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Dynamic surfaces arise in many applications, such as free surfaces in
multiphase flows and moving interfaces in fluid-solid interactions. In many applica-
tions, an explicit surface triangulation is used to track the dynamic surfaces, posing
significant challenges in adapting their meshes, especially if large curvatures and
sharp features may dynamically appear or vanish as the surfaces evolve. In this pa-
per, we present an anisotropic mesh adaptation technique to meet these challenges.
Our technique strives for optimal aspect ratios of the triangulation to reduce in-
terpolation errors and to capture geometric features based on a novel extension of
the quadric-based surface analysis. Our adaptation algorithm combines the oper-
ations of vertex redistribution, edge flipping, edge contraction, and edge splitting.
Experimental results demonstrate the effectiveness of our anisotropic adaptation
techniques for static and dynamic surfaces.
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1 Introduction

Many computational applications involve triangulation of complex surface
geometry, and an increasing number of them involve dynamically changing
surfaces, such as free surfaces in multiphase flows [39] and moving boundaries
in fluid-solid interactions [26]. In these simulations, the geometry is not known
a priori and is part of the solution of a numerical simulation. As a surface
evolves, the surface may undergo severe expansion or contraction in different
regions or along different directions, leading to large curvatures, sharp fea-
tures, and even topological changes. It is therefore often necessary to adapt
the meshes for these complex dynamic surfaces to maintain a valid surface
representation with minimal geometric errors.

Mesh adaptation has been an active research subject in numerical simu-
lations for nearly two decades [32, 35]. In recent years anisotropic generation
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and adaptation of 2-D triangular and 3-D tetrahedral meshes have attracted
significant attention to reduce or minimize errors [3, 7, 8, 11, 12, 13, 15, 19,
25, 28, 29, 37, 38]. In general, these methods strive to equi-distribute errors by
adapting the mesh density based on a metric tensor field, typically estimated
based on the Hessian of a solution field. Anisotropic meshes can also signif-
icantly enhance the accuracy of a surface representation [1, 6, 10, 20]. Very
few methods have been developed on anisotropic meshing and remeshing of a
surface mesh [1, 10]. The method of Alliez et al. [1] generates quad-dominant
meshes, and the method of Cheng et al. [10] considers only smooth, implicit
surfaces, which may not be suitable for triangulated surfaces with sharp fea-
tures that occur in many simulations. In addition, moving surfaces introduce
significant additional complexities and constraints to mesh adaptation. A ro-
bust dynamic triangulation algorithm was developed by Cheng et al. [9], which
is specialized for skin surfaces and it is unclear how to generalize that algo-
rithm to other surfaces. Therefore, anisotropic mesh adaptation for static or
dynamic surfaces remains a significant challenge.

In this paper, we investigate the problem of adapting a dynamic surface
mesh within a numerical simulation to reduce geometric errors. We propose an
extension of the quadric-based surface analysis by Heckbert and Garland [20]
and relate it to the interpolation error of a surface. Based on this analysis, we
define a Riemannian metric tensor to adapt the surface mesh anisotropically
using a combination of vertex redistribution, edge flipping, edge contraction,
and edge splitting. These operations improve not only mesh quality but also
the accuracy of the geometric representation. The interplay between different
operations is potentially very complicated. To keep the algorithm simple, we
optimize the mesh with vertex redistribution and edge flipping under geo-
metric constraints, and use edge splitting and edge contraction to resolve
pathological situations due to constraints. We compare the numerical solu-
tions using anisotropic adaptation and isotropic adaptation, and demonstrate
the significant advantages of our anisotropic adaptation. For simplicity this
paper assumes the surface does not change topology during evolution.

The remainder of the paper is organized as follows. Section 2 presents
some background information on anisotropic meshes and quadric-based sur-
face analysis. Section 3 proposes a novel anisotropic transformation for sur-
face meshes and applies it to mesh optimization using vertex redistribution
and edge flipping. Section 4 describes the resolution of extreme angles and
adaptation of mesh density using edge splitting and edge contraction. Sec-
tion 5 presents numerical results and comparisons with isotropic adaptation
for static and dynamic surfaces. Finally, Section 6 concludes the paper with
a discussion.
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2 Background

In this section, we present some background information on anisotropic meshes
and quadric-based surface analysis.

