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Summary. In this paper we present one approach to build optimal meshes for P1

interpolation. Considering classical geometric error estimates based on the Hessian
matrix of a solution, we show it is possible to generate optimal meshes in H1 semi-
norm via a simple minimization procedure.

1 Introduction

1.1 Statement of the Problem

Let Ω be a domain of IR2 and u a solution of an elliptic PDE problem on Ω
under Dirichlet boundary conditions on ∂Ω.

The energy norm is the natural one to measure the error of a numerical
approximation of the solution of this problem and the Cea’s lemma [4] give a
bound for the error.

Cea’s lemma. If the hypotheses of the Lax-Milgram theorem are satisfied,
there exists a constant C independent of the subspaces Vh such that

‖u− uh‖ < C inf
v∈Vh

‖u− v‖

where Vh denotes the finite element spaces, uh the discrete solution associated
with Vh and ‖.‖ the norm in the space V .

a posteriori mesh adaptation. Thanks to Cea’s lemma, the error made over
the mesh is bounded by the interpolation error. Hence, controlling the in-
terpolation error allows control the approximation error. This has led to a
number of a posteriori mesh adaptation procedures with metric specifica-
tions based on the control of the interpolation error ([9, 7] and the references
in [13]). However, these methods are usually based on the L∞ norm of the
interpolation error instead of a more physical norm.
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The exact solution is usually unknown; we only know the discrete solution
uh and reconstruction methods are used to estimate the error estimator since
it is theoretically bounded by derivatives one order higher than the order of
the field approximation.

Surface mesh optimization. If we consider the solution u as a Cartesian sur-
face, the problem of minimizing the interpolation error consists in defining a
mesh so that the surface mesh is as smooth as possible. This has led to the
notion of geometric mesh [9] : a geometric mesh is a piecewise planar approxi-
mation of the surface so that the distance between the underlying surface and
the element of the triangulation does not exceed given tolerance threshold.
To make sure that a mesh is a geometric mesh, one generally introduces some
measurements of quality like planarity, roughness or deviation. In particular
the roughness of a piecewise linear surface is defined as the square L2 norm of
the gradient of the surface integrated on the triangulation [15]. Thus, control-
ling the H1 seminorm can be see as an optimization procedure of the quality
of a surface.

In this paper, we assume that the discrete solution uh is a P1 continuous
finite element function and that we measure the error in H1 seminorm. We
shall see that the computation of this error involves second order derivatives
of the computed scalar field. One way estimate these derivatives is to use re-
construction methods (see [14] for a comparison of recently published recovery
methods).

1.2 Outline

The purpose of this paper is to describe an adaptation procedure in order to
build an optimal mesh by controlling the H1 seminorm of the interpolation
error. First we go back to the H1 seminorm of the interpolation error on one
element of the mesh. We show how it can be written using the Hessian matrix
of u and we recall how the second order derivatives of the computed scalar
field can be estimated over the domain using recovery methods. Then an adap-
tation procedure based on a minimization problem is described. Eventually,
analytical examples are provided to illustrate this approach.

2 Optimal Mesh

The concept of optimal mesh theoretically refers to a set of meshes. For ex-
ample, if several meshes are given, one will be able to say that the optimal
mesh is that for which the selected measurement is optimal. In this work, a
triangulation consisting of N nodes will be said optimal in H1 seminorm if it is
the triangulation that minimizes the interpolation error among all conforming
N-nodes triangulations.
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3 Expression of the H1 Seminorm of the P1

Interpolation Error

We consider a mesh T (Ω) composed of linear triangles and denote K = [a, b, c]
as the reference element, Πhu as the piecewise linear interpolate of the solu-
tion u according to T (Ω). The usual IR2 scalar product is denoted by 〈., .〉 ,
and the Hessian matrix of u by Hu.

3.1 Expression of the Error Gradient on One Element K

Let us write eK = u−Πhu the interpolation error on element K. It vanishes
at the vertices of the triangle and has the same Hessian matrix as u.

Using a Taylor expansion at each vertex vi of K (where the error vanishes)
we can write,

eK(vi) = eK(x) + 〈−→vix,∇(eK)(x)〉+
1
2
〈−→vix, Hu

−→vix〉+ εi‖−→vix‖2,∀x ∈ K, (1)

Let us denote qvi
(x) = 1

2 〈−→vix,Hu(x)−→vix〉.
Then, by neglecting the terms of εi, we have






〈−→v0x,∇(eK)(x)〉+ qv0(x) = 0

〈−→v1x,∇(eK)(x)〉+ qv1(x) = 0

〈−→v2x,∇(eK)(x)〉+ qv2(x) = 0

and consequently the following system





〈−−→v0v1,∇(eK)(x)〉+ qv0(x)− qv1(x) = 0

〈−−→v0v2,∇(eK)(x)〉+ qv0(x)− qv2(x) = 0

which can be written
A∇(eK)(x) = −F (x) (2)

where A = (−−→v0v1
−−→v0v2)

t and F (x) =
(

qv0(x)− qv1(x)
qv0(x)− qv2(x)

)
.

