
for Surrogate Geometry

Per-Olof Persson1, Michael J. Aftosmis2, and Robert Haimes3

1 Massachusetts Institute of Technology persson@mit.edu
2 NASA Ames Research Center aftosmis@nas.nasa.gov
3 Massachusetts Institute of Technology haimes@mit.edu

Abstract. This work examines the use of Loop subdivision surfaces as a surrogate
for CAD or analytic-based geometry. The modeler begins by constructing a subdivi-
sion surface from a full-resolution imported surface triangulation, and then queries
this surface to return information about the model. Evaluations on the surface are
performed using a simplified implementation of Stam’s exact evaluation procedure
for Loop subdivision surfaces. The paper presents details of this simplified approach
and shows how it can be used to provide surface coordinates, derivatives, and cur-
vatures for evaluations at arbitrary parameter values. The implementation also pro-
vides the ability to tag hard-edges (and implicitly hard-vertices) in the imported
geometry to preserve creases and points using a one-dimensional cubic-spline scheme
which preserves C2 continuity along hard-edges. Away from hard-edges and vertices,
the Loop surface is C2 continuous everywhere except in the immediate vicinity of
irregular vertices in the control-net where it still retains C1 continuity. Examples
are presented using control-nets built from a variety of legacy triangulations with
widely varying complexity. To demonstrate the modeler, we use a simplified mesh-
ing application which queries arbitrary locations on the surface to support either
uniform or curvature-adaptive triangle refinement. The simple evaluation rules for
surface coordinates and derivatives make the scheme extremely fast and robust.
Since the input triangulation becomes the control-net of the subdivision surface, it
is not necessarily an interpolant for the input data. Various approaches for making
the surface interpolating are discussed, and this area remains one of active research.

1 Introduction

With increasing computing power pushing simulation technologies toward
ever-higher fidelity, modeling applications in a broad spectrum of disciplines
have sought ever-tighter integration with the underlying geometry. CAD-
based modeling techniques have appeared in fields as diverse as Earthmoving,

On the Use of Loop Subdivision Surfaces



376 P.-O. Persson et al.

Aerodynamic Vehicle Design, and Endoscopic Surgery. In the most tightly-
coupled approaches, applications communicate with the underlying CAD-
kernel either through vendor-provided “direct” CAD interfaces or vendor-
neutral programming interfaces. In many situations, these CAD-based ap-
proaches are very attractive since they avoid translation errors and provide
the modeling application with direct access to the latest revision of the fully
detailed geometry. This provides important geometric consistency, since the
same CAD models are used for creation, design, analysis and manufacturing.

Nevertheless, CAD-based modeling is not always either feasible or desir-
able. “Legacy geometry” is one example of an area which can cause difficulties
for CAD-based simulations. Most simulation systems have to cope with mod-
els that date from pre-CAD eras, or even old CAD models that are somehow
inconsistent when imported into current CAD systems. An aircraft geometry
from two decades ago may only have been defined as a series of loftings, a
faceted polyhedral mesh, or a surface triangulation that is considered coarse
by the standards of modern simulations. A modern finite element solver may
require position and curvature information within the triangles of a surface
triangulation to achieve higher-order accuracy. CAD definitions for legacy
models get lost, they get damaged by translation, or often they simply never
existed.

In other situations, CAD-based modeling is simply not desirable. Using
the CAD system to perform geometry queries and manipulation means that
this system must be running and available to serve your application. This
consumes CAD licenses that are typically both expensive and limited in num-
ber. Moreover, it requires the CAD system to be running either on the same
platform as the simulation code or in direct communication with the plat-
form running the simulation code. When running simulations on thousands
of processors of massively parallel hardware, license consumption alone is an
issue of real concern. And in addition, such high-powered computing hardware
is typically protected by firewalls and other perimeter defenses that restrict
communication, and accessing an non-local CAD-engine may be difficult.

