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1 Introduction

Large-scale simulations in engineering applications are most effective when they
are combined with adaptive methods. The adaptive methods reduce greatly the
demand for larger number of unknowns and improve accuracy of the simulations via
grid adaptation near fine-scale features of the solution. In this paper, we consider a
tensor metric based adaptive methodology [AG99, HE98, BU97, HA95, LI03, VA03].
The metric is induced by an approximate Hessian (matrix of second derivatives) of
a discrete solution. The focus of this paper is on treatment of curved (non-planar)
internal and boundary surfaces.

In many applications, exact parameterization of curved surfaces may be un-
known. In this case, the surfaces are described by triangular meshes (e.g., meshes
coming from CAD systems) which reduce performance of adaptive methods due to
the limited surface resolution. To resolve geometrical features of a model, the trace
of an optimal adaptive mesh on a curved surface should be close to the given surface
triangulation which is not always the case. One of the possible solutions is to fix
only nodes of the surface triangulation (see [VA05] for a more adequate solution)
which imposes simple constraints for mesh adaptation algorithms. The fixed-node
constraints are easily embedded into the metric-based adaptive methodology.

If the underlying surfaces are sufficiently smooth (or piecewise smooth), the
original triangular meshes carry additional information about these surfaces. In this
paper, we use this fact to design a new surface reconstruction method and analyze
it both theoretically and numerically. In principle, the reconstructed surface can be
triangulated to use again the metric-based adaptive methodology with the fixed-
node constraints.

There are many methods for higher order reconstruction of piecewise linear sur-
faces (see [GA05, MI97, ME02, MO01] and references therein). In [MI97, MO01]
the surface is parameterized and the desired surface characteristics are computed
from the derivatives of functions specifying the parameterization. In [GA05, MI97],
the discrete surface is approximated by a piecewise quadratic surface using the best
fit algorithm. The method proposed in this paper uses technique of the discrete
differential geometry to compute an approximate Hessian of a piecewise quadratic
function representing the reconstructed surface. The Hessian is computed in a weak
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sense by analogy with the finite element methods. The developed method is exact
for quadratic surfaces.

The reconstruction method is local, and therefore it can be easily parallelized.
Its computational cost is proportional to the number of surface triangles.

We demonstrate efficiency of the reconstruction method for the solution of a
convection-diffusion problem simulating transport phenomena around a spherical
obstacle. The solution has a boundary layer along a part of the obstacle boundary.
As the result, accuracy of the discrete solution depends on the accuracy of the
boundary representation and is significantly improved on the reconstructed surfaces.

The paper outline is as follows. In Section 2, we describe briefly the Hessian
based adaptation methodology. In Section 3, we propose and analyze a new surface
reconstruction method. In Section 4, we illustrate our adaptive methodology with
numerical tests.

2 Hessian Based Mesh Adaptation

2.1 Quasi-Optimal Meshes

Let Ωh be a mesh with N(Ωh) elements and uh be a discrete piecewise linear solution
computed at mesh nodes with some numerical method which we denote by PΩh . We
shall simply write that uh = PΩhu where u is an unknown exact solution. The ideal
goal would be to find a mesh (probably anisotropic) which minimizes the maximal
norm of the discretization error �u − PΩhu�∞. In many problems, this error can
be majorized by the interpolation error, �u − IΩhu�∞, where IΩh is the linear
interpolation operator on mesh Ωh. It gives us the following mesh optimization
problem:

Ωopt
h = arg min

N(Ωh)<Nmax
�u− IΩhu�∞ (1)

where Nmax is the maximal number of mesh elements (tetrahedra) defined by the
user. This problem was analyzed both theoretically and numerically in [AG99,
VA03]. In fact, problem (1) was replaced by a simpler problem which provides a
constructive way for finding an approximate solution of (1) which we refer to as a
quasi-optimal mesh. This mesh is quasi-uniform in the metric |Hh| derived from the
discrete Hessian Hh of uh. The generation of quasi-uniform meshes is based on the
notion of a mesh quality.

