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ABSTRACT

In this paper we present two novel techniques to improve the quality of triangle surface meshes while preserving surface

characteristics as much as possible. In contrast to previous approaches we do not tend to preserve mesh nodes on the original

discrete surface. Instead, we propose two techniques, which allow to keep resulting mesh close to the smooth surface 

approximated by the original mesh. The first technique called trapezium drawing (TD) is iterative and can be easy implemented

for all types of meshes. It does not use any information about surface geometry. On the contrary, in the second technique to find

new location each node of the mesh we use value of maximum curvature defined at this node. We show that the second approach 

called curvature-based mesh improvement (CBMI) gives the best results in the sense of keeping new mesh very close to the

original surface and preserving surface characteristics such as normals and curvatures. But unlike TD it can be applied only for

meshes representing smooth surfaces without sharp edges and corners. Several quantitative measures are presented to 

demonstrate the effectiveness of both proposed techniques. 
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1. INTRODUCTION

As is well known mesh quality may be critical for accuracy

and efficiency in the numerical solutions to PDE-based 

applications [1]. To generate good quality solid mesh it is 

necessary to have good quality surface mesh. There are two 

main ways for mesh optimization: modifications of mesh

topology by inserting/deleting mesh nodes or edge flipping

[2] [3] and node movement methods commonly called

mesh smoothing. Methods from the first group may not be 

suitable for all applications since they change topology of

the original mesh. Thus, in this paper we focus on the latter

way.

To improve mesh quality in the plane a number of 

smoothing techniques have been developed ranging from 

simple Laplacian smoothing [4] to more sophisticated

algorithms. Among them there are physically based

methods [5] [6] where nodes are moved under the influence 

of some forces so that the shape of incident elements is

improved. Instead of local mesh optimization by moving 

each node on the basis some geometric characteristics (as is

done in Laplacian smoothing, angle-based [7] and 

physically based methods) the optimization-based

techniques allow to improve all original mesh. In these

techniques so called cost function [8] is optimized. As such 

function aspect ratio [9] or distortion metrics [10] [11] can

be used. 

It is necessary to note that the good shape of mesh elements

is not only the criteria for mesh quality when surface

meshes are considered. It is also essential to minimize

changes in the surface characteristics like normals and 

curvatures. As it has been pointed out in [12] preservation

of such characteristics is important for preventing drastic 

changes in the volume enclosed by the surfaces and in



forces like surface tension that depend on surface

properties.

1.1 Related Works

To avoid “oversmoothing” effect and diffusion of surface

features it seems reasonable to constrain node movement to

the underlying discrete surface. This idea has been

developed in [12] [13] [14]. While in [13] [14] each node is 

repositioned in a locally derived tangent plane and then

projected back to the surface, in [12] nodes are moved in a 

series of local parametric spaces derived from individual

mesh elements. Another group of algorithms use global

parameterization of the original mesh, and then

improvement in the parameter domain [15][16].

Let us note, however, that all these methods allow keeping

new nodes on the original mesh but not on the surface

approximated by this mesh. As a simple example consider a

sphere and a mesh with the nodes situated on this sphere.

Applying algorithms described above we will obtain new

nodes situated on the original mesh but not on the original 

sphere. Therefore, unlike initial mesh the new mesh will 

not be discrete approximation of the original sphere. 

Furthermore, described methods are not iterative because 

after the second or the third pass obtained mesh may differ 

sharply from the initial one.

1.2 Contributions and Overview

In this paper, we try to look at the problem of surface mesh

improvement from another point of view. Thinking of a 

given mesh as a piecewise linear approximation of some 

smooth surface we tend to keep nodes not on the original

mesh but very close to this smooth surface. 

The first proposed technique is called trapezium drawing 

(TD). It is based on the simple geometric idea of trapezium

construction for each pair of nodes adjacent to the

concerned node. The second approach called curvature-

based mesh improvement (CBMI) is more sophisticated. To

find new location of each node we use value of maximum

curvature defined at this node.