All of these situations require a CAD-free surrogate for the queries that
the CAD system usually fields in CAD-based simulations. In this work we in-
vestigate the use of Loop subdivision surfaces as an underlying surface model.
Loop subdivision surfaces [3] have been extensively studied over the past two
decades in the fields of computer graphics, animation [10] and scattered data
surface reconstruction [4]. They can be used to represent globally smooth lo-
cally manifold surfaces of arbitrary global topology. The surface is defined
by a control-mesh which is a watertight triangulation (simplicial polytope)
constructed using some existing discrete representation of a model. While
subdivision surfaces have simple rules for updating existing node locations



377

and performing new insertions, our use of them for geometric modeling is
enabled by Stam’s exact evaluation procedure for Loop subdivision surfaces
[6, 7].

Any mesh generation or mesh adaptation application uses geometry eval-
uation and inverse evaluation to place points on the entity of interest. These
applications read and hold the geometry (usually in the form of a Boundary
Representation – BRep) and may support a large number of curve and surface
primitives. Some applications depend on a geometry kernel (or Direct CAD
interface) to deal with the complexities of the individual entities. These ker-
nels directly provide evaluation functions that have one degree of freedom for
curves (t) and two for surfaces (u, v). In either case, vertices are placed directly
on geometry by direct evaluation or “snaps” (inverse evaluation) which can
be performed by the use of derivatives of the forward evaluation. When using
a subdivision surface as the underlying geometry, Stam’s evaluation proce-
dure answers the same type of requests by providing geometry for arbitrary
parameter values. In the theoretical development, we describe a simplified im-
plementation of this procedure and algorithms for determining the first and
second derivatives of the surface. The capability to construct surface geom-
etry and its derivatives at arbitrary parameter values provides a very fast
and lightweight modeler and gives a simple and uniform view of the surface
(i.e. one type – triangles) that is locally manifold. Moreover, unlike classical
tensor-product spline or BRep surfaces, this approach is independent of the
global complexity of the surface and is not constrained to rectangular patches.

An approximating subdivision surface does not necessarily pass through
the nodes of the control-mesh (it is not an interpolant of this node set). The
literature in computer graphics and scattered data reconstruction highlights
several approaches to make the surface interpolating, and displacement [5],
multi-resolution [9] and adaptation [4] are addressed in our discussion.

2 Surface Parametrization by Subdivision

2.1 Subdivision Surfaces

The main idea behind subdivision surfaces is to represent a smooth surface
by a control-mesh. This mesh can be enhanced by various refinement schemes,
and in the limit of infinitely many refinements it approaches the “true” sur-
face. In practice these refinements are repeated until the surface is sufficiently
fine. This is the approach used in applications from computer graphics and
visualization where subdivision surfaces are most commonly employed.

A distinction is made between interpolating and approximating subdivi-
sion schemes. In the interpolating schemes the nodes of the control-mesh stay
fixed during the refinement. The resulting surface is then an interpolant of the

On the Use of Loop Subdivision Surfaces for Surrogate Geometry



378 P.-O. Persson et al.

nodes in the control-mesh, which is an attractive property. However the sur-
faces generated with these schemes are sometimes not sufficiently smooth, and
the convergence to the “true” surface is relatively slow. The approximating
schemes, on the other hand, generally do not produce surfaces which interpo-
late the control-mesh, but they do result in smooth surfaces with continuous
second derivatives everywhere except for at certain isolated points.

When considering the functions essential to a geometry kernel (when used
for mesh construction and adaptation) there are two basic requirements. The
first is the ability to evaluate, that is, given parameters within the geomet-
ric support produce 3D coordinates of the point on the entity. In the case
of subdivision surfaces, the support is the control-mesh triangles and the pa-
rameters are the barycentric coordinates within each triangle. The second
required function is the ability to find the nearest point on the geometry to
a given set of coordinates. This

”

snap” (inverse evaluation) is usually cast
as a minimization problem and is efficiently solved by the use of an iterative
Newton solver. In order to construct this solution the forward evaluation is
required along with both first and second derivatives at the evaluated point.
The resultant position may not be in the current control-mesh triangle, which
will be reflected in the barycentric coordinates (being outside the valid range).
The neighboring control triangle opposite the vertex with the largest negative
weight is set as the current support and the Newton solver is restarted within
this triangle. This converges quickly and is robust requiring little additional
intervention (but can be sensitive to starting locations when the geometry is
concave).