2.1 Anisotropic Meshes

It is well known that a mesh with long and skinny triangles can interpolate
a function with large curvature more accurately than a mesh with equilateral
triangles [11, 13, 19, 36, 38]. A general formulation of anisotropic mesh gen-
eration or adaptation in 2-D or 3-D is to define a d × d metric tensor M(x)
(or simply M) at each point x in Rd, where d is 2 or 3, respectively. M is
referred to as the Riemannian metric tensor or fundamental tensor [24]. By
definition, M is symmetric positive-definite and has an eigen decomposition

M = EΛET , (1)

where Λ is the diagonal matrix of the eigenvalues of M, which are all real
and positive, and E is the matrix of the eigenvectors of M. Geometrically, E
corresponds to a rotation matrix and Λ corresponds to scaling factors. Any
point y = x + ε in an infinitesimal neighborhood of x is mapped to

ỹ = y +
√

ΛET ε = y +
d∑

i=1

√
λieT

i εei, (2)

which maps a circle (or sphere in 3-D) in the physical space into an ellipse
(or ellipsoid) in a parametric space with the semiaxes proportional to

√
Λii

for i ∈ [1, d]. A curve r(s) : [a, b] → R2 is mapped to a curve with length

l =
∫ b

a

√
ṙT Mṙds, (3)

which can be approximated using the midpoint rule as

l ≈
√

(rb − ra)T M(a+b)/2(rb − ra). (4)

In numerical computations, M is typically chosen to minimize the inter-
polation error of a function f in a certain norm. Using Taylor series expansion
one can show that the error in interpolating a function f with linear elements is
approximately εT Hε as ε tends to zero, where H denotes the Hessian of f . The
Hessian is symmetric and therefore has an eigen decomposition H = RDRT ,
where D is a diagonal matrix of the eigenvalues of H (i.e., the curvatures of
f) and R is composed of the eigenvectors of H. The eigenvalues of H may be
negative, and the metric tensor M can be obtained by setting Λ = |D| and
E = R in (1), i.e., M = R|D|RT , which minimizes the interpolation error by
equi-distributing the error.
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To generalize the above formulation to surface meshes, a 2-D metric tensor
may be defined on a local or global parametric space [1, 10]. For solution-
based adaptation the metric tensor may be assumed to be given as an input
to the meshing algorithm, but in problems such as dynamic surfaces, which
themselves are the solutions, the adaptation requires a careful analysis of the
evolving surface.

2.2 Quadric-Based Surface Analysis

Surface analysis is a fundamental subject in differential and numerical geom-
etry. Mathematical analysis has traditionally focused on smooth surfaces [24].
Its generalization to discrete surfaces has attracted significant attention in
recent years, but the focus has been limited to the asymptotic behavior of
discrete representations of smooth surfaces [20, 30]. If a surface discretization
is relatively coarse or has singularities, then most asymptotic analyses break
down. The quadric-based analysis proposed by Heckbert and Garland [20]
seems to generalize well for their connections with approximation theory [31]
and singularity analysis, as we will show shortly.

Given a triangulated surface mesh let each vertex v be the origin of a local
coordinate frame, and m be the number of the faces incident on v. Let N be
a m × 3 matrix whose ith row vector is the unit outward normal to the ith
incident face of v, and W be an m×m diagonal matrix with Wii equal to the
weight associated with the ith face. We typically use the the face area of the ith
incident face of v for the weight Wii. Let A denote the 3× 3 matrix NT WN,
which we refer to as the quadric metric tensor. Suppose G is a diagonal matrix
containing the eigenvalues of A. Let λi denote Gii with λ1 ≥ λ2 ≥ λ3, and
V be the matrix of the eigenvectors of A, so A = VGVT . We refer to the
vector space spanned by the eigenvectors of A corresponding to the relatively
large eigenvalues of A as its primary space and the complementary space as
its null space. As we will show later, for smooth surfaces the null space of A
is closely related to the Riemannian metric tensor for error minimization, and
the threshold between the eigenvalues for the primary and null spaces can be
chosen geometrically.