3.2 Seminorm

The H1 seminorm of the interpolation error on an element K is

|eK |2H1
=
∫

K

‖∇(eK)(x)‖2.

Finally, with the approximation (2) we consider

|eK |2H1
≈
∫

K

‖A−1F (x)‖2. (3)
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3.3 Remark on the Numerical Computation of the Error Gradient

To compute the error gradient we need to get an estimate of the Hessian
matrix on K. Integrals of the error gradient can easily be obtained via a
quadrature formula.

Estimation of the Hessian The Hessian of uh, a P1 finite element function,
can be approximated by using a recovery method. We can cite for example
the generalized finite difference (a variant of Green’s formula [10, 10.4.2]),
the Zienkiewicz-Zhu [18] recovery procedure, the simple linear fitting [6], the
quadratic fitting [17] or the double L2 projection

H = IL2(∇(IL2(∇u))) (4)

where IL2 is the L2 projection on the P 1 finite element space [1].
We refer to [14] for a comparison of these different recovery techniques.
Moreover, the adaptation process may be controlled by modifying the

eigenvalues in the spectral decomposition of Hu (see [16] for an analysis of
the effect of such a control strategy on the interpolation error).

Here, to evaluate the Hessian, we use formula (4). As it has been said in
[13], we have no convergence proof of this scheme but result is better with
using it [1].

Interpolation scheme In order to get the value of the Hessian everywhere on
the mesh, interpolation schemes are used since the Hessian is only known at
each vertex of the mesh.

4 Application to Mesh Adaptation

The procedure described below minimizes the interpolation error among all
triangulations having the same number of vertices.

Following [8], we introduce a functional on the mesh based on the error
gradient to drive the adaptation procedure. Hence, we define

J (T ) =
∑

K∈T

∫

K

||∇(eK)(x)||2. (5)

Using (3) we can write the expression of J with the Hessian matrix of u and
we consider now

J (T ) =
∑

K∈T

∫

K

||A−1F (x)||2. (6)

The procedure consists in minimizing functional J using local operators on
the initial mesh.
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4.1 Operators for Mesh Improvement

There are four main types of mesh improvement, topologic or geometric: edge
refinement, edge swapping, vertex suppression, vertex displacement [10]. Since
we want to adapt the mesh while preserving the same number of vertices, we
only consider node reconnection and vertex displacement.
Edge swapping. It is a simple operation in 2D. Only two configurations are
possible as an edge has only two adjacent triangles. The edge between two
triangles K1 et K2 will be swapped if:
∫

K1

||A−1F (x)||2 +
∫

K2

||A−1F (x)||2 >

∫

K
′
1

||A−1F (x)||2 +
∫

K
′
2

||A−1F (x)||2

where (K1′,K2′) is the alternate configuration.

Fig. 1. swap

Vertex displacement. This procedure preserves the connectivity of the mesh.
In order to get the position of the nodes that minimises the error we use a
minimisation procedure.

Let V = (v1, v2, ..., vN ) ∈ IR2N
where N is the number of the vertices of

T .
Let us consider

F : IR2N → IR, V → F(V ) =
∑

K∈T

∫

K

||A−1F (x)||2

and the following optimization problem

min
v∈IR2N

F(v),

for which classical optimization methods [3] can be used. We use a gradient
method to minimize J :

∀i ∈ {0, .., N} vn+1
i = vn

i − ρ(∇J (V n))i, ρ > 0.

The main difficulty of this procedure is to move the points without creating
overlapping elements. To ensure that the movement does not destroy a valid
triangulation, we adapt the step size ρ so that the new point x� stays in the
shell around x (i.e. all the elements around x).
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4.2 Algorithm

The algorithm consists in applying iteratively these operators on the mesh
until the mesh stabilizes.

• We start with a triangulation T 0
h of the computational domain.

• Repeat:
– Compute the discrete Hessian at each vertex of the mesh T (i)

h

– Generate the mesh T (i+1)
h which minimize (5) with the following local

operators:
· Vertex displacement
· Edge swapping

– Terminate the loop if the number of swaps is null and if the vertices
don’t move.

Remarks:

Since the edge swapping is performed if and only if the functional (6)
decrease, the number of swap is bounded.

5 Experimental Results

To illustrate the proposed method, we present some results for a few examples :
three examples with given analytical solutions and one for a partial differential
equation.

Here the goal is to generate optimal triangulation of these surfaces by
using the adaptation scheme defined previously. The resulting triangulation
is considered optimal in so far as it is the triangulation that minimimizes the
interpolation error in H1 seminorm among all the surface triangulations (and
ensure the best error equirepartion). As we want compare our procedure with
classical adaptation schemes, we start with a mesh of the parameter space (we
obtain the surface mesh by considering the value of the analytical function at
each mesh vertex) obtained from a size map built by considering the absolute
value of the Hessian matrix. More precisely the initial mesh is built by using a
metric based adaptation procedure which equilibrates the interpolation error
in L∞ norm over the mesh and the metric field is computed using the absolute
value of the Hessian matrix.