In this work we are concerned about second derivatives, both for computing
curvatures and for applying the Newton solver (as described above). Therefore
our current focus is on approximating schemes. In Section 3.3 we discuss
various alternatives for obtaining an interpolating model.

2.2 Spline Curves

For one-dimensional curves the subdivision schemes are particularly simple.
The control-mesh is a polygon and the limiting procedure gives a smooth
curve, see Fig. 1 for an example. At each refinement step, the polygon edges
are divided in two. In this example we use an approximating scheme where the
inserted midpoint at level j + 1 is simply the average of the two neighboring
nodes at level j,

xj+1
2i+1 = (xj

i + xj
i+1)/2. (1)

The original nodes are moved to a linear combination of their previous loca-
tions as well as their neighbors’,

xj+1
2i = (xj

i−1 + 6xj
i + xj

i+1)/8. (2)

The limiting curve is a cubic spline and it is C2 continuous. We note
that the subdivision rules (1) and (2) are local, and therefore a node in the



379

Control Polygon One Refinement Two Refinements

Fig. 1. Subdivision of a polygon using an approximate scheme. The limiting curve,
which is the “true” smooth curve being represented, is shown with thin line.

control-polygon only affects the curve in a neighborhood around the node. As
we pointed out above, the refined polygons will approach the “true” curve in
the limit, but it is also possible to compute the limiting positions of the nodes
at any level by the simple expression

xj,∞
i = (xj

i−1 + 4xj
i + xj

i+1)/6. (3)

where xj,∞
i denotes the limiting position of point i at refinement level j.

2.3 The Loop Subdivision Scheme

For surfaces, various types of elements can be used for the control-mesh. While
the original approximating subdivision schemes of Catmull and Clark [1] were
based on quadrilateral meshes, we have worked exclusively with the Loop
scheme [3] for triangular meshes. The control-mesh is defined by a set of nodes
as well as a triangulation. In a refinement step, each triangle is split into four,
and we need rules for the location of the new midpoint of the edges as well
as the new location of existing nodes, see Fig. 2. The number of neighbors of
existing nodes is k (the valance), and the value we use for the weight ω was
proposed by Loop [3], see Warren [8] for a simpler alternative.

Again we can compute the limiting location for the nodes at any level of
the refinement. The formula is the same as the one to advance one level (right
plot in Fig. 2), but with ω replaced by 1/(k + 3ω/8), see Fig. 3. We can also
compute the tangent vectors (and from them the surface normal) using the
expressions

t1 =
k−1∑

i=0

cos
2πi

k
xi, t2 =

k−1∑

i=0

sin
2πi

k
xi (4)

where xi is the ith neighbor of the considered node.
Figure 4 shows an example of a control-mesh with the limiting Loop subdi-

vision surface. Note again that this is an approximate scheme and the nodes of
the control-mesh are not located on the surface. The surface is C2 continuous

On the Use of Loop Subdivision Surfaces for Surrogate Geometry



380 P.-O. Persson et al.

1
8

1
8

3
8

3
8

ω

ω ω

ω

ω

ω

1− kω

ω =
1
k

5
8
− 3

8
+

1
4

cos
2π
k

2

Mid-edge insertion Update of existing vertex location

Fig. 2. The Loop subdivision scheme. The figures show the weights used to compute
a new mid-edge point (left) and how to update existing nodes (right).

Limit position of internal vertices
χ

χ χ

χ

χ

χ

1−kχ

χ =
1

k + 3ω
8

Fig. 3. The node positions in the limit of infinitely many refinements using the
Loop scheme. This effectively moves the nodes of the control-mesh to the “true”
surface.

everywhere except at irregular nodes (nodes that do not have six neighbors).
The subdivision process converges fast and for visualization purposes a few
refinements are sufficient to obtain a good approximation of the surface.

It should be noted that the subdivision scheme defines a hierarchy of
“control-nets” each having the same limiting result. The left part of Fig. 4
results in the middle part after applying one subdivision operation. This set
of vertices can be considered a new control-polygon and then results in the
right part of Fig. 4 after another application of the operator.