Let G be a metric generated by a symmetric positive definite 3×3 matrix whose
entries depend on point x ∈ Ω. For an element e in Ωh, we denote by |e|G its volume
in metric G and by |∂∂e|G the total length of its edges (also in metric G). We define
the mesh quality as

Q(Ωh) = min
e∈Ωh

Q(e) (2)

where Q(e) is the quality of a single element e,

Q(e) = 6
4
√

2
|e|G

|∂∂ e|3G
F

� |∂∂ e|G
6h∗

�
, 0 < Q(e) � 1. (3)

Here h∗ is the mesh size in the G-uniform mesh with Nmax elements and F (t) is
a continuous smooth function, 0 � F (t) � 1, with the only maximum at point 1,
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F (1) = 1, and such that F (0) = F (+∞) = 0. The last factor in (3) controls the size
of the element, whereas the remaining factors control its shape.

The optimization of the mesh Ωh with respect to the mesh quality (2) results in
a G-quasi-uniform grid. Since the mesh quality is as good as the quality of the worst
element, the mesh optimization can be achieved with a series of local operations
applied to this element. The list of such operations includes alternation of topology
with node deletion/insertion, edge/face swapping and node movement (see Fig. 1
for 2D analogs of local operations and [AG99] for more details).

The local operations such as node deletion/insertion and edge/face swapping
are well described in the literature while implementation of the node movement
requires additional comments. It is driven by minimization of the smooth functional
F : R3 → R, of the node position x, defined as a reciprocal of the mesh quality (2),
i.e. 1 � F < ∞. Some restrictions have to be imposed on mesh modifications to
keep the mesh unfolded and to preserve internal and boundary surfaces.

2.2 Adaptive Iterative Algorithm

We use the following loop to build a quasi-optimal mesh:

• Generate any initial tetrahedrization Ω
(1)
h of the computational domain.

• For k = 1, 2, . . ., repeat
– Compute the discrete solution uh and generate the discrete Hessian-based

metric |Hh| which is the symmetric positive definite matrix given by

Hh = WhΛhW T
h , |Hh| = Wh|Λh|W T

h

where Wh is the orthonormal matrix, Λh = diag{λ1, λ2, λ3} is the diagonal
matrix, and

|Λh| = diag{max{|λ1|; ε}, max{|λ2|; ε}, max{|λ3|; ε}}
with ε > 0 being a user defined tolerance.

– Terminate the adaptive loop if the mesh quality in metric |Hh| is bigger
than Q0 which is the user defined number (e.g., Q0 ∼ 0.4).

– Generate the mesh Ω
(k+1)
h which is quasi-uniform in the metric |Hh| and is

such that Q(Ω
(k+1)
h ) > Q0. To do this, we use local operations such as node

deletion/insertion, edge/face swapping and node movement (see Fig. 1).

It is proved in [AG99] that quasi-optimal meshes in polyhedral domains result
in the asymptotically optimal estimate:

�u− IΩhu�∞ ∼ N(Ωh)−2/3. (4)

In Section 3, we demonstrate numerically that (4) holds in a more general case of
curved boundaries. We also show that the optimal estimate is violated when these
boundaries are represented by triangular meshes.
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Fig. 1. Local topological operations for 2D triangular meshes: (a) node insertion,
(b) edge swapping, (c) node deletion, and (d) node movement

2.3 Treatment of Surface Constraints

The distinctive geometrical features of any model are internal and boundary surfaces
(feature surfaces) and their intersections (feature edges). Let us consider a particular
feature surface Γ ⊂ R3 and a feature edge Θ ⊂ R3. If the analytical formulae for Γ
and Θ were available, they could be used in the metric-based adaptive methodology.
For example, a node living on the feature surface could be easily projected on the
analytic surface.

