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Summary. We study adaptive meshes which are quasi-uniform in a metric gener-
ated by the Hessian of a P1 finite element function. We consider three most efficient
methods for recovering this Hessian, one variational method and two projection
methods. We compare these methods for problems with anisotropic singularities
to show that all Hessian recovery methods result in acceptable adaptive meshes
although the variational method gives a smaller error.

1 Introduction

Generation of adaptive meshes is now the standard option in most software
packages. Contrary to uniform meshes, adaptive meshes with the same number
of elements result in much more accurate solutions of PDEs. In this article,
we consider unstructured adaptive meshes which are frequently anisotropic.

One way to generate the adaptive mesh is to define a metric that reflects
problem specifics. A posteriori error estimates or some features of a prob-
lem solution can be used to define this metric. Different error estimates for
anisotropic meshes can be found in [8, 9] (see also references therein). In this
article, we focus on the maximum norm of the interpolation error for P1 finite
element solutions. In this case, the metric is induced by the Hessian (matrix
of second derivatives) of the exact solution. Since the exact solution is not
available, the Hessian must be recovered from the finite element solution.

Among many methods for recovering the Hessian, we selected three most
efficient methods, one variational method [4] and two projection methods
[3, 12]. We compare these methods for problems with anisotropic singulari-
ties. This research topic was inspired by the statement made in article [7] that
the L2-projection method was preferable for the Delaunay-type mesh gener-
ation algorithm considered there. In this article, we consider different mesh
generation algorithm and show that all Hessian recovery methods result in
acceptable adaptive meshes although the variational method gives a smaller
error.
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The Hessian recovery methods are illustrated with 2D examples. Their
extension to 3D tetrahedral meshes is straightforward. These methods have
linear complexity with respect to the number of mesh nodes.

The paper outline is as follows. In Section 2, we describe our metric-based
mesh generation method. In Section 3, we consider the metric induced by the
Hessian of a continuous piecewise linear mesh function and discuss different
methods to recover this discrete Hessian. In Section 4, we analyze numerically
these methods for problems with anisotropic singularities.

2 Metric-based Mesh Generation

Let Ω be a polygonal domain, and M(x) be a symmetric positive definite
2× 2 matrix for any x = (x1, x2) in Ω. In metric given by M , the volume of
a domain D ⊂ Ω and the length of a curve � are defined as follows:

|D|M =
∫

D

√
det M(x) dx, |�|M =

∫ 1

0

√
(M(γ(t))γ(t), γ(t)) dt,

where γ(t) : [0, 1] → �2 is a parametrization of �.
Let Ωh be a triangular mesh covering the domain Ω. In this article, we

analyze meshes that are quasi-uniform in metric M(x) (or M -quasi-uniform).
These meshes have a number of useful approximation properties when the
metric is connected with a posteriori error estimates or solution features. A
short summary of these properties is given in the next section.

There are many methods for generating a M -quasi-uniform mesh (see, for
example, [7]). In this article, we focus on iterative methods that use a sequence
of local mesh modifications to generate a global mesh. The list of mesh modifi-
cations includes alternation of topology with node deletion/insertion end edge
swapping, and node movement. To describe the method, we need the notion
of a mesh quality. For a triangle ∆ of Ωh, we denote by p(∆) the total length
of its edges (perimeter) in the metric M . Then, the mesh quality is defined by

Q(Ωh) = min
∆∈Ωh

Q(∆), (1)

where 0 < Q(∆) � 1 is the quality of triangle ∆ (see [4] for more details),

Q(∆) = 12
√

3
|∆|M
p(∆)2

F

(
p(∆)
3h∗

)
. (2)

Here F (t) : �+ → [0, 1] is a continuous smooth function, 0 � F (t) � 1, with
the only maximum at point 1, F (1) = 1, and such that F (0) = F (+∞) = 0.
Parameter h∗ is equal to the size of elements in a mesh consisting of N∗
equilateral (in the metric M) triangles. Thus, h∗ is a simple function of |Ω|M
and N∗. The last factor in (2) controls the size of the element, whereas the
remaining factors control its shape.
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Since the mesh quality is equal to the quality of the worst triangle, the local
mesh modifications are applied to this triangle. We accept the first operation
that minimizes the mesh quality. If none of the mesh modifications increases
mesh quality, the triangle is temporary placed in a special list and the next
worst triangle is processed. When the number of elements in the list exceeds
some threshold, all of them are released back into the mesh.