Suppose the triangles incident on v discretize a rectangular neighborhood
with dimensions ε1 and ε2 along the maximum and minimum curvature direc-
tions, and κ1 and κ2 are the maximum and minimum curvatures, respectively.
Heckbert and Garland [20] have shown that as ε tends to 0 the eigenvalues of
A are

λ1 ≈ 4ε1ε2 −
1
2
(λ2 + λ3) (5)

λ2 ≈
4
3
ε31ε2κ

2
1 (6)

λ3 ≈
4
3
ε1ε

3
2κ

2
2 (7)
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For meshes approximating a smooth surface, λ2/λ1 and λ3/λ1 approach 0 in
the rates of O(ε21) and O(ε22), respectively.

This asymptotic analysis, however, is not applicable near singularities. We
generalize it to treat singularities as follows. Consider folding a smooth surface
to form a ridge along the minimum curvature direction at a point, and let θ
denote the dihedral angle between the two sides of the ridge. It is easy to show
that after the folding, the three eigenvalues become

λ̃1 ≈ λ1 cos2
θ

2
+ λ2 sin2 θ

2
(8)

λ̃2 ≈ λ1 sin2 θ

2
+ λ2 cos2

θ

2
(9)

λ̃3 ≈ λ3 (10)

Since λ2/λ1 = O(ε21) before folding, near singularities λ̃2/λ̃1 ≈ tan2(θ/2) after
folding. At sharp corners, the eigenvalues become more complicated, but in
general all three eigenvalues are O(ε1ε2). This singularity analysis provides
a geometrically meaningful way to select the thresholds for the null space
(χc for λ2/λ1 and χr for λ3/λ1). It is the foundation of the feature detection
methods of Jiao [22], Jiao and Alexander [23], which detect ridges and corners
by determining the null space along with some safeguards.

The asymptotic interpretation λ2/λ1 ≈ ε21κ
2
1/3 and the singularity inter-

pretation λ̃2/λ̃1 ≈ tan2(θ/2) are consistent within a constant factor, in that
tan2(θ/2) approaches ε21κ

2
1 as θ tends to zero. This dual asymptotic and singu-

larity analysis is very useful, as it provides a new tool to handle the ambiguous
cases that arise frequently in discrete surfaces. In particular, a relatively coarse
mesh may behave in an ambiguous manner like neither singular nor smooth
surfaces, but λ2/λ1 would be approximately tan2(θ/2) and e3 would be along
the minimum curvature direction. This dual analysis is particularly useful for
dynamic surfaces, in which some areas may have increasingly large curva-
tures before sharp features emerge, and the quadrics may be used to capture
such a transition consistently without resorting to two drastically different
treatments for smooth regions and sharp features.

The quadrics are also closely related to optimal triangles in an asymptotic
sense. We define the aspect ratio ρ of a triangle to be that of its minimum
containing ellipse, as advocated by Heckbert and Garland [20]. A dual def-
inition, where the optimal triangle is defined as the triangle with maximum
area contained in an ellipse with a given aspect ratio, can also be used [13].
In both cases, the optimal aspect ratio of a triangle is

√
κ1/κ2, where κ1 and

κ2 are the eigenvalues of the Hessian of the surface with respect to its local
parameterization. It has been shown that the quadric-based surface simplifica-
tion produces optimal anisotropic triangles in an asymptotic sense for smooth
surfaces [20], but there seems to be no published result on how to apply this
analysis to mesh adaptation. In the following, we propose a quadric-based
procedure for anisotropic mesh adaptation.
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3 Anisotropic Mesh Optimization

It is challenging to define a suitable tensor field for surface meshes while taking
into account the potential singularities. In this section we propose a tensor
field and apply it to anisotropic vertex redistribution and edge flipping.

3.1 Anisotropic Transformation

For triangulations of smooth surfaces one can construct the Riemannian met-
ric tensor for anisotropic transformation by computing the curvature tensors
at each vertex to approximate the Hessian of a surface [1]. Although this ap-
proach is well founded for sufficiently fine discretization of smooth surfaces,
the estimated curvatures are not meaningful near singularities and may be
sensitive to perturbation for coarse meshes.