Often, the analytic representation may not be available for all geometric features
constituting the model. In this case, the geometric features are modeled with faces
and edges of the original mesh Ω

(1)
h . It is highly desirable if the trace of the quasi-

optimal mesh on a geometric feature is close to the given feature triangulation. One
of the possible solutions is discussed below.

Let the discrete feature surface Γh be the triangulated surface of the original
mesh Ωh

(1) approximating Γ with triangular faces Γt, Γh = ∪tΓt, and the discrete
feature edge Θh be a polyline formed by the edges of Ωh

(1) approximating Θ. In this
paper, we fix (freeze) nodes living on Γh and Θh. This imposes simple constraints
on the local mesh modifications and leaves enough freedom for realization of mesh
modifications with surrounding tetrahedra. Still, the fixed-nodes constraints may
result in unnecessary fine mesh in domains where solution uh is very smooth. The
more adequate treatment of discrete boundaries is described in [VA05].

In Section 5, we shall demonstrate that accuracy of boundary representation
makes significant impact on accuracy of the discrete solution. The accuracy may
be improved if we assume that the underlying surfaces are sufficiently smooth or
piecewise smooth. Then the discrete feature surface Γh carries additional information
about Γ . Our surface reconstruction method is described in the next section.

3 Piecewise Quadratic Extrapolation of Piecewise Linear
Surfaces

In this section, we consider again the feature surface Γ . To simplify the presentation,
we assume that Θ is its boundary. We assume also that nodes of Γh and Θh belong
to Γ and Θ, respectively, although this assumption is not necessary in practice.
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The piecewise quadratic extrapolation Γ̃h of Γh is defined as the continuous surface
being the closure of a union of open non-overlapping pieces Γ̃t of local quadratic
extrapolations over faces Γt.

The local extrapolation Γ̃t is described by a quadratic function ϕ2,t. Hereafter,
we shall omit the superscript t whenever it does not result in confusion. For our
purposes, it will be convenient to describe the function ϕ2 in a local coordinate
system (ξ1, ξ2) associated with the plane of Γt. In this coordinate system, the 2D
multi-point Taylor formula [CI71] for a quadratic function ϕ2 with the Hessian
Hϕ2 = {Hϕ2

pq }2p,q=1 reads

ϕ2(ξ) = −1

2

3#
i=1

(Hϕ2(ξ − ai), (ξ − ai)) pi(ξ) (5)

where a1, a2, a3 are vertices of the triangle Γt and pi(ξ) is a piecewise linear function
such that pi(aj) = δij .

In order to recover the Hessian Hϕ2 , we first assume that numbers αi =
(Hϕ2<i, <i), i = 1, 2, 3, representing the projection of this Hessian on edges <i of
Γt, are given. Hereafter, we use <i for both the mesh edge and the corresponding
vector. In the local coordinate system, vectors <i are described by two coordinates,
<i = (li1, li2). We assume that the vector <i begins at vertex ai and ends at vertex
ai+1 with a4 = a1. Then, the definition of αi gives

(

�
Hϕ2

11 Hϕ2
12

Hϕ2
12 Hϕ2

22

� �
li1
li2

�
,

�
li1
li2

�
) = αi

which in turn results in the system of three linear equations for the unknown entries
of the matrix Hϕ2 :

li1l
i
1H

ϕ2
11 + li2l

i
2H

ϕ2
22 + 2 li1l

i
2H

ϕ2
12 = αi, i = 1, 2, 3. (6)

Lemma 1. The matrix of the system (6) is non-singular.