381

Control-Mesh
One Refinement Two Refinements

Fig. 4. Subdivision using the Loop subdivision scheme. The figures show the limiting
surface together with the initial control-mesh, and two refined meshes.

2.4 Hard vs. Soft Edges

The Loop scheme produces smooth surfaces everywhere, including at the
boundaries of the mesh (Fig. 5, left). Sometimes it is desired to have sharp
boundaries (“creases”), which requires special treatment in the subdivision
process. We tag the edges of the control-mesh corresponding to the sharp
boundaries as hard edges. In the refinement of these nodes we use the one-
dimensional spline scheme (1)-(3) instead of the Loop scheme. This will rep-
resent a smooth boundary curve with a jump in the tangent plane on the two
sides of the curve (Fig. 5, middle).

In a similar way, the vertices of the boundaries can be tagged as hard
vertices to produce a jump in the tangent along the boundary curve. Since a
vertex can not be subdivided, the scheme for hard vertices is simply to leave
them fixed at their original positions (Fig. 5, right).

Soft Edges Hard Edges Hard Vertices

Fig. 5. Hard and soft edges and vertices. The hard edges are shown in thick lines
and the hard vertices are shown with large spheres.

On the Use of Loop Subdivision Surfaces for Surrogate Geometry



382 P.-O. Persson et al.

3 Parametrization and Evaluation

Using the subdivision scheme and the limiting expressions, we can evaluate
the surface properties at the control nodes and at the nodes of any refined
mesh. However, in order to be useful in a general geometry setting we need
a parameterization of the surface and the ability to evaluate at arbitrary
locations. There is not much literature on the parameterization of subdivi-
sion surfaces, presumably because the refinement process fulfills most all the
needs in computer graphics and animation. Stam showed how to evaluate the
Catmull-Clark surfaces for arbitrary parameter values [7], and later extended
this analysis to Loop surfaces [6]. We use a simplified form of these methods,
and we describe the parameterization for regular triangles in this section,
while the next section discusses arbitrary triangulations.

The parameterization of spline curves are well-known, and for a “smooth”
edge segment (no hard vertices or end points) we number the four consecu-
tive polygon nodes xi−1, . . . ,xi+2 and introduce a parameter value t ∈ [0, 1]
between node i and i + 1. The explicit expression for the spline curve is then:

x(t) =
[
t3 t2 t 1

] 1
6







−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0













xi−1

xi

xi+1

xi+2







Similar expressions are available for edge segments neighboring hard vertices
(interpolating control points), see de Boor [2] for details.

3.1 Parametrization – Regular Triangles

In a regular triangle, the subdivision surface reduces to the common box
splines for which analytical expressions are available. Each node has exactly
six neighbors and the total number of nodes in the triangle or adjacent to it
is 12 (Fig. 6). A natural parameterization is given by the local barycentric
coordinates in the triangle (right plot). Since u + v + w = 1 we can eliminate
one of these coordinates, and we choose to parameterize by v, w.

For evaluation at the local coordinates v, w, we compute all monomials
and collect in a column vector:

c(v, w) = (1, v, w, v2, vw,w2, v3, v2w, vw2, w3, v4, v3w, v2w2, vw3, w4)T (5)

These basis functions are mapped to a Lagrangian basis by multiplication by
the matrix φ below. We obtained this matrix from the expressions in [6] after
substituting u = 1− v −w, renumbering, identifying coefficients, and writing
in matrix form.



383

Local Node Numbering

1

2 3

4 5

6

7

89

10

11

12

Local Coordinates

1

2 3

(u,v,w)=(1,0,0)

(u,v,w)=(0,1,0) (u,v,w)=(0,0,1)

Fig. 6. The local node numbering for regular triangles (left) and the local barycen-
tric coordinates u, v, w where u + v + w = 1 (right).