As it will be shown both methods demonstrate good results

in the sense of preserving surface characteristics like

normals and curvatures.  Both techniques guarantee a better

mesh quality than Laplacian smoothing. TD may be applied

as iterative method and even after several iterations there is

no oversmoothing of surface or destruction of its main

features.

The rest of this paper is organized as follows. In Section 2 

we give a detailed description of TD algorithm and 

demonstrate some examples of applying TD. Section 3

describes CBMI algorithm. We present also some examples

of applying CBMI in that Section. In Section 4 we compare 

results of applying Laplacian smoothing, TD and CBMI 

algorithms. We close by offering some concluding remarks 

in Section 5.

2. TRAPEZIUM DRAWING (TD)

This section describes a new simple and fast method called

trapezium drawing (TD) to improve surface mesh quality

without significant deviation from a surface approximated

by the original mesh. This method is easy to implement. It

is iterative and applicable to triangle surface and plane

meshes in a consistent manner. 

2.1 Algorithm

Let us consider some node  of the original mesh and all 

nodes

0p

ipP , ki ,...1  associated with this node. For 

each node the new position of the node is obtained 

according to the following procedure.

ip 0p

At first, we find the node such as vectorsPp j ipp0

and jpp0 compose a maximum angle as shown in Figure

1. The new position  of the node with regard to

will be a vertex of a trapezium such as a triangle

consisting of the points is isosceles (Figure 2).

ip0 0p

ip

joii ppp ,,

Figure 1. Search for the node such as vectorsjp

ipp0 and jpp0 compose a maximum angle

Figure 2. Search for the new location of the node

with regard to the node0p ip



Figure 3: Search for the coordinates of ip0

Let us emphasize two aspect of the algorithm.

iji pppp ||00 , therefore new node will be close to the

original not discrete but approximated smooth surface.

is isosceles that provides improvement of

correspondent mesh elements. 

jii ppp 0

Let us denote by  the midpoint of the segment .

The new coordinates of  may be found using following

formulas:
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(see Figure 3). 

After all  have been found the new position of the 

node is obtained by averaging coordinates

of , .

ip0

0p

ip0 ki ,...1

2.2 Quality Control 

As it has been pointed out in [17][18] with severely 

distorted meshes Laplacian smoothing may result in

inverted elements. Unfortunately there are several cases TD 

may also degrade mesh element quality. Therefore we need

some measure to check whether the quality of mesh

elements improved after applying TD or not. It is common

to use minimum angle as such measure like it is done in

smart Laplacian smoothing. However let us note that such

procedure reduces the risk of obtaining inverted elements

but still cannot guarantee validity of the new mesh. To

solve this problem we propose to use signed aspect

ratio
2
max3

4

l

A
k , where is the length of maximum

side of triangle and 

maxl

A is the signed area of triangle (i.e.,

with respect to counter-clockwise orientation). For oriented

mesh all valid triangles have positive areas and all inverted

triangles have negative areas. It is obvious that for any

triangle and in the case of equilateral

triangle. After the new position of the node has been found 

we need to calculate the minimum aspect ratio  for the

triangles adjacent to this node and compare it with the

minimum aspect ratio  with regard to the old position

of the node.  If we move the node to the new

position. Otherwise we keep the node at its initial position.

11 k 1k

newk

oldk

oldnew kk

Let us note that computational cost of calculating signed

aspect ratio is the same as computational cost of calculating

the minimal angle. But signed aspect ratio is much more

reliable to avoid inverted elements.

2.3 Results of Applying TD Algorithm

In order to show the effectiveness of proposed TD

algorithm consider two aspects of the problem of surface 

mesh improvement. Firstly let us demonstrate the visual 

effect of applying TD algorithm. From the results shown in

Figure 4, we can see that even after third iteration the

model of Mannequin preserves all its characteristic

features. To display the improvement of mesh element 

shapes for triangle meshes we use aspect

ratio
min

max

l
l

k , where and are respectively

lengths of the maximum and minimal sides of the triangle. 