To avoid these numerical problems, we propose to construct the Rie-
mannian tensor M2×2 based on the quadrics as

M = R
[

λ2 0
0 λ3

]
RT , (11)

where λi are the eigenvalues of the quadric metric tensor A, and R is a 2× 2
rotation matrix from the principal directions to the axes of the coordinate
frame. From our previous analysis, for surface meshes conforming to the tensor
field M, ρ =

√
λ2/λ3 ≈

√
|κ1/κ2|. To see this, observe that

ρ =
√

λ2/λ3 ≈
|ε1κ1|
|ε2κ2|

=
|κ1/κ2|
ε2/ε1

.

By definition ρ = ε2/ε1, and therefore ρ2 ≈ |κ1/κ2|. Note that we can multi-
ply M by any factor without changing the aspect ratio. The computation of
M does not require estimating the curvatures explicitly, so it is simple and
efficient. In addition, A and in turn M are computed in an integral form, so
they are not sensitive to perturbation, and it is justified to construct a larger
geometric support by summing up A (or M) at neighboring vertices.

It is important to note that the preceding analysis is asymptotic in nature,
and may be invalid near singularities and degenerate cases. In particular, if
κ1 ≈ κ2 ≈ 0, the aspect ratio is very sensitive to perturbation. If λ2 � λ3,
which may occur near singularities (where λ3/λ2 = O(ε2) along an ridge)
or on a cylindrical patch (where λ3/λ2 = 0), the aspect ratio may become
arbitrarily large. Too large aspect ratios may lead to too small time steps or
larger condition numbers in a numerical simulation [36], and in turn severely
decrease the efficiency and defeat the purpose of anisotropic adaptation. To
resolve these issues, we impose an upper bound on the aspect ratio by imposing
lower and upper bounds on the eigenvalues (the entries of the diagonal matrix
in (11)) of M, i.e.,
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M̃ = R
[

min{max{λ2, ψl}, ψu} 0
0 min{max{λ3, ψl}, ψu}

]
RT . (12)

Based on the singularity analysis of the quadrics, ψl and ψu should be in the
form of λ1 tan2(θ/2) for some angle θ. Compared with the thresholds χr and
χc for feature detection, in general ψl/λ1 ≤ χr ≤ ψu/λ1 ≤ χc (e.g., 8◦, 20◦,
30◦, and 45◦ after converting ψl/λ1, χr, ψu/λ1, and χc into angles by the
mapping f(χ) = 2 arctan

√
χ). These angles are tunable parameters that can

be selected based on their geometric meanings and experiments. With this
modified tensor, the surface would be strongly anisotropic only near sharp
features or large-curvature areas, where anisotropy is desired to avoid large
interpolation errors.

3.2 Anisotropic Mesh Smoothing

Mesh smoothing is a popular method for mesh enhancement by redistributing
vertices without changing mesh connectivity. It is also often the most dif-
ficult step in mesh adaptation. This problem is particularly challenging for
smoothing surfaces because the vertex motion must preserve the geometry
typically without a CAD model. A high-order surface approximation may
be constructed [1, 6, 18], but large errors may still accumulate after repeated
smoothing or adaptation of a dynamic surface. A simple solution was proposed
by Jiao [22] through a weighted-residual formulation of local volume conser-
vation. Here we use a simpler form of that method to redistribute vertices
tangentially within the null space of A, and focus on the issue of anisotropy
in mesh smoothing.

A typical smoothing procedure moves a point toward a weighted average of
its neighbor vertices. For anisotropic smoothing we must take into account the
Riemannian tensors when computing the average. In the previous subsection
we discussed the construction of the tensor at each vertex, which uses its
own local coordinate frame. To compute a weighted average at a vertex p,
the tensors at p and its adjacent vertices must be transformed into the same
coordinate frame.

Given two adjacent vertices q and p, we compute the rotation matrix R
as follows. If the first eigenvectors at the two vertices are the same, then the
rotation matrix is simply TT

q Tp, where Tp is a 3 × 2 matrix whose column
vectors are the second and third eigenvectors of A at p, and similarly for Tq.
If the normals differ, then TT

q Tp is no longer a rotation matrix. Let S denote
TT

q Tp. We compute R based on the projection of the third eigenvector of A
at p onto Tq, i.e.,

R2 =
S2

‖S2‖
, and R1 =

S1 −R2S1R2

‖S1 −R2S1R2‖
,

where Ri and Si denote the ith column vectors of R and S, respectively.
By plugging R corresponding to each adjacent vertex q into (12), we trans-
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form the tensor at q to the local frame at p. For each edge pq, its mid-
point x is then transformed to

√
D 1

2
RT

1
2
TT

p (x − p), where R 1
2
D 1

2
RT

1
2

=

M 1
2

= 1
2 (Mp + Mq), and the length of the edge is estimated based on (4)

as
√

(p− q)T TpM 1
2
TT

p (p− q). Using these transformations we obtain the
vertex’s smoothed location p̃ within the tangent plane at p and then project
p̃ to the null space at p (which is the same as the tangent plane at smooth
vertices but is the tangent line at ridges) when mapping back to R3.