Proof. Let us denote the coefficient matrix of system (6) by B. Note that <1+<2+<3 =
0. Using this fact in direct calculations of the determinant of matrix B, we get

| det B| = 2|l11l22 − l21l
1
2|3 = 16|Γt|3 > 0 (7)

where |Γt| is the area of the triangle Γt. This proves the assertion of the lemma. ✷

Second, we use results of [AG99] where the algorithm for computing the discrete
Hessian Hh(ai) of a continuous piecewise linear function is presented and analyzed.
We define αi as the average of two nodal approximations,

αi = ((Hh(ai)<i, <i) + (Hh(ai+1)<i, <i))/2, (8)

associated with the edge <i. There are two exceptions from this rule. If ai ∈ Θh and
ai+1 /∈ Θh, then αi is equal to (Hh(ai+1)<i, <i). If ai ∈ Θh and ai+1 ∈ Θh, then
αi = 0. This implies that the nodal approximation of the Hessian is not recovered
at feature edges and therefore the traces of Γh and Γ̃h on Θh coincide.

It remains to describe how we recover Hh(ai) for every interior node ai of Γh.
We begin by introducing a few additional notations. For each ai, we define the
superelement σi as a union of all triangles of Γh sharing ai. Then, we define a plane
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approximating in the least square sense the nodes of this superelement and associate
this plane with a local coordinate system (ξ1, ξ2). Let σ̂i be the projection of σi onto
the ξ1ξ2-plane. Further, let ϕ(ξ1, ξ2) be the continuous function representing locally
Γ , and ϕi

h(ξ1, ξ2) be the continuous piecewise linear function representing σi. We
assume that both functions are single-valued over σ̂i. Finally, we denote the Hessian
of ϕ by Hϕ.

The components Hh
pq, p, q = 1, 2, of the discrete Hessian Hh are defined in a

weak sense by �
σ̂i

Hh
pq(ai)ψh dS = −

�
σ̂i

∂ϕi
h

∂ξp

∂ψh

∂ξq
dS, (9)

which holds for any continuous piecewise linear function ψh vanishing on ∂σ̂i. Note
that the discrete Hessian Hh(ai) is a geometric characteristic of the feature surface
Γ at point ai (related to its curvature) and therefore is invariant of the position of
the projection plane associated with the superelement σi. In other words, the value
(Hh(ai)<i, <i) is independent of the local transformation of the coordinate system.

In addition to the above invariance and the obvious uniqueness of Hh, the pre-
sented extrapolation is exact for quadratic surfaces as long as the triangle Γt has no
edges on Θh. Indeed, for a quadratic function ϕ, the recovery method (9) is exact,
i.e. Hh

pq(ai) = Hϕ
pq(ai). Therefore, for all ai /∈ Θh,

(Hϕ<, <) = (Hh(ai)<, <)

for every edge < ⊂ Γh \Θh and Hϕ2 = Hϕ follows from (8) and Lemma 1.
The proposed reconstruction method is local and therefore it can be easily par-

allelized. Its computational cost is proportional to the number of surface triangles.
It is pertinent to note that this cost is negligent compared to the cost of anisotropic
mesh adaptation.

Now we consider the approximation property of our extrapolation method. For
every triangle Γt, we define a superelement σt as union of superelements σi cor-
responding to vertices ai of Γt. Again, we use the local coordinate system (ξ1, ξ2)
associated with the triangle Γt. Let σ̂t (resp., Γ̂t) be the projection of σt (resp., Γt)
onto the ξ1ξ2-plane. We define the constant tensor Hϕ

σt for the superelement σ̂t as

Hϕ
σt = Hϕ(arg max

ξ∈σ̂t
|detHϕ(ξ)|). (10)

Theorem 1. Let edges of a triangle Γt be interior edges of Γh and σ̂t be a quasi-
uniform triangulation with size h. Let ϕ(ξ1, ξ2) be a C2(σ̂t) function representing
locally Γ and ϕh = Iσ̂tϕ be a continuous piecewise linear function representing σt.
Moreover, let Hϕ and Hh be the differential and discrete Hessians of ϕ and ϕh,
respectively, such that

�Hϕ
pq −Hϕ

σt,pq
�L∞(σ̂t) < δ, (11)

�∇(ϕ− Iσ̂tϕ)�L2(σ̂t) < .. (12)