φ =
1

12



















6 0 0 −12 −12 −12 8 12 12 8 −1 −2 0 −2 −1
1 4 2 6 6 0 −4 −6 −12 −4 −1 −2 0 4 2
1 2 4 0 6 6 −4 −12 −6 −4 2 4 0 −2 −1
0 0 0 0 0 0 2 6 6 2 −1 −2 0 −2 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 2 0 0 0 −2 −1
1 −2 2 0 −6 0 2 6 0 −4 −1 −2 0 4 2
1 −4 −2 6 6 0 −4 −6 0 2 1 2 0 −2 −1
1 −2 −4 0 6 6 2 0 −6 −4 −1 −2 0 2 1
1 2 −2 0 −6 0 −4 0 6 2 2 4 0 −2 −1
0 0 0 0 0 0 2 0 0 0 −1 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 1 2 0 0 0



















(6)

Finally we create a node array with the 12 local nodes according to the
numbering in Fig. 6 (a 3-by-12 matrix):

x = (x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12) (7)

Using these expressions the surface location is a product of these matrices and
the vector c(v, w):

x(v, w) = xφc(v, w) (8)

The first and second derivatives are obtained in a similar way by differentiating
the simple monomials in c(v, w).

3.2 Parameterization – Irregular Triangles

The method Stam suggested for irregular triangles is based on the fact that
the subdivision process introduces new triangles with regular neighborhoods

On the Use of Loop Subdivision Surfaces for Surrogate Geometry



384 P.-O. Persson et al.

Control-Mesh One Refinement Two Refinements

Fig. 7. Refinement of a triangle with irregular nodes. The triangle under considera-
tion is shown in light gray, and the triangles with regular neighborhoods are shown
in dark gray.

that can be evaluated using the box spline expressions (see Fig. 7). Clearly,
after a sufficient number of refinements any point in the triangle can be cov-
ered by a regular triangle and evaluated using (8). However, for points close
to an irregular node a very large number of refinements might be required.
Stam solved this problem by introducing an eigen-decomposition of the refine-
ment matrix, and was able to evaluate arbitrary close to irregular nodes in a
constant number of operations. In our work, we choose a simpler solution in
which we refine until the requested position is covered by a regular triangle or
until some maximum subdivision depth is reached. If the maximum depth is
reached (usually around 25 subdivisions), then we nudge the requested posi-
tion onto the center triangle (which will be regular) and subdivide once again.
At this point the evaluation using a regular neighbor can be applied. We use
this special treatment for points close to the irregular nodes and in the vicinity
of hard edges or vertices.

The crucial step of our scheme is to subdivide around the point v, w, iden-
tify the new triangle and the new parameter values v, w, and repeat recursively
until the neighborhood is regular. During this refinement we use a local rep-
resentation of the relevant triangles only. Figure 6 shows our node numbering
for this local submesh. It is constructed by selecting a starting vertex in the
triangle (this also sets the new v, w). The other two vertices are selected in a
right-handed manner. The fourth vertex is selected as the node opposite the
first. The rest are defined by winding around the triangle in a right-handed
fashion and collecting all of the next level vertices that support any triangle
that touches the target. This neighborhood is fully defined by the valance of
each of the vertices of the target triangle (3 integers) and the positions of each
of the neighborhood nodes, where the number of nodes is k1 + k2 + k3 − 6.
This small memory footprint does not overwhelm the stack as the recursive
procedure continues.

The next level is reached by selecting the appropriate subtriangle (as seen
in the center of Fig. 7) based on v, w. A new neighborhood is specified by



385

Algorithm 1: Subdivision Surface Evaluation

Description: Evaluate a subdivision surface for arbitrary parameter values
Input: Control-mesh, triangle t, local coordinates v, w
Output: Surface location x and its first and second derivatives dx, ddx

function [x, dx, ddx] = loopeval(t, v, w, depth)

if t regular
Evaluate surface location and derivatives using (8)

else
Subdivide t and all triangles sharing its nodes
if depth ≤ 25

t′ = new triangle covering v, w
v′, w′ = new local coordinates in t′

else
t′ = center subtriangle
v′, w′ = new local coordinates (on edge of subtriangle)

end if
[x′, dx′, ddx′] = loopeval(t′, v′, w′, depth + 1)
Inverse mapping: x = x′, dx = ±dx′/2, ddx = ddx′/4

end if

Fig. 8. High-level pseudo-code for evaluation of subdivision surfaces at arbitrary
parameter values.