It is clear that for equilateral triangle this aspect ratio

produces a value of 1. The histograms of the aspect ratio

distribution for mesh of Mannequin processed with TD 

algorithm are presented in Table 1.

maxl minl

1.0-

1.5

1.5-

2.0

2.0-

3.0

3.0-

4.0

4.0-

5.0

5.0-

0 610 449 253 31 7 5

1 737 455 157 6 0 0

2 784 455 111 5 0 0

3 826 433 92 4 0 0

4 853 416 84 2 0 0

5 868 404 82 1 0 0

ratio

aspect
iterations

Table 1. Histograms of aspect ratio for the mesh
of Mannequin optimized with TD algorithm during

5 iterations
iterations 1 2 3

TD )( Vol 0.025% 0.032% 0.050%

Table 2. Differences of the volume between
original mesh of Mannequin and the mesh

processed with TD algorithm

To measure changes in resulting and original surfaces we

computed several quantities.

Having a triangle mesh it is easy to calculate the interior

volume. This can be done by summing the volumes of all 

oriented pyramids centered at a point in space (the origin,

for example) and with a triangle of the mesh as a base. The

differences of the volume between original and obtained

meshes of Mannequin can be found in Table 2. We can see

that without any special constraints [19] TD algorithm 

gives very good results in the sense of volume preserving. 



  (a)  (b) 

(c)  (d) 

Figure 4. (a) Model of Mannequin, (b) The model
processed with TD algorithm after 3

rd
 iteration, (c) 

Original mesh of Mannequin, (d) The mesh 
optimized with TD algorithm after 3

rd
 iteration

Table 3. Maximum and average changes in
normals for the  mesh of Mannequin processed

with TD algorithm during 5 iterations

Maximum and average changes in normals for initial and 

resultant meshes of Mannequin are shown in Table 3.

These changes were calculated as the deviation between the

normals at the nodes of the obtained mesh and the normals 

at corresponding nodes of the original mesh. As it can be 

seen from presented data TD algorithm does not cause 

considerable changes in normals.

Figure 5 demonstrates that TD algorithm does not destroy

local refinement near wolf’s mouse and eyes while 

improving the mesh quality (Table 4). Let us note that local

refinement is preserved even after fifth iteration. Also, for 

mesh of Wolf average and maximum changes in normals

and differences of the volume were calculated. This data

can be found in Table 5.

0 1 2 3 4 5

1.0-1.5 2229 3157 3854 4476 4980 5285

1.5-2.0 4934 5434 5534 5473 5315 5212

2.0-3.0 4216 3965 3461 3074 2811 2683

3.0-4.0 1528 925 812 723 697 664

4.0-5.0 555 318 240 179 133 100

5.0-7.5 345 155 68 52 47 47

7.5-10. 122 34 23 15 9 1

10.-15. 63 4 0 0 0 0

Table 4. Histograms of aspect ratio for the mesh
of Wolf optimized with TD algorithm during 5 

iterations

1 5

nmax
09589.27 08334.54

naver
0171392.2 0711511.4

Vol 0.038% 0.117%

Table 5. Maximum and average changes in
normals and volume differences for the mesh of
Wolf optimized with TD algorithm after 1

st
 and 5

th

iterations

changes

passes 1 2 3 4 5

nmax
096.25 08.33 04.53 08.59 07.66

naver
042.2 033.3 086.3 025.4 057.4

  (a)   (b) 

  (c)   (d) 

Figure 5. (a) Model of Wolf; (b) The model
processed with TD algorithm after 5

th
 iteration; (c) 

Original mesh of Wolf; (d) The mesh optimized
with TD algorithm after 5

th
 iteration



(a)

(b)

Figure 6. (a) Mesh of Rocker Arm, (b) The mesh
processed with TD algorithm after 5

th
 iteration

ratioaspect

iterations

_

0 1 2 3 4 5

1.0-1.5 6166 9107 9766 9962 9972 9979

1.5-2.0 8919 8452 8513 8648 8826 8946

2.0-3.0 4217 2468 1792 1468 1282 1157

3.0-4.0 751 61 17 10 8 6

4.0-5.0 13 0 0 0 0 0

5.0-7.5 14 0 0 0 0 0

7.5-10. 4 0 0 0 0 0

10.-15. 3 0 0 0 0 0

15.- 1 0 0 0 0 0

Table 6. Histograms of aspect ratio for mesh of
Rocker Arm processed with TD algorithm during 5 

iterations.