Then, the quadratic function ϕ2 describing Γ̃t and defined by (5), (6), (8) and (9)
satisfies

�ϕ− ϕ2�L∞(Γ̂t)
� C(. + δh2) (13)

where constant C is independent of δ, ., h and ϕ.
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Proof. Hereinafter, we shall use C and Ci for generic constants having different
values in different places. The definition (9) of the discrete Hessian implies that�

σ̂i

(Hϕ
pq −Hh

pq(ai))ψh dS = −
�

σ̂i

∂(ϕ− ϕh)

∂ξp

∂ψh

∂ξq
dS

for any ψh ∈ P1(σ̂i) vanishing on ∂σ̂i. Now, using the triangle inequality and then
the Cauchy inequality, we get�

σ̂i

|Hϕ
σt,pq

−Hh
pq(ai)||ψh| dS �

))))∂(ϕ− ϕh)

∂ξp

))))
L2(σ̂i)

))))∂ψh

∂ξq

))))
L2(σ̂i)

+

�
σ̂i

|Hϕ
σt,pq

−Hϕ
pq||ψh| dS.

Let us evaluate all terms in the above inequality for a particular choice of ψh such
that ψh(ai) = 1. The term in the left hand side is estimated from below as follows:�

σ̂i

|Hϕ
σt,pq

−Hh
pq(ai)||ψh| dS � C1|Hϕ

σt,pq
−Hh

pq(ai)| |σ̂i|.

The terms in the right hand side may be easily estimated from above using quasi-
uniformity of σ̂t and assumption (11):))))∂ψh

∂ξq

))))
L2(σ̂i)

� C2,

�
σ̂i

|Hϕ
σt,pq

−Hϕ
pq||ψh| dS � C3δ|σ̂i|.

Combining the above inequalities, we get

|Hϕ
σt,pq

−Hh
pq(ai)| � C2

C1|σ̂i| . +
C3

C1
δ. (14)

Let Hϕ2 be the Hessian of the quadratic function ϕ2. The next step in the proof
is to estimate the discrepancy between Hϕ

σt and Hϕ2 . For this purpose, we use the
perturbation analysis and Lemma 1. Since both Hessians Hϕ

σt and Hϕ2 are constant,
they are uniquely defined by the right hand side of system (6) and edges of triangle
Γt. Let α1, α2 and α3 be the entries of the right hand side, Hϕ2

pq be the solution
of (6), and let βi = (Hϕ

σt<i, <i), i = 1, 2, 3. Using definition (8), inequality (14), a
linear algebra estimate for eigenvalues of a 2 × 2 matrix, and the assumption of
quasi-uniformity of σ̂t, we get

|αi − βi| =
1

2
|(Hh(ai)<i, <i) + (Hh(ai+1)<i, <i)− 2(Hϕ

σt<i, <i)|

� 2

⎛⎝ C2.

C1 min
i=1,2,3

|σ̂i| +
C3

C1
δ

⎞⎠ (<i, <i) � C(. + δh2).

The perturbation analysis states that

|Hϕ2
pq −Hϕ

σt,pq
| � C |λ−1

min(B)| max
i=1,2,3

|αi − βi|

where the matrix B is defined in Lemma 1 and λmin(B) is its closest to zero eigen-
value. The application of the Gershgorin theorem and the quasi-uniformity assump-
tion give the estimate for the maximal eigenvalue of B:
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λmax(B) � 2 max
1�i�3

|<i|2 � Ch2.

Therefore, due to (7)

|λmin(B)| � | det B|
λ2

max(B)
=

16|Γt|3
λ2

max(B)
� Ch2.