For each example we present the value of the functional before and after
optimization. To study the convergence of the interpolation error as the mesh
is refined, we plot the H1 seminorm of the error as functions of the number
of elements nbt. In all these examples, for technical reason, all the boundary
points are fixed.
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5.1 Analytical Examples

We consider an initial mesh (built with the FreeFem++ software [12]) for
which the interpolation error in L∞ norm is upperbounded by a threshold
value ε.

Constant Hessian surfaces We consider here adaptive meshes for f1(x, y) =
x2 + y2 and f2(x, y) = x2 − y2 (Fig. 2).

Fig. 2. Resulting meshes in the parameter space for two different types of surfaces:
f(x, y) = x2 + y2. (left) and f(x, y) = x2 − y2. (center), (x, y) ∈ [−1, 1] × [−1, 1],
where the triangles are right-angled and aligned along the axes.

Non constant Hessian surfaces We consider here adaptive meshes f3(x, y) =
x3 + y3 (Fig. 3) and f4(x, y) = x2y + y3 + tanh(10(sin(5y) − 2x)) (Fig. 5)
which has a more complicated structure and exhibits an highly anisotropic
feature (this function simulates a solution with a shock layer : the equation
of the smooth line is sin(5x) = 2x )

Both procedures equilibrate the interpolation error. Nevertheless, if we
compare the initial mesh to the final one, the pattern of the triangles is dif-
ferent between the elliptic and the hyperbolic regions. We obtain the same
triangulation in the elliptic region (where the Hessian matrix is positive defi-
nite) but, as expected not in the hyperbolic region: for quadratics functions,
the optimal triangles which produce the smallest H1 seminorm of the inter-
polation error are acute isoceles triangles aligned with the solution [5].

We observe the same behaviour for more general functions (see the example
Fig. 5).

However, the value of the functional in the case of the adaptation in L∞

norm and in our case are close to each other for smooth functions (see Fig. 4)
especially for functions whose adapted mesh has little anisotropy: in this case,
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Fig. 3. Initial (left) and resulting (right) mesh in the parameter space for f3(x, y) =
x3 + y3,(x, y) ∈ [−1, 1] × [−1, 1]

the classical metric based adaption technique gives good meshes even in the
H1 seminorm. This is not surprising in so far as that in this case the corre-
sponding mesh is close to a Delaunay mesh for which roughness (and conse-
quently the cost function J ) is minimal [15].

5.2 Partial Differential Equation Examples

This example solves the boundary value problem of Poisson’s equation on an
L-shape with Dirichlet boundary condition:

−∆u = 1, Ω =]0, 1[2−[1/2, 1[2

Numerical results are shown in Table 1. Similar observations as in the previous
analytical cases can be made. For a PDE with shock the key point is the
reconstruction of the Hessian which can be quite difficult on highly anisotropic
case [13].

Table 1. Value of the H1 norm and L2 norm for initial (right) and resulting mesh
(left) as function of the number of elements(nbt) or vertices (nbv)

H1 L2 H1 L2 nbv nbt

0.0409041 0.00225554 0.0426227 0.00234673 57 84

0.0129854 0.000262934 0.0136801 0.000255626 271 473

0.00906429 0.000128142 0.00944111 0.000135652 368 659

0.00633305 6.43262e-05 0.0065542 6.88933e-05 684 1264

0.00470695 3.71549e-05 0.00493037 4.07533e-05 1141 2144
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Fig. 4. Plot of J (Th) as functions of nbt for f2(x, y), f3(x, y) et f4(x, y)

5.3 Towards Quad-Triangles Meshes

Moreover, as for saddle-shaped functions, quadrilaterals may offer a higher-
order approximation on a mesh [11], this procedure can be used for building
(anisotropic) quadrilaterals in the hyperbolic region through a simple triangle-
to-quad conversion [2].
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Fig. 5. Zoom of meshes of f4(x, y) = x2y + y3 + tanh(10(sin(5y) − 2x)) in the
parameter space (initial mesh on the left and final mesh on the right), (x, y) ∈
[−1, 1] × [−1, 1], x2 + y2 < 1.

Fig. 6. Resulting surface meshes for f2(x, y) (left) and f4(x, y) (rigth) where tri-
angulated mesh has been changed into a quad-dominant mesh in hyperbolic region
through a simple triangle-to quad conversion.

6 Conclusion

In this paper we have presented a simple methodology based on local mesh op-
erators for building optimal meshes for the H1 seminorm of the interpolation
error. Numerical results were presented to illustrate our approach.

• We have shown through numerical experiments that classical methods
based on the absolute value of the Hessian matrix of the solution allow
the construction of good meshes even for the H1 seminorm, especially
from the finite element viewpoint.
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• From a surface meshing viewpoint il would be interesting to study in detail
the optimization in H1 seminorm especially for building quad-dominant
meshes in anisotropic regions.

This method can be extended to 3D. In this case the local operators for
mesh modifications are much more complex : the edge swap operator modifies
the shell of an edge (ie all the tetrahedra around an edge) and the number of
possibly new tetrahedralizations of a shell of n elements is given by the Catalan
number C(n) = (2n−2)!

n!(n−1)! which shows the complexity of this operator.
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