Now let us demonstrate more precisely how TD algorithm 

influences on the shape and size of the mesh elements.

One important factor affecting the accuracy and efficiency

of the finite element analysis is size quality. There are two

cases that must be considered: uniform and graded meshes.

For uniform meshes it is necessary to keep difference

among sizes of elements as small as possible. Graded

meshes contain several layers that should not be diffused

after applying some technique and size change at the 

transitional zone should be smooth. In Figure 6 we can see 

that after several iterations there is no “diffusion” of layers,

size change is very smooth and uniform zones remain

uniform.

As is well known Laplacian smoothing may degrade mesh

quality if the algorithm iterates more than a few times. On 

the contrary, as it can be seen from Table 6 TD algorithm

tends to improve the aspect ratio as more passes are

performed.

2.4 About Applying TD to the Plane Meshes

Since surface meshes often consist of some plane parts it is

very important for optimization method to give good results

on the plane meshes. Let us show that TD algorithm 

answers this requirement.

As is well known Laplacian and smart Laplacian smoothing 

are the most commonly used techniques to improve the

quality of plane meshes because of its low computational

cost. But both methods may produce badly shaped or even 

inverted elements. In [7] there has been proposed effective

method called angle-based approach with low 

computational cost. The quality of mesh optimized with

this method is much better than after Laplacian and smart 

Laplacian smoothing and chance to obtain inverted

elements is reduced.  But in [20] it has been pointed out 

that this is true mostly for the meshes with regular

connectivity. When mesh contains very distorted elements 

angle-based approach also may fail. To solve this problem

Surazsky and Gostman in [20] proposed to use weights. 

This scheme reduces the risk of generating inverted

elements but still cannot guarantee that the obtained mesh 

will be valid. In fact, both angle-based and weighted angle-

based approaches may produce the meshes with even worse 

quality then Laplacian smoothing.

Because of introducing into the scheme signed aspect ratio

TD algorithm reduces chance to get inverted elements

sharply in comparison with foregoing techniques. The

results of applying all mentioned above techniques to the 

mesh with very irregular connectivity and distorted

elements are presented in Figure 7. 

3. CURVATURE BASED MESH
IMPROVEMENT (CBMI) 

In this section, we introduce novel approach CBMI to 

improve quality of the meshes representing -smooth

surfaces. The main idea is based on the notions from

differential geometry. Since maximum curvatures define

the degree of nonflatness of a surface we use them to find a

new location for each mesh node. Let us remind that we 

want to obtain the mesh close not to the original discrete

surface but to the smooth surface approximated by the

initial mesh. As it will be demonstrated further CBMI

algorithm gives very good results in that sense.

1
G

3.1 Algorithm
At first we need to calculate maximum curvatures at each

node of the original mesh. A number of researchers have 

looked at curvature estimation for triangle meshes. The two

main ways to estimate the curvatures are discrete methods 

and fitting methods. Discrete methods attempt to calculate 

curvature directly from a given mesh [21] [22]. Fitting

methods involve finding a function that approximates a 

surface [23]. Since surface curvature calculation is based

on the second order derivatives, it is common to use 

quadratic polynomials to approximate the surface locally.



Figure 7. (a) An initial mesh (no inverted triangles); (b) Angle-based approach (143 inverted triangles); (c) 
Weighted angle-based approach (99 inverted triangles); (d) Laplacian smoothing (25 inverted triangles); (e) 

Smart Laplacian smoothing (18 inverted elements); (f) TD after 20 iterations (no inverted elements) 

  (a)

  (b) 

  (c)

  (d) 

(e)

(f)



In our work we seek quadric in the 

form .feydxcybxyaxyxfz
22),(

For quadric interpolation we apply least square method 

whose detailed description may be found in [24].  While 

any number of points can be used to approximate the

surface, the simplest approach is to fit an N-ring

neighborhood around the concerned point. We use 2-ring

neighborhood that is created from 1-ring neighborhood by

adding all of the vertices of any triangle containing a vertex 

from the 1-ring neighborhood.