Using the last estimate, we get easily that

|Hϕ2
pq −Hϕ

σt,pq
| � C(./h2 + δ). (15)

Finally, by virtue of the multi-point Taylor formula for a general function ϕ
whose linear interpolant ϕh vanishes on the triangle Γ̂t = Γt, we have:

ϕ(ξ) = −1

2

3#
i=1

(Hϕ(ξ∗
i )(ξ − ai), (ξ − ai)) pi(ξ)

where ξ∗
i (ξ) is a point inside Γ̂t, ξ ∈ Γt. Together with formula (5), it gives

|ϕ(ξ)− ϕ2(ξ)| =
1

2

*****
3#

i=1

([Hϕ(ξ∗
i )−Hϕ2 ](ξ − ai), (ξ − ai)) pi(ξ)

*****
� C(. + δh2).

This proves the assertion of the theorem. ✷

Generally speaking, the values of . and δ depend on the derivatives of ϕ. If ϕ is
sufficiently smooth, for example it is in C3(σ̂t), then . ∼ h3 [CI78], δ ∼ h and we
get the expected result

�ϕ− ϕ2�L∞(Γ̂t)
� Ch3.

4 Numerical Experiments

As the model problem, we consider the convection-diffusion equation

−0.01Δu + b · ∇u = 0 in Ω (16)

u = g on Γin

∂u

∂n
= 0 on Γout

u = 0 on ∂Ω \ (Γin ∪ Γout).

Here b = (1, 0, 0)T is the velocity field, Ω = (0, 1)3 \B0.5(0.18) is the computational
domain with B0.5(r) = {x :

$3
i=1(xi − 0.5)2 � r2}, Γin = {x ∈ ∂Ω : x1 = 0},

Γout = {x ∈ ∂Ω : x1 = 1}, and g(x2, x3) = 16x2(1 − x2)x3(1 − x3) is the standard
Poiseille profile of the entering flow.

The solution u to (16) possesses a boundary layer along the upwind side of
the spherical obstacle B0.5(0.18) and is very smooth in the shadow region of this
obstacle. Since the exact solution is not known, in our experiments, we replace it
with the piecewise linear finite element solution u∗ computed on a very fine adaptive
(quasi-optimal) mesh containing more than 1.28 million tetrahedra (see Fig. 2, left
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Fig. 2. Isolines of solution u∗ in the plane passing through the center of the obstacle
and parallel to the x1x2-plane (left picture) and the trace of a typical quasi-optimal
mesh at the obstacle with analytic boundary (right picture)

picture). To built the adaptive mesh, we used the analytical representation of ∂Ω.
The trace of the adapted mesh on the surface of the obstacle shows coarsening in
the shadow region and refinement in the upwind region (see Fig. 2, right picture).

In the first set of experiments (the top-left picture in Fig. 3), we demonstrate
the asymptotic result (4) with u∗ instead of u. The L∞ error fits the analytic curve
60 N(Ωh)−2/3.

In the second set of experiments (the top-right picture in Fig. 3), the boundary
Γ = ∂B0.5(0.18) is approximated with a quasi-uniform mesh Γh. We measure the
L∞ error as a function of N(Ωh) for three different values of h. Figure 3 presents
saturation of this error due to the limited boundary resolution. We observe that
the saturated error εh is almost reciprocal to h2: ε0.05 = 0.20, ε0.025 = 0.067, and
ε0.0125 = 0.021. This is probably related to the second order approximation of the
smooth boundary Γ by the piecewise linear manifold Γh.

In these experiments, we fixed the nodes on Γh. The fixed-node constraints
result in unnecessary fine mesh only in the shadow region of the obstacle (see Fig.
4, right picture). Therefore, the mesh is too stretched there in contract to the case
of analytical representation of the obstacle boundary (see Fig. 4, left picture, and
Fig. 2 for the mesh trace). This results in mesh elements with a lower quality in
the shadow region. However, the excessive refinement and the low quality of these
elements do not affect the value of the saturated error. The number of extra elements
is small compared to N(Ωh) and the solution is very smooth in these elements.