In our overall smoothing procedure, we first compute the metric tensors
at all vertices and then compute the new position for all vertices using a
Jacobi-style iteration, which is easy to parallelize in numerical simulations
and also avoids recomputing the metric tensors after moving each vertex.
Correction steps may be performed to add correction terms to preserve the
shape [22]. Note that in principle any averaging scheme may be plugged into
our smoothing procedure to compute the new position within the tangent
space, but some schemes may exhibit instability when using a Jacobi-style
iteration so may not be suitable in our setting.

3.3 Anisotropic Edge Flipping

Edge flipping is a commonly used operation in meshing algorithms such as
Delaunay triangulation. For each edge uv with opposite vertices p and q, we
flip uv if the Delaunay flipping criterion (i.e., ∠upv +∠uqv > π) is satisfied in
its parametric space. A key question is how to define this parametric space.
Unlike vertex redistribution, where a vertex is at the center of the geometric
support of the computation, it is unnatural to choose any vertex as reference
for edge flipping. Because of the integral nature of quadric metric tensors,
we obtain a reference frame by summing up the quadric metric tensors at
the four vertices, and then obtain the reference frame and Riemannian tensor
from its null space. The origin of the reference frame is positioned at the
average of the four points. This approach avoids biasing toward any vertex.
After obtaining the tensor one can compute the angles in the parametric space
or use the modified Delaunay criterion [7]. Our algorithm repeatedly flips the
edges using this modified Delaunay criterion until convergence.

If the metric tensor is a constant, then this procedure would converge to
the Delaunay triangulation within the parametric space independent of the
flipping sequence. For general surfaces this process may not converge to a
Delaunay mesh and may even run into an infinite loop due to the potential
inconsistencies caused by discretization errors. We use a greedy strategy to
flip edges in decreasing order of maximum opposite angle, avoiding infinite
loops by flipping edges only once. For meshes with sharp features we prohibit
flipping any edge that is marked as a ridge edge (which are identified also
using the quadric metric tensor [22]) because such a flipping introduces large
errors.
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4 Anisotropy-Aware Mesh Repair

Vertex redistribution and edge flipping optimize a mesh with a given num-
ber of vertices and under other geometric constraints (such as boundary and
features). If a dynamic surface undergoes severe expansion or contraction,
the number of vertices may need to be increased or decreased to maintain the
overall density. Furthermore, there may be some small or large angles that can
restrict time steps or lead to arbitrarily large errors in the normal directions
[36]. These bad angles may not be resolved by mesh optimization due to geo-
metric constraints. We address these issues using a process referred as mesh
repair. Mesh repair does not attempt to optimize any quality measures but
focuses on safeguarding and resolving pathological cases. Our overall adapta-
tion strategy is to iterate between mesh optimization and mesh repair. Mesh
repair is critical for generality and robustness but is also difficult to analyze.
To keep it simple, we choose the two simplest operations: edge splitting and
edge contraction. These repair operations must be anisotropy-aware so that
they do not undo the effect of anisotropic mesh optimization.

4.1 Edge Splitting

Edge splitting inserts a new vertex to an edge, as illustrated in Fig. 1(a). It
helps to refine the area where the mesh may be too coarse, and to eliminate
large angles with a long opposite edge. We choose the edges to split based on
the following two criteria:

Absolute longness: the edge is the longest in its incident triangles and is longer
than a given threshold L, or

Relative longness: the edge is longer than a desired edge length l < L, one
of its opposite angles is close to π (greater than a threshold θl), and the
shortest edge in its incident triangles is no shorter than s (where s < l).