After the quadric has been found the principal curvatures

are calculated using the notions of classical differential

geometry [25].

The matrix of the first fundamental form for our quadric is

written in the form: . The matrix

of the second fundamental form is 

2

2

1

1

yyx

yxx

fff

fff
G

2222

2222

11

11

yx

yy

yx

xy

yx

xy

yx

xx

ff

f

ff

f

ff

f

ff

f

Q . The

eigenvalues of these pair of forms, i.e. of the equation

0)det( GQ , are the principal curvatures: maximum

max and minimum min .

While we use maximum curvatures to guarantee that the

new mesh will be very close to the original smooth surface,

so called “ordinary” and “improved” normals serves as an

indicator to the values of the node displacements. Let us 

describe the algorithm in details.

Consider an oriented triangle mesh. We define “ordinary”

normals by the standard procedure. For each triangle 

associated with the concerned node we calculate the

normals, average them at shared point and normalize the

resulting vector. The “improved” normals should be as

close as possible to the normals to the smooth surface

approximated by the original mesh. To compute such

normals we use “weighting-by-inverse-areas”. For each 

triangle i incident to the concerned node we define the 

weight coefficient as

p

i i

i
i S

S
k . Here is the area of

the triangle i .  Then we calculate normals for each triangle

and average them at the node with coefficients

iS

i p
ik

1 .

These average vectors are normalized.

There are four cases depending on signs of maximum and 

minimum curvatures defined at some point of the surface: 

1. 0max , 0min , local maximum at this point ; 

2. 0max , 0min , local minimum at this point ; 

3. 0minmax , local saddle at this point;

4. 0max , (point is situated on a plane).

Now let us consider the first case. Since the original mesh

is oriented we may assume that all normals defined at the

nodes are directed outside of the surface.

Consider some node of the mesh and all nodes 

associated with the node . Let and

,

0p

kppp ,...,, 21 0p in

imp

in ki ,...,1,0 be respectively “ordinary” and

“improved” normals defined at the node . We seek new

locations of the node with regard to each

node ,

ip

ip0 0p

ip ki ,...,1 . Denote the maximum curvature at the

node by0p 0max_ . Through the node we draw a sphere

with a center situated on the line defined by the normal 

in the opposite direction to and with a radius

equal to

ip

imp

in
imp

in

0max_

1 . Then in the direction of the normal

we draw the radius of that sphere. The point, in which

this radius picks the sphere, is sought point . After the

all points ,

0n

ip0

ip0 ki ,...,1 , are found the new location of

the node is defined be averaging the coordinates of .

Described procedure is shown in Figure 8.  To be definite, 

denote this procedure by max-algorithm.

0p ip0

Similar algorithm is applied in the second case (local 

minimum at the concerned node). We must simply change

the directions of the normals and , , to the

opposite (Figure 9) and implement described max-

algorithm. Let us denote this procedure by min-algorithm. 

0n
imp

in ki ,...,1

When we deal with a saddle point (third case) it is

necessary to combine max and min-algorithms. If the angle

 between ipp0 and
imp

n0 is sharp we apply min-

algorithm. Otherwise max-algorithm is implemented

(Figure 10). 

Forth case (a point is situated on a plane) is processed with 

TD algorithm.

Let us underscore that CBMI algorithm cannot process 

plane meshes. Indeed, in this algorithm we use directions of

normals to define node movement. But all normals at the 

nodes of plane mesh have the same direction. Therefore to

improve plane parts of the original mesh another

optimization technique should be used. In our work we

apply TD algorithm described above.

3.2 Results of Applying CBMI Algorithm 

We have tested CBMI algorithm on various meshes. 

Firstly, we used triangulated meshes representing analytical

surfaces to calculate the deviation the new meshes from 

these surfaces easily. In Figure 11 and Tables 7, 8 we can

see the results of applying Laplacian smoothing and CBMI 

algorithm to the mesh on the sphere. 