This iterative method requires an initial mesh. The initial mesh may be
arbitrary and very coarse. The parameter h∗ provides simple control over the
number of mesh elements. The bigger mesh quality Q(Ωh), the closer the
number of mesh elements to N∗ which is the given number. In a computer
program, we terminate the iterative method when Q(Ωh) becomes bigger than
0.7.

3 Recovery of Metric from Hessian of Discrete Solution

The special choice of the metric M(x) will allow us to generate meshes with de-
sired properties. The most desirable property for applications is minimization
of certain norm of the solution error. In this article, we consider the interpo-
lation error, u − Ihu, where u is a known function and Ih is the piecewise
linear interpolation operator.

A priori error bounds for the maximal norm on optimal meshes have been
studied since the beginning of 90s [6]. Recall that the optimal mesh is defined
as the mesh that minimizes the interpolation error among conformal meshes
with a bounded number of elements. The main difficulty in analysis is possible
anisotropy of the optimal mesh.

The lower upper bound on the error for general discrete spaces was ob-
tained by V.Tikhomirov in 1960. In [1, 10], we analyzed a more narrow class
of spaces of continuous piecewise linear functions on conformal triangula-
tions and showed that the optimal meshes still provide the same error decay
which is reciprocal to the number of elements N∗. In [11], our analysis has
been extended to Lp-norm, where p > 0. For sufficiently smooth solutions
(u ∈ C2(Ω̄)) and 0 < p � +∞, the asymptotical error is

‖u− Ihu‖Lp(Ω) ∼ N−1
∗ .

Moreover, in [1, 10] we proved that meshes which are only quasi-uniform in
the metric derived from the Hessian of u still result in the optimal interpolation
error. Now, we describe this metric in more details.

Let H(x) be the Hessian of u,

H = {Hij}2i,j=1, Hij =
∂2u

∂xi∂xj
, i, j = 1, 2.

We consider its spectral decomposition H(x) = WT (x)Λ(x)W (x) and gener-
ate the metric M(x) as follows:
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M(x) = WT (x)|Λ(x)|W (x), |Λ(x)| = diag{|λ1(x)|, |λ2(x)|}, (3)

where λi(x) are eigenvalues of H(x). To emphasize distinctive nature of this
metric, we shall write |H(x)| instead of M(x).

In a practical adaptive computation, the unknown solution Hessian H(x)
must be replaced by its discrete approximation Hh. In [1, 10], we have for-
mulated sufficient conditions for approximation Hh under which the mesh
quasi-uniform in the metric |Hh| is also quasi-uniform in the metric |H(x)|. If
the initial mesh, used to recover Hh, is far from the optimal one, the discrete
Hessian may not approximate the continuous one. In this case, the problem is
solved again on the generated mesh and the adaptation process is repeated.
The final mesh will be referred to as the quasi-optimal mesh.

There are a few methods for recovering the discrete Hessian Hh from the
piecewise linear function uh defined at mesh nodes. In next sections, we ana-
lyze numerically one variational and two projection methods. It was reported
in [7] that the projection method was more robust for the Delaunay-like mesh
generation algorithm described there. Since we have different experience with
the iterative mesh generation algorithm described in the previous section, we
decided to analyze the effect of the Hessian recovery onto the interpolation
error.