The four parameters above must be chosen in a way consistent with edge
contraction, which we consider in Sect. 4.3. In the second criterion the con-
straint on s is necessary to prevent over-refinement caused by splitting too
small triangles. Note that this process leaves out some large angles, which will

Fig. 1. Operations used in anisotropy-aware mesh repair
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be addressed by edge contraction. We split the edges in decreasing order of
edge lengths. After splitting an edge the new vertex is first positioned at the
edge center, and then projected along the normal direction to the point that
minimizes a quadric error metric along the edge to preserve smoothness.

4.2 Edge Contraction

Edge contraction merges two adjacent vertices into a single vertex, and it helps
to coarsen the mesh and to eliminate some very small angles (and also some
large angles). Edge contraction is more difficult than edge splitting because
it can potentially smear features and even cause mesh folding. We determine
whether an edge is desirable to contract using the following criteria:

Absolute small angle: its opposite angle in an incident triangle is smaller than
a threshold θs, and the longest edge of the triangle is shorter than the
desired edge length l, or

Relative shortness: it is shorter than a small fraction r of the longest edge in
its incident triangles, or

Absolute small triangle: the longest edge in its incident faces is shorter than
a given threshold S, and it is the shortest edge in its incident triangles, or

Relative small triangle: the longest edge in its incident faces is shorter than
the desired edge length l, and it is shorter than a fraction R of the longest
edges in both physical and normalized space.

The first two criteria address poorly-shaped triangles with a very small angle
or a short edge, and as a side product eliminate some triangles with very large
angles. The last two criteria address well-shaped but too small triangles to
decrease vertex density for mesh coarsening.

We contract edges in increasing order of edge lengths. To preserve features
during contraction, if two vertices have different feature ranks (a smooth,
ridge, and corner vertex has a feature rank of 0, 1, or 2, respectively) we place
the merged vertex at the original vertex with the higher rank. If two vertices
have the same rank, to preserve smoothness we obtain a weighted average of
the original vertices and then project it along the normal direction to minimize
the quadric error metric. To prevent mesh folding we reject contractions that
would lead to topological changes or normal inversion of any face. We observe
that such violations rarely occur as we contract shortest edges first.

4.3 Parameter Selection

Mesh repair requires a number of parameters as it deals with pathological
cases by nature. The interplay among different parameters are quite complex.
Overall, we have three different types of parameters: edge lengths (l, L, s, S),
edge-length ratios (r, R), and angles (θl and θs).

For edge-length parameters, in general s < S < l < L, since S and L
specify desirable lengths for edge contracting and splitting, and s/l is closely



Anisotropic Mesh Adaptation 183

related to the maximum aspect ratio allowed by anisotropic transformation
(i.e.,

√
ψu/ψl). For the edge-length ratio r and R, in general r < R as they

correspond to poorly-shaped and well-shaped triangles, respectively. The ratio
r is related to the ratio of s/l in the relative-longness criterion, and in general
r � s/l ≈

√
ψl/ψu. The threshold R is related to S, and we choose R ≈ S/l.

For the angle thresholds, θs � θl, and it is desirable that 2θs + θl > 180◦,
so that large angles incident on a relatively short edge would be eliminated
by edge contraction. The angle θs is also related to the thresholds ψl and ψu.
The maximum of the minimum angle of a triangle contained in an ellipse with
aspect ratio ρ =

√
ψu/ψl is 2 arctan ρ, and therefore we choose θs ≈ 2 arctan ρ.

Based on these consideration and extensive experiments, we choose the
following default values for the parameters:

• ψl = λ1 tan2(4◦) and ψu = λ1 tan2(15◦);
• r = 0.1, R = 0.5;
• s = l

√
ψl/ψu, S = Rl, L = 1.5l;

• θs = 2arctan
√

ψl/ψu ≈ 15◦ and θl = 160◦.

In general the desired edge length l may vary in space, but it typically suffices
to have a uniform value as the desired average edge length. In the following we
present some experimental results, all of which used the above default values.

5 Experimental Results

We present some preliminary results of anisotropic adaptation for static
and dynamic surfaces to demonstrate its effectiveness, and compare it with
isotropic remeshing for dynamic surfaces.

5.1 Remeshing Static Surfaces

When applied to a static surface our anisotropic adaptation algorithm es-
sentially becomes a remeshing tool. We show two simple examples of static
remeshing to demonstrate the effect of anisotropic adaptation. In the first ex-
ample we remesh a small cube. As shown in Fig. 2, a layer of small triangles
was formed around sharp features.