Figure 8. Search for the new location of the node

with regard to associated node using max-

algorithm

0p ip

Figure 9. Min-algorithm

Figure 10. Algorithm for saddle point

(a) (b) 

Figure 11. (a) Mesh of the sphere optimized with
CBMI algorithm (the difference from the volume of

the original mesh is 0.207%); (b) Mesh of the
sphere optimized with Laplacian smoothing (the

difference from the volume of the original mesh is 
1.83%)

(aspect

ratio)

Initial

mesh

Laplacian

smoothing

CBMI

algorithm

1.0   -1.5 1114 2848 2592
1.5   - 2.0 2676 2818 2836
2.0   - 3.0 1075 531 783
3.0   - 4.0 446 25 19
4.0   - 5.0 141 6 0
5.0   - 7.5 279 2 0
7.5  -10.0 85 0 0
10.0-15.0 163 0 0

15.0- 251 0 0

Table 7. Histograms of aspect ratio for original,
optimized with Laplacian smoothing and CBMI 

algorithm meshes of the sphere

Laplacian smoothing CBMI

Gaussmax
3.03898 0.636057

Gaussaver
0.359551 0.195036

meanmax
0.770912 0.156255

meanaver
0.088403 0.048328

nmax
2.07385 1.13253

naver
0.924495 0.300259

maxE 0.002398 0.000401

averE 0.001403 0.0000333

Table 8. Changes in surface characteristics for the
mesh of sphere optimized with Laplacian

smoothing and CBMI algorithm

Different quantities were computed to measure the change

in the obtained meshes and the original sphere. We

calculated maximum and average changes in Gaussian and 

Mean curvatures, maximum and average changes in

normals, maximum and average deviations from the

original sphere and differences of volume. Let us note that 

both visual observation of Figure 11 and all these quantities

show that CBMI algorithm considerably better preserves

surface characteristics then Laplacian smoothing.



   (a)   (b)    (c) 
Figure 12. (a) Mesh of ellipsoid; (b) The mesh

optimized with Laplacian smoothing (the
difference from the volume of the original mesh is 

2.86%); (c) The mesh optimized with CBMI 
algorithm (the difference from the volume of the

original mesh is 0.41%)

Figure 12, Tables 9 and 10 demonstrate similar results for

the mesh on ellipsoid. As it can be seen the mesh improved

with CBMI algorithm represents much smoother surface

then the mesh processed with Laplacian smoothing (Figure 

12). Furthermore CBMI algorithm gives better results in the

sense of mesh element quality (Table 9). 

(aspect ratio)

Initial mesh Laplacian

smoothing

CBMI

algorithm

1.0   -1.5 1118 1714 1842
1.5   - 2.0 4786 612 493
2.0   - 3.0 232 64 61
3.0   - 4.0 164 6 0
4.0   - 5.0 60 0 0
5.0   - 7.5 106 0 0
7.5  -10.0 58 0 0
10.0-15.0 32 0 0

15.0- 148 0 0

Table 9. Histograms of aspect ratio for original,
optimized with Laplacian smoothing and CBMI 

algorithm meshes of ellipsoid

Laplacian smoothing CBMI

maxE 0.029773 0.018288

averE 0.009568 0.00457

Table 10. Maximum and average deviations of the
mesh of ellipsoid optimized with Laplacian 

smoothing and CBMI algorithm from the original
one

Finally to show how the algorithm works for the surfaces

with saddle points we used the mesh of letter “S”. Figure 

13 and Table 11 demonstrate that mesh element quality is

improved greatly while surface preserves all its main

features.

   (a)     (b)
Figure 13. (a) Mesh of “S”; (b) The mesh optimized

with CBMI algorithm

(aspect ratio

Original mesh CBMI

1.0-1.5 1424 1572

1.5-2.0 490 664

2.0-3.0 170 42

3.0-4.0 51 2

4.0-5.0 28 0

5.0-7.5 34 0

7.5-10. 20 0

10.-15.    31 0

15.- 32 0

Table 11. Histograms of aspect ratio for the mesh
of “S” optimized with CBMI algorithm

