

To ensure that our method generates a constrained Delaunay mesh of the
input surface (i.e. that interfaces do not introduce more constraints regarding
the Delaunay property), a sufficient condition is that for any point P that
will be inserted in the future, no interface face is an internal face of the cavity
of P , CP .
A slightly stronger but simpler condition is that for any point P that will be
inserted in the future :

CP ∩ Z = ∅
This is because if an internal face of CP is in the interface, then at least one
of its adjacent tetrahedra is in CP ∩ Z.

Since no point will be inserted further in the refined zone, a sufficient
condition is that the circumsphere of all the elements in the cutting zone is
included in the refined zone.
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This condition is not explicitly verified near the input (constrained) surface
mesh when the refined zone is built but the practice shows that it is not really
needed, as the extra layers of tetrahedra in the refined zone around the cutting
zone create an area large enough.

1.3 Topology information management

Topology information is kept by each sub-domain to allow the merge of all the
sub-domains into a single sequential mesh, or the generation of the distributed
local communication information which would be required by a parallel solver.

This step does not involve any specific technique but requires careful im-
plementation to assert its correctness and good performance. Basically, after
its bisection, each sub-domain sends the topology update to its neighbours.
In parallel mode, this step would become a synchronization point.

1.4 Memory consumption and method limits

Memory consumption has two local maxima: the first bisection and the last
sub-domain meshing step. The latter can be lowered simply by increasing the
desired number of sub-domains whereas the first maximum fixes the limit of
the largest achievable mesh on a given machine for this method.

For example, we were able to generate with our method more than 211
million cells in double precision (64 bit) on a 4GB machine (see section 2.3).

2 Applications

2.1 A Simple illustrated application

The first example illustrates how the method works for a decomposition into
two sub-domains. The case is a car embedded entirely into a large volume
(courtesy of PSA Group).

We deliberately chose here to put the cutting plane on the front of the car,
close to but without intersecting it. This is often a difficulty for distributed
mesh generation methods which only use surface mesh information.

The figure 2 shows the initial coarse volume mesh before and after it gets
refined around the bisection plane. Then figure 3 shows the resulting sub-
domain interface with or without faces choice optimisation. Last, figure 4
compares the sequential mesh with the one generated by our method in the
previously described configuration. It shows that our interface construction
enables us to generate a mesh which is almost identical to the sequential one
in terms of density. Moreover, on this final mesh, one cannot identify where the
cutting plane lies (see [11] for the planar case analysis in which the interface
lines can be seen in the resulting mesh i.e. it does not preserve the likewise-
sequential property we maintain here; see also [8] for tetrahedral meshes in
which the inital coarse mesh surfaces can be seen).
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Fig. 2. Initial coarse mesh (on the left, the black line gives the location of the cutting
plane) and mesh refined around the cutting plane (right). View is a cut orthogonal
to the bisection plane.

Fig. 3. Natural (left) and optimized (right) sub-domain interface

2.2 Sequential versus out-of-core meshing comparison

In this section we present a more complete comparison of the sequential mesh
and the one generated with a 4 domain decomposition.

For this purpose we consider 5 industrial or non trivial test cases. They
are illustrated on figures 5, 6, 7, 8, and 9.

The most interesting one is the one on figure 9 representing a cube with
1,000 balls of various size randomly placed in the volume (such geometries
are used for the simulation of concrete, where the balls model the aggregates,
and the volume between the spheres models the cement). This is a typically
challenging case for a mesher because of the numerous randomly placed mesh
constraints generated by the balls, and even more challenging in a distributed
paradigm such as the one used by out-of-core or parallel meshers.
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Fig. 4. Comparison of sequential (above) and out-of-core (below) meshes ; colors
identify the two sub-domains on the latter. View is a cut orthogonal to the bisection
plane.
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General view Close view of car

Sequential Out-of-core Difference

q ∈ [1..2[ 107,790 84,757 -23,033
q ∈ [2..3[ 8,993 6,539 -2,454
q ∈ [3..4[ 648 626 -22
q ∈ [4..5[ 103 129 26
q ∈ [5..6[ 30 26 -4
q ∈ [6..7[ 9 9 0
q ∈ [7..8[ 1 3 2
q ∈ [8..9[ 3 2 -1
q ∈ [9..10[ 4 3 -1

q ∈ [10..12.37[ 4
q ∈ [10..12.59[ 2 -2

Worst quality 12.37 12.59

Number of cells 117,585 92,096 -25,489

Quality comparison

Fig. 5. Case #1, Peugeot Car (courtesy of PSA Group)

The tables below the figures expose the quality diagrams of the 5 test
cases. For each case, they give the distribution of the tetrahedra in terms
of quality, the worst tetrahedron quality and the total number of generated
elements.

The element quality we consider here is the finite element quality

q = α
h

ρ

where: h is the element diameter, ρ the inradius, and α a normalisation coef-
ficient. This quality varies from 1 to ∞. The closer q is to 1, the better the
element is.
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Geometry Volume mesh cutting plane

Sequential Out-of-core Difference

q ∈ [1..2[ 2,560,869 2,507,554 -53,315
q ∈ [2..3[ 43,911 45,461 1,550
q ∈ [3..4[ 406 420 14
q ∈ [4..5[ 93 86 -7
q ∈ [5..6[ 34 25 -9

q ∈ [6..101.8[ 22 25 3

Worst quality 101.8 101.8

Number of cells 2,605,335 2,553,571 -51,764

Quality comparison

Fig. 6. Case #2, Cylinder Head (courtesy of IFP)

These tables show that the meshes generated by our method with a 4 sub-
domains decomposition are very close to the sequentially generated ones in
terms of size and quality comparison.