3.1 Variational Methods

Let superelement σ be a set of triangles sharing an interior mesh node a and
Hh(a) be the value of the continuous piecewise linear Hessian Hh at this mesh
node. The weak definition of the discrete Hessian is as follows:

∫

σ

Hh
ij(a)ϕh

a dx = −
∫

σ

∂uh

∂xi

∂ϕh
a

∂xj
dx, (4)

where ϕh
a is the piecewise linear (P1) finite element function associated with

the node a. Since ϕh
a vanishes on ∂σ, definition (4) is nothing else but the

Green formula.
At a boundary mesh node a, the Hessian Hh(a) is the weighted extrapo-

lation from the neighboring interior nodes [5]:

Hh
ij(a) =

∑
b Hh(b)mab∑

b mab
, mab =

∫

σ

ϕh
a ϕh

b dx, (5)

where summation goes over mesh points b ∈ ∂σ that are not on ∂Ω.
The approximation properties of the recovery method (4) have been stud-

ied in [1, 10]. The local convergence of the discrete Hessian towards the dif-
ferential one has been established for a class of smooth solutions. Another
variational method for the Hessian recovery has been introduced and ana-
lyzed in [2].
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3.2 Projection Methods

Another group of methods for recovering the Hessian Hh uses the projection
technique. The first method from this group reads:

Hh = IZZ

(
∇
(
IZZ(∇uh)

))
(6)

where IZZ is the Zienkiewicz-Zhu (ZZ) projector on the P1 finite element
space [12]. The gradient of uh is constant inside mesh triangles. To find the
gradient of uh at an interior mesh node a of the superelement σ defined above,
we fit (in the least square sense) a linear function to the values of∇uh assigned
to the centers of mass of triangles in σ. Repeating this procedure twice, we
get the piecewise linear Hessian of uh at the node a. Again, the Hessian is
extrapolated to boundary nodes using (5).

In [7], the L2-projector IL2 is used instead of the ZZ-projector. However,
both projectors do not remove high frequency errors introduced by small non-
uniformities in the mesh. The superconvergence properties of the recovered
gradient are restored by applying a smoothing operator Sh right after the
projection operator:

Hh = ShIZZ

(
∇
(
ShIZZ(∇uh)

))
. (7)

As shown in [3], two Jacobi conjugate gradient iterations for the equation
−∆v + v = 0 with the initial guess corresponding to IZZ(∇uh) are sufficient
to dump high frequency errors in majority of problems. It is pertinent to note
that the authors studied only isotropic meshes and the optimal number of
Jacobi iteration was found experimentally. In the next section, we shall show
that the same conclusion cannot be extended to anisotropic meshes and the
maximal norm.

Note that for isotropic solutions, efficient implementation of the L2-
projector can be done by lumping the mass matrix [3]. In other cases, solution
of a linear system with a mass matrix is required to find IL2(∇uh). Since the
mass matrix may be quite stiff on an anisotropic mesh, we think that the IZZ -
projector is a more reasonable choice in (7) than the L2-projector suggested
in [3].

All three Hessian recovery methods have linear complexity with respect
to the number of mesh nodes. The variational method is less expensive. The
complexity of the second projection method grows linearly with the number of
smoothing iterations. The complexity of these methods is less than complexity
of the mesh generation algorithm when the initial mesh is far from the optimal
one. In the coarse of adaptive iterations the number of mesh modifications
decreases and the relative complexity of the Hessian recovery methods grows.
The actual numbers are essentially problem dependent.
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4 Numerical Experiments

In this section, we analyze numerically three Hessian recovery methods given
by (4), (6), and (7). We shall refer to the last two methods as the ZZ-projection
and the BX-projection methods, respectively.