applying the subdivision rules (as seen in Fig. 4) where the hard edges are
defined during the splitting of existing hard edges. Hard vertices need not be
explicitly marked because they are defined when the number of hard edges
touching a node is greater than two. The valence of the 3 subtriangle vertices,
the neighborhood coordinates, as well as the new v, w are passed on to the
next recursion level. Finally, the computed derivatives are adjusted because
of the mapping between the new and the old parameters v, w. Our complete
algorithm is described in pseudo-code in Fig. 8.

3.3 Generating an Interpolating Result

The fact that the Loop scheme is not interpolating might be a major prob-
lem in some applications. The subdivision schemes that are interpolating [10]
produce less smooth surfaces than the Loop scheme, and we would therefore
loose the ability to provide geometry “snaps” (solving with Newton’s scheme
across the triangles). This would make the scheme unusable in our context.

An alternative method that we have used with some success is to solve
for new node locations in the control-mesh such that the “true” Loop surface
interpolates the original nodes. This simply amounts to solving

S∞(xinterp) = x (9)

On the Use of Loop Subdivision Surfaces for Surrogate Geometry



386 P.-O. Persson et al.

Interpolating Splines

Fig. 9. Splines computed from new control points such that the curve interpolates
the original points. The right plot shows that the resulting curve is not always
well-behaved. In this case it has a cusp.

for the new nodes xinterp, where x are the original node locations and S∞

the linear operator that produces the limiting node locations. For the Loop
scheme, S∞ is essentially the stencil in Fig. 3, except for hard edges/vertices.
The linear system of equations (9) is well conditioned and can be solved in
just a few iterations with a Krylov subspace solver.

Our initial experiments show that the surfaces generated by xinterp are
well-behaved for uniform control-meshes, see left plot in Fig. 9 for an example
of a spline. However, for more general control-polygons, the resulting curve
might have cusps (right plot). A similar example for surface meshes using the
Loop scheme is shown in Fig. 10.

One correction algorithm that shows more success is to post-process the
results in a manner similar to that in [5]. By maintaining v, w and the parent
triangle for any vertex, it is possible to adjust the position by applying the
linear weights times the displacement of the control-net to the limiting surface.
This insures that the adjusted surface passes through the control-net at the
expense of C1. Approaches, such as multi-resolution [9] and adaptation [4]
promise both smoothness and interpolation, and these are subject of on-going
investigations.

4 Results

This work is aimed at investigating the utility of Loop subdivision surfaces
as surrogate geometry. In order to demonstrate their use in this role, we have
constructed a very simple surface mesh refinement application. Within this
application, all geometry constructors (requests for new points on the surface)
are based on the version of Stam’s evaluation procedure described in Algo-
rithm 1. We simply provide the local parameterization at the desired vertex
insertion point, and this algorithm returns the xyz -triple for the constructed
vertex. An analogous constructor is central to virtually all geometry/CAD-
based mesh generation systems, and is the key ingredient in the use of Loop



387

Interpolating Subdivision Surfaces

Fig. 10. Loop subdivision surfaces computed from new control points such that the
surface interpolates the original points. The left plots show (original) control-meshes,
and the right plots show the surfaces. The bottom example shows a (probably un-
desired) negative effect.

subdivision surfaces as a CAD-free modeler. Algorithm 1 also provides first
and second derivatives of the surface at the evaluation location.

Aside from this central feature, the mesh refinement application demon-
strated in this section is very simplistic and has relatively few features of merit.
It was written simply as a platform for testing/demonstrating the constructor,
and is not (in any way) intended as a viable mesh generator. Mesh refinement
proceeds by performing a set of centroidal insertions within a set of triangles,
followed by an edge-swap pass which performs swaps based upon the evalua-
tion of a maxmin predicate. It is important to recognize that the tessellations
shown are not generated in the traditional subdivision construction manner
as so often seen in the literature.