All these comparisons demonstrate our method’s ability to produce meshes
very close to their sequential counterpart (when it exists).

2.3 Large scale out-of-core meshing

For the last application, we were interested in testing our method for the
generation of very large meshes, such as the ones one will eventually use
to simulate with great accuracy the behaviour of a given concrete mixture
under stress. Ultimately, these simulations will use tomographic experimental
information for the distribution and shape of the numerous aggregates, making
it very important to be able to mesh volumes with a very large number of
constrained polygonal surface cells of various shapes.

These geometries are very challenging for several reasons: the large num-
ber, the varying sizes, the distribution and proximity of the aggregates impose
very strong constraints firstly to the sequential volume mesher used, and sec-
ondly to our method. The level of details required also induces very large
meshes, making them practically impossible to generate with classical meth-
ods.
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Geometry Volume mesh cutting plane

Sequential Out-of-core Difference

q ∈ [1..2[ 1,502,094 1,401,389 -100,705
q ∈ [2..3[ 22,826 23,518 692

q ∈ [3..4.597[ 18
q ∈ [3..4.051[ 17 -1

Worst quality 4.597 4.051

Number of cells 1,524,938 1,424,924 -100,014

Quality comparison

Fig. 7. Case #3, 2 Stroke Engine

General view General cut view

Sequential Out-of-core Difference

q ∈ [1..2[ 10,613,508 10,358,106 -255,402
q ∈ [2..3[ 149,971 100,248 -49,723

q ∈ [3..7.495[ 117
q ∈ [3..6.717[ 67 -50

Worst quality 7.495 6.717

Number of cells 10,763,596 10,458,421 -305,175

Quality comparison

Fig. 8. Case #4, Non Trivial Artificial Geometry
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General cut view Inside view

Sequential Out-of-core Difference

q ∈ [1..2[ 17,826,145 16,841,679 -984,466

q ∈ [2..12.81[ 157,995
q ∈ [2..6.979[ 226,487 68,492

Worst quality 12.81 6.979

Number of cells 17,984,140 17,068,166 -915,974

Quality comparison

Fig. 9. Case #5, Geometry for the modelling of concrete (courtesy of CEA-DEN)

For this purpose, we used two geometries and corresponding surface
meshes.

Refined Mesh of Case #5

We refined the input surface mesh of the previous figure 9 case (using the
surface remesher Yams[4]) and successfully computed out-of-core sub-domain
decomposition using respectively 16, 32 and 64 sub-domains.

The resulting meshes contain approximately 211 million tetrahedra (the
inside of the 1,000 included balls was not meshed because the cement be-
haviour is targetted here). The figure 10 shows the boundary surface mesh of
a sub-domain for the 16 sub-domain generation. The computation was carried
out in out-of-core mode with our approach on a 4GB Opteron@2.4GHz ma-
chine in approximately 5 hours. Generating this mesh with the whole-in-core
double precision sequential mesher would have required approximately 60GB
of memory.

The memory used at the first bisection was 4GB. At the final sub-domain
meshing step it was 3.6GB (respectively 1.8GB) for a decomposition in 16
(respectively 32) sub-domains.
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Fig. 10. The inside of a sub-domain, 211 million cells case
(input boundary surface and interface triangles only)

General cut view Inside view

Fig. 11. Case #6, Geometry for the modelling of concrete (courtesy of C-S)

We can also note that we successfully tested our method on the case #5
geometry with partitions as large as 4096 sub-domains.
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Case #6: 500,000 polyhedral cells concrete model

The last application aims at demonstrating our method’s robustness through
the very high complexity of the geometry : 500,000 polyhedral cells of various
shapes and sizes, randomly placed in a rectangular box.

The geometry is shown on figure 11 and provided courtesy of C-S. The
input surface mesh contains 40.5 million triangles and 21.2 million vertices.
This kind of geometry with a very large input boundary surface defining a
rather small volume is one of the worst possible situations regarding memory
consumption of our method (see section 1.4), the initial coarse mesh already
being very dense.

The resulting volume mesh generated in out-of-core mode contains ap-
proximately 680 million tetrahedra (the inside of the 500,000 polyhedral cells
was meshed in this case).

The computation of this case was carried out in out-of-core mode on a
64GB Bull Novascale system in double precision for 8 sub-domains. It took
approximately 3 days to compute, with almost a third of it spent reading and
writing the files, and required 60GB of memory. Generating this mesh with
our whole-in-core double precision sequential mesher, would have required ap-
proximately 140GB of memory. This is a typical example of extreme geometry
hard to mesh in sequential, and even more challenging in parallel because of
the constraint imposed by the surface mesh, which must be preserved exactly
in the volume mesh. It is also particularly hard for our method, because of
the fact that a large amount of the final vertices are already present in the
input mesh.

Conclusion and future works

We presented in this article a strongly uncoupled domain decomposition
method that relies heavily on an existing sequential mesher with very lit-
tle modifications. It is able to generate distributed meshes in which parallel
interfaces are almost the same as if they came from an a posteriori partition
of the full sequential mesh.

This method was successfully applied to generate, in an out-of-core mode,
large and good-quality meshes on limited core-memory resources, thus increas-
ing the memory capacity by an order of magnitude.

The out-of-core method presented here can be easily adapted to implement
a fully parallel message-passing approach, allowing the generation of very large
tetrahedral meshes on distributed memory parallel systems more quickly.

It will also offer the advantage of providing an overall behaviour very
similar to the original whole-in-core sequential algorithm.

Some adaptation will be made to the vertex generation and insertion, and
the cutting zone mesh optimisation by vertex moving to get a consistently
better mesh.
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