In the second example we remesh a surface mesh with corrupted sharp
features, as shown in Fig. 3. We adapt the mesh while adding a normal motion
to denoise the surface. The detail of this denoising procedure is beyond the
scope of this paper, but its basic idea is to identify the noisy vertices similar to
feature detection using the eigenvalues of the quadric metric tensor, and then
add a normal motion in a volume-preserving fashion similar to the normal-
diffusion approach of Ohtake et al. [33]. As obvious from the figures, the final
mesh is anisotropic near high-curvature regions and both the mesh quality
and surface geometry were improved substantially.
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Fig. 2. Remesh cube with anisotropic mesh optimization

Fig. 3. Adapting a surface with corrupted features using anisotropic mesh adapta-
tion

5.2 Adaptation of Dynamic Surfaces

As discussed earlier, the advantages for anisotropic surface adaptation are
most prominent in adapting dynamically moving surfaces. We use a series of
dynamic surfaces with an increasing level of difficulty to verify our assertion.
In particular, we adapt a surface that is advected in two challenging flow
fields for a time period T as detailed later. The larger T is the more severe
the deformation becomes. We modulate time by the cosinusoidal function
cos(πt/T ) to make the flow periodic, so that in principle the shape at time
t = 0 and t = T should be identical. Such a test has been widely used to
test dynamic surfaces or moving interfaces [4, 14, 16, 27]. In these tests, we
propagate each vertex using the fourth-order Runge-Kutta integration scheme
and then adapt the surface anisotropically. The time step was controlled using
the approach of Jiao [21] to prevent mesh folding. We perform anisotropic
mesh smoothing at every time step and invoke the full-fledged anisotropic
adaptation every few iterations or when the time step becomes too small.
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5.2.1 Modest Deformation

Dynamic surfaces pose significant challenges to mesh adaptation, and most
traditional adaptation techniques lead to large errors or abrupt failure at a
very early stage. In order to compare our method with existing adaptation
techniques, we first consider the modest deformation of a sphere of radius 0.15
centered at (0.5, 0.75, 0.5) in a vortex flow with a time period of T = 2. The
spatial velocity of this deformation field is given by

u(x, y, z) = sin2(πx)(sin(2πz)− sin(2πy)), (13)
v(x, y, z) = sin2(πy)(sin(2πx)− sin(2πz)), (14)
w(x, y, z) = sin2(πz)(sin(2πy)− sin(2πx)). (15)

This flow is a challenge as large curvatures develop at the maximum deforma-
tion. In this test we compare the results of using anisotropic mesh optimiza-
tion with the isotropic remeshing, in particular our own implementation of the
method of Alliez et al. [2]. In both cases we used a time step of 0.01. Figure 4
shows the meshes using anisotropic adaptation at times t = 0, 1, and 2 using
a relative coarse initial mesh with 10, 784 vertices and 21, 564 triangles. Fig-
ure 5 shows the results using isotropic remeshing with uniform spacing using
the same initial mesh. The anisotropic results are obviously far superior to
the isotropic ones. Quantitatively, the volume loss for anisotropic adaptation
was less than 0.1% compared to about 24% for isotropic remeshing. Note that
the isotropic remeshing algorithm of Alliez et al. [2] can adapt vertex density
based on curvatures, but we observed some numerical instability and worse
results when adapting vertex density based on Gaussian or mean curvatures,
probably because the curvatures are inherently sensitive to perturbation.

Fig. 4. Results of vortex flow using our anisotropic adaptation at t = 0, 1, and 2

In terms of efficiency, anisotropic adaptation took 9 minutes to complete
the whole simulation on a PC with 3.2 GHz Pentium D processor. In com-
parison, the remeshing algorithm by Alliez et al. [2] is very expensive and
takes several minutes even for a single remeshing step; therefore, we adopted
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Fig. 5. Results using isotropic remeshing at times at t = 1, and 2 for the same flow
and initial mesh as in Fig. 4

an approximation solver proposed by Ostromoukhov et al. [34] to make their
algorithm more competitive. Even after this speed-up, isotropic remeshing
took 30 seconds per remeshing step, which amounts to about 10 times slower
than our technique. This relatively simple example shows the effectiveness
and efficiency of anisotropic adaptation and demonstrates the challenges in
remeshing dynamic surfaces.