In the third set of experiments, we study the effect of the piecewise quadratic
extrapolation Γ̃h of Γh on accuracy of the discrete solution. We compare saturation
errors for three surface meshes: Γ0.025, Γ0.0125 and Γ ∗

0.0125. The third mesh is obtained
from Γ0.0125 by projection its mesh nodes onto Γ̃0.025. This mesh must provide the
saturation error ε∗h which is between saturation errors on the other two meshes. This
is illustrated in the bottom picture of Fig. 3 where ε0.0125 = 0.021, ε0.025 = 0.067,
and ε∗0.0125 = 0.043.
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Fig. 3. Convergence analysis: using analytic representation of the obstacle bound-
ary (top-left picture), using three discrete models Γ0.05, Γ0.025, and Γ0.0125 for
∂B0.5(0.18) (top-right picture), using the piecewise quadratic extrapolation Γ̃0.025

(bottom picture)

Another approach for building a piecewise linear surface Γ ∗
0.0125 is based on the

uniform refinement of Γ0.025 with subsequent projection of new mesh nodes onto
Γ̃0.025. We use the first approach because it gives the most rigorous comparison of
saturation errors on meshes Γ0.0125 and Γ ∗

0.0125.
In practice, the surface reconstruction should be dynamic and driven by the size

of mesh elements. For the convection-diffusion problem (16), the surface extrapola-
tion is required only in the upwind part of the obstacle boundary. We shall address
this problem in the future.
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Fig. 4. The mesh cuts in the plane passing through the center of the obstacle
and parallel to the x1x2-plane: The left picture corresponds to the case of analytic
boundary representation. The right picture corresponds to the case of fixed-node
constraints. The meshes have approximately the same number of elements (∼ 200k)

5 Conclusion

We have shown that representation of curved surfaces with triangular meshes re-
stricts the use of adaptive methods. For a particular convection-diffusion problem,
we have shown numerically that the saturated discretization error is proportional
to h2 where h is the size of the quasi-uniform mesh approximating the curved sur-
face. We have proposed and analyzed theoretically and numerically a new surface
reconstruction technique which improves performance of adaptive methods.
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Optimization. Theoretical and Practical Aspects. Springer-Verlag, Berlin

[HE98] Borouchaki H, Hecht F, Frey PJ (1998) Inter J Numer Meth Engrg 43:1143–
1165

[BU97] Buscaglia GC, Dari EA (1997) Inter J Numer Meth Engrg 40:4119–4136
[CI71] Ciarlet PG, Wagschal C (1971) Numer Math 17:84–100
[CI78] Ciarlet PG (1978) The finite element method for elliptic problems. North-

Holland
[HA95] Dompierre J, Vallet M-G, Fortin M, Habashi WG, Ait-Ali-Yahia D, Tam A

(1995) CERCA Report R95-73
[GA05] Garimella RV, Swartz BK (2003) Los Alamos Report LA-UR-03-8240



324 Konstantin Lipnikov and Yuri Vassilevski

[GA04] Garimella R, Knupp P, Shashkov M (2004) Comput Meth Appl Mech Engng
193:913–928

[LI03] Lipnikov K, Vassilevski Y (2003) Comput Meth Appl Mech Engrg 192:1495–
1513

[MI97] McIvor AM, Valkenburg RJ (1997) Machine Vision and Applications 10:17–
26

[ME02] Meyer M, Lee H, Barr AH, Desbrun M (2002) Journal of Graphics Tools
7:13–22

[MO01] Mokhtarian F, Khalili N, Yuen P (2001) Computer Vision and Image Un-
derstanding 83:118–139

[NO99] Nocedal J, Wright SJ (1999) Numerical Optimization. Springer-Verlag, New
York

[PE02] Petitjean S (2002) ACM Computing Surveys 32:211–262
[VA03] Vassilevski Y, Lipnikov K (2003) Comp Math Math Phys 43:827–835
[VA05] Vassilevski Y, Dyadechko V, Lipnikov K (2005) Russian J Numer Anal Math

Modelling (to appear)