Each example begins with the control-net for the underlying subdivision
surface read in from a legacy triangulation file. No coarsening of the legacy tri-
angulation is performed. For the purpose of demonstration, a simple dihedral-
angle criteria on triangles in this control-net is used to establish hard edges.

Figure 11 shows the effect of hard edges and two example meshes generated
using this adaptation application. The legacy geometry in this figure is the

On the Use of Loop Subdivision Surfaces for Surrogate Geometry



388 P.-O. Persson et al.

Viking backshell

Viking heatshield

a. Control net b. Uniform refinement c. Adaptive refinement

ÒHardÓ
edges

Fig. 11. Control-net, uniform and adaptive tessellations of the Viking spacecraft
aeroshell geometry. The upper row of images shows the backshell (back) and the
lower shows the heatshield (front). Both tessellations demonstrate preservation and
refinement of hard edges in the input mesh.

aeroshell of NASA’s Viking spacecraft which was the culmination in a series
of exploratory missions to Mars from 1964-1975, and pre-dates much of the
modern CAD industry. The upper row of images in Fig. 11 shows the view
from the back, while the lower shows the geometry from the front. The back
of the aeroshell is a truncated bi-conic. The control-net shown in Fig. 11a is
composed of 1700 triangles and the dihedral-angle criteria identifies one circle
of hard-edges at the sharp transition between the two conics and another at
junction with the flat backface.

The simple mesher described above was run using both uniform refinement
and curvature adaptive refinement. In the adaptive example, refinement was
triggered using the maximum local surface curvature at each triangle centroid
scaled by the triangle’s area. Surface curvature was evaluated making use of
Algorithm 1’s ability to return the first and second derivatives at any point on
the surface. The uniformly refined mesh has 35000 triangles while the adaptive
triangulation has 9100. The triangulation algorithm produced approximately
7500 triangles-per-second on a 2Ghz CPU, however no serious attempt has
been made to optimize the mesher or subdivision surface library.

While the Viking aeroshell is an example of legacy geometry that pre-dates
CAD-based modeling, Fig. 12 shows and example of geometry that comes from
a 3D scanner and similarly has no underlying CAD definition. The figure shows
the control-net (45k triangles) and a curvature adapted triangulation (105k
triangles) for an irregularly shaped piece of foam. The 3D scan produced a



389

Control net Adaptive triangulation

Hard edges

Fig. 12. Control-net (45k triangles) and curvature-adaptive triangulation (105k tri-
angles) for irregularly shaped foam piece from high-resolution 3D scan. Inset frames
show details of control-net and surface triangulation.

STL triangulation file and this triangulation (without decimation) was used
as the control-net for the subdivision surface. The simple adaptive mesher
used in the previous example was then run using this surface as an underlying
geometry. While the original scan is at quite high resolution, the enlargements
of the control-net shown in Fig. 12 (inset top-left) exhibit substantial faceting
due to the small characteristic feature size on the irregular surface. The adap-
tive triangulation shown at the right of Fig. 12 offers improved resolution of
regions with high curvature. Hard edges are indicated on the figure and form
a single closed loop around the lower perimeter of the piece.

On the Use of Loop Subdivision Surfaces for Surrogate Geometry



390 P.-O. Persson et al.

Figure 13 shows a final example with the control-net and adaptive trian-
gulation generated on a model of a pig. The control-net in this case is quite
coarse with only about 7000 triangles. Despite this, the model is remarkably
detailed and includes all major anatomical features as well as details like eye-
lids, hoofs, nostrils, and jowls. These features are even more apparent in the
adapted triangulation shown in the center and two inset frames of Fig. 13.
This adapted triangulation was built using the simple mesher described earlier
with curvature-sensitive refinement and includes 244k triangles. In addition
to the obvious features, refinement reveals more subtle detail captured by
the control-net. The refined triangulation reveals the pig’s shoulder blades,
pelvis, hamstring definition, and additional facial detail. As with the earlier
cases, the goal of this example is not to show the “best” triangulation for this
geometry, but to illustrate the use of this very coarse legacy triangulation as a
control-net definition and to mesh using the Loop subdivision surface defined
by that control-net.