5.2.2 Large Deformation

In the literature, another widely used test has a velocity field

u(x, y, z) = 2 sin2(πx) sin(2πy) sin(2πz), (16)
v(x, y, z) = − sin(2πx) sin2(πy) sin(2πz), (17)
w(x, y, z) = − sin2(2πx) sin2(2πy) sin(πz), (18)

which advects a sphere centered at (0.35, 0.35, 0.35) for a time period of T = 3.
This problem is sometimes referred to as the Enright test and has been solved
using implicit surfaces, such as the level set method and its variations [16, 17]
and hybrid front tracking methods [5, 14]. Note that if one simply propagates
the vertices of a surface mesh independently, some triangles would become
inverted very soon, so mesh adaptation is necessary.

We used an initial mesh with 23, 238 vertices and 46, 472 triangles with
a time step of 0.015, so the whole computation took 200 iterations. Due to
distortions introduced by the flow, anisotropic optimization alone cannot meet
this challenge, so we used the full-fledged anisotropic mesh adaptation. We
invoke anisotropic adaptation every 4 time steps. This flow is mildly unstable
during the second half period, so a smoothing term similar to that in Fig. 3
was added to denoise the surface.

Figure 6 shows the surfaces with anisotropic mesh adaptation after 50,
100, 150, and 200 time steps. At the maximum deformation (i.e., t = 1.5) the
surface area increased by a factor of 4.12, and the numbers of vertices and
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triangles also roughly quadrupled (increased to 98, 638 and 197, 292, respec-
tively). At time t = 3 the surface returned back to a nearly perfect sphere,
and the errors in both the volume and surface area were less than 0.1%. Note
that the popular level-set method lost 80% of volume for this test, while the
much-improved particle level-set method of Enright et al. [16] lost 2.6% when
using one million grid points. Because of the lower time complexity of our
surface mesh-based scheme, the computation time of our method is expected
to be orders of magnitude smaller than that of Enright et al. [16].

Fig. 6. Solution of Enright test with anisotropic mesh adaptation

5.2.3 Very Large Motion

The motion in the previous test is large, but it is still relatively simple because
the surface remained smooth and the time period was relatively short. We
test our method using a more challenging problem with the same flow as in
Sect. 5.2.1 but a longer period of T = 6. Under this flow the sphere swirls for
three cycles at the maximum deformation, forming cusps and extremely thin
filaments, posing significant challenges to represent the surface accurately.
To the best of our knowledge no solution to this problem has been reported
previously in the literature, except for a result of T = 4 using a hybrid surface-
marker and volume-of-fluid method [4]. Our simulation used a time step of
0.015 for 400 iterations using an initial mesh same as that in the previous test.
Figure 7 shows the surface after 100, 200, and 400 time steps, respectively.
At the maximum deformation the area increased by a factor of 5.6, and the
numbers of vertices and triangles increased by a factor of 5.4. At time t = 6,
the volume error was about 0.3%.

6 Conclusion

In this paper we present an effective approach for anisotropic adaptation of
triangulated surfaces, with a focus on adapting dynamic surfaces that are the
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Fig. 7. Solution of vortex flow with anisotropic adaptation for period T = 6

solutions of numerical simulations. This setting poses significant challenges in
accuracy and efficiency. We present an extension of the quadric-based surface
analysis to treat singularities and in turn deliver a unified framework for re-
solving smooth surfaces, sharp features, and the ambiguities between them.
We propose a simple and efficient transformation for anisotropic mesh adap-
tation with built-in safeguards for degeneracies, and use this transformation
to optimize a mesh anisotropically. We also develop a mesh repair strategy
to address pathological cases. The effectiveness of anisotropic adaptation was
demonstrated using a number of examples, and orders of magnitude of im-
provements were achieved in accuracy and efficiency for dynamic surfaces
compared to adapting the surface meshes isotropically or representing and
propagating the surfaces using Eulerian methods. A number of research issues
remain open for dynamic surfaces, including accurate resolution of topolog-
ical changes of surface meshes and volume conservation in full-fledged mesh
adaptation, which we are investigating and plan to report in the future.
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