In the first example, we consider the problem of minimizing the interpo-
lation error for the function [6]

u(x1, x2) =
(x1 − 0.5)2 − (

√
10x2 + 0.2)2

((x1 − 0.5)2 + (
√

10x2 + 0.2)2)2
.

defined over the unit square [0, 1]2. The function has slight anisotropic sin-
gularity at point (0.5, −0.2/

√
10) which is outside the computational domain

but close to its boundary. The Hessian of u is the saddle point matrix, i.e. it
has one positive and one negative eigenvalue.

The solution isolines and the adapted mesh are shown in Fig. 1. Table 1
shows the L∞ and H1 norms of the interpolation error. The maximal norm
of the interpolation error is almost reciprocal to N∗. The energy norm is
given only for illustration purposes. All the methods require 4 to 5 adaptive
iterations to generate quasi-optimal meshes. The variational method results
in the most accurate interpolation solution.

The gradient smoothing in the BX-projection method does not affect the
energy norm of error but increases the maximum norm in 2-3 times. This
factor becomes even bigger if we increase the number of smoothing iterations.

Table 1. Experiment 1: L∞ and H1 norms of the interpolation error for three
Hessian recovery methods.

Variational method ZZ-projection method BX-projection method

N∗ L∞ H1 L∞ H1 L∞ H1

3000 0.0334 0.206 0.0410 0.211 0.1201 0.234
6000 0.0164 0.146 0.0234 0.147 0.0443 0.158
9000 0.0102 0.119 0.0138 0.119 0.0326 0.123

In the second experiment, we build the optimal mesh for the function
proposed in [7]:

u(x1, x2) = x2x
2
1 + x3

2 + tanh(10(sin(5x2)− 2x1)).

The computational domain is the square [−1, 1]2. The solution is anisotropic
along the zigzag curve (see left picture in Fig. 2) and changes sharply in the
direction normal to this curve.

Table 2 shows the L∞ and H1 norms of the interpolation error. As in the
previous example, the variational method results in the smallest interpolation
error. Similarly, the energy norm of error does not drop down as fast as the



Analysis of Hessian Recovery Methods for Generating Adaptive Meshes 169

Fig. 1. Isolines of function u from the first example (left) and the adapted mesh
after 5 iterations for the Hessian recovered with the variational method (right).

maximal norm since we minimize only the latter. Note that setting the number
of smoothing iterations to 10 results in only 19% increase in the energy norm
but destroys the anisotropic mesh structure and rockets up the maximal norm.

In Fig. 3, we show the behavior of the maximal norm of error during the
course of adaptive iterations. Due to the discrete nature of the metric |Hh|,
this behavior is frequently non-monotone. We point out the visible oscillations
and slower convergence of the BX-projection method. The other two methods
required 5 iterations for convergence. We explain this by a slight smearing of
the recovered gradient by operator Sh.

Table 2. Experiment 2: L∞ and H1 norms of the interpolation error for three
Hessian recovery methods.

Variational method ZZ-projection method BX-projection method

N∗ L∞ H1 L∞ H1 L∞ H1

3000 0.02081 0.920 0.02271 0.945 0.1464 0.906
6000 0.00846 0.686 0.01110 0.889 0.0427 0.716
9000 0.00561 0.650 0.00899 0.627 0.0186 0.635

It is pertinent to note that the L∞-norm of the error averaged over mesh
triangles is close for all three methods. This indicates that the number of
lower-quality triangles is much smaller than N∗. However, we should keep
it mind that these triangles are usually located in crucial regions from the
physical viewpoint.



170 K. Lipnikov and Y. Vassilevski

Fig. 2. Adapted mesh after 6 iterations for the Hessian recovered with the varia-
tional method (left) and its zoom around point (0, 0) showing the anisotropic mesh
structure.
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Fig. 3. The L∞-norm of the interpolation error during the coarse of 15 adaptive
iterations with N∗ = 9000.

In conclusion, we note that the choice of the recovery method must depend
on the norm in which we want to minimize the error. For the maximal norm,
the gradient smoothing is the bad idea. The variational method seems to
exhibit the most robust behavior over a larger scale of norms.
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