5 Conclusions

This work outlined a method for using existing surface triangulations as un-
derlying geometric models for the construction of more highly refined mod-
els complete with local surface derivatives and curvature information. The
method is based upon the construction of a Loop subdivision surface using the
legacy triangulation at full resolution. The presentation outlined a simplified
surface evaluation procedure based on Stam’s exact method for Loop surfaces.
The presentation of this simplified approach highlighted the construction of
surface coordinates, derivatives, and curvatures for evaluations at arbitrary
locations on the surface. The implementation also provides the ability to tag
hard -edges (and therefore hard -vertices) in the imported geometry to preserve
creases and points using one-dimensional cubic-spline scheme which preserves
C2 continuity along hard-edges. Away from hard-edges and vertices, the Loop
surface is C2 continuous everywhere except right at irregular vertices in the
control-net, where it is still C1.

The modeler was demonstrated using a simplistic meshing application
which queries arbitrary locations on the surface to support either uniform or
curvature-adaptive triangle refinement. Curvature information for adaptation
parameter was obtained through direct evaluation on the subdivision surface
using the algorithm presented in section 3. Examples were presented using
control-nets built from a variety of legacy triangulations with widely vary-
ing complexity. The ability to query the surface at arbitrary locations and
quickly find surface derivatives and curvature information makes this modeler
very attractive for users of finite element analysis methods that require this
information to achieve higher-order accuracy.

The simple evaluation rules for surface coordinates and derivatives make
the modeler extremely fast and robust. Even with no special effort to optimize



391

Fig. 13. Control-net and curvature-adaptive triangulation for pig geometry. The
control-net contains about 7000 triangles, while the adaptive triangulation contains
about 244k. Inset frames at the bottom show details of facial structure and hoofs.

On the Use of Loop Subdivision Surfaces for Surrogate Geometry



392 P.-O. Persson et al.

the implementation, surface triangulations with nearly 500k triangles can be
generated in under a minute on a single processor desktop machine. Immedi-
ate plans will focus on experiments with the construction of the subdivision
surface itself. Since the input triangulation becomes the control-net of the
subdivision surface, it is not, in general, an interpolant for the input data.
However, the deviation is small when the control-net resolves the geometry
and hard edges are tagged appropriately. For example, the distances between
the control-net nodes and the subdivision surfaces in the three examples in
Section 4 are in average less than 0.06% of the geometry size, and the max-
imum deviations are less than 0.2%. Research examining various approaches
for making the surface exactly interpolating is ongoing.

Acknowledgements

The authors wish to thank the Boeing Company (technical monitor Mori
Mani) for their support in this effort. This assistance has enabled the genera-
tion of a surface modeling geometry software kernel as part of TURIN – the
Tetrahedral Unstructured Remeshing INterface. This software library was
used to generate the figures seen in the results section.

References

1. E. Catmull and J. Clark. Recursively generated b-spline surfaces on arbitrary
topological meshes. Computer Aided Design, 10(6):350–355, 1978.

2. C. de Boor. A Practical Guide to Splines. Springer, 2001.
3. C. T. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis,

Department of Mathematics, University of Utah, August 1987.
4. Optimization methods for scattered data approxi-

mation with subdivision surfaces. Graphical Models, 67(5):452–473, 2005.
5. A. Lee H. Moreton and H. Hoppe. Displaced subdivision surfaces. In ACMSIG-

GRAPH ’2000 CDROM Proceedings, pages 85–94, 2000.
6. J. Stam. Evaluation of loop subdivision surfaces. In SIGGRAPH ’98 CDROM

Proceedings, 1998.
7. J. Stam. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary pa-

rameter values. In Computer Graphics Proceedings, Annual Conference Series,
pages 395–404, July 1998.

8. J. Warren. Subdivision methods for geometric design. Unpublished manuscript,
November 1995.

9. D. Zorin. Subdivision and multiresolution surface representations. PhD thesis,
Caltech, Pasadena, California, 1997.

10. D. Zorin and P. Schröder. Subdivision for modeling and animation. SIGGRAPH
2000 Course Notes, 2000.

M.Marinov and L.Kobbelt.