4. COMPARISON OF LAPLACIAN
SMOOTHING, TD AND CBMI ALGORITHMS

In this Section we compare results of applying Laplacian

smoothing, TD and CBMI algorithms to the mesh of cubic 

surface .33 96 yxz

First of all let us note that while Laplacian smoothing 

produces the largest number of triangles close to 

equilaterals, TD and CBMI algorithms more efficiently

dispose of badly shaped triangles (Table 12). Figure 14

demonstrates that CBMI and TD algorithms yield smoother 

surface in comparison with Laplacian smoothing. In Table

13 we present different quantities to measure the changes in

surface characteristics. The data confirms the visual

observation that CBMI algorithm gives the best results in

the sense of preserving surface characteristics. The note

must be made that TD algorithm causes a little larger

change in surface curvatures and normals than CBMI

algorithm. Nevertheless it also keeps obtained mesh very

close to the original surface.



  (a) 

 (b) 

   (c) 

   (d)

Figure 14. (a) Mesh of a cubic surface; (b) The
mesh optimized with TD algorithm; (c) The mesh

optimized with Laplacian smoothing; (d) The
mesh optimized with CBMI algorithm

(aspect

ratio

Original

mesh

Laplacian

smoothing

TD CBMI

1.0-1.5 615 936 658 909

1.5-2.0 609 780 910 796

2.0-3.0 409 366 518 404

3.0-4.0 151 69 81 65

4.0-5.0 102 39 33 24

5.0-7.5 88 19 14 16

7.5-10. 38 1 0 0

10.-15. 56 4 0 0

15.- 146 0 0 0

Table 12. Histograms of aspect ratio for the mesh
of cubic surface optimized with Laplacian

smoothing, TD and CBMI algorithms

Laplacian

smoothing

TD CBMI

Gaussmax
8.48812 3.00218 2.95193

Gaussaver
0.566505 0.395472 0.352536

meanmax
2.007724 1.075598 1.438837

meanaver
0.144465 0.095078 0.087568

nmax
4.89858 3.46709 3.46709

naver
1.051849 0.656461 0.562889

maxE 0.007234 0.00181 0.001132

averE 0.001524 0.000326 0.000255

Table 13. Changes in surface characteristics for
the mesh of cubic surface optimized with

Laplacian smoothing, TD and CBMI algorithms

5. CONCLUSION AND DISCUSSION

In this paper we have presented two novel techniques to

improve surface mesh quality while preserving surface

characteristics as much as possible. Instead of keeping new

mesh close to the initial one (that is to the discrete surface)

both proposed algorithms tend to preserve new mesh close 

to the surface approximated by the original mesh.

First technique (TD) has a simple geometric foundation. It 

is iterative and can be applied to plane and surface meshes

in a consistent manner.

To implement second method (CBMI) we need to calculate

surface normals and maximum curvatures at each node of

the original mesh. It can be applied only for -smooth

surfaces.

1
G

Several quantitative measures were presented to prove that 

both algorithms do not cause much distortion of the original

surface while improving mesh element quality. Our

experimental results indicate that CBMI algorithm gives the

best results in the sense of preserving surface 

characteristics. On the other hand TD algorithm do not

distort original surface much also and it can be

implemented both for smooth and non-smooth surfaces. 

We believe that the output of CBMI algorithm is very

useful for applications that require high quality 

triangulations with preserving surface characteristics as



much as possible on the surfaces composed of the smooth

geometric primitives. It has been shown that CBMI

algorithm is very suitable approach to improve mesh

quality on such surfaces. We hope to extend algorithm to 

include non-  surfaces. Sharp edges on the surfaces

would have to be identified and the nodes around them 

should be repositioned in a different way.

1
G

TD algorithm may be considered as universal approach

since it can be applied for any surface or plane triangle

mesh iteratively. As it has been shown even after several

iterations there is no oversmoothing effect. All sharp 

features are preserved, and the deviation of curvatures and

normals from those for the original surface is small. On the

other hand the computational cost for TD is much lower in

comparison with techniques using information about 

surface geometry because we do not need to estimate

neither surface normals nor curvatures. Thus we believe

that TD is an ideal trade-off among mesh quality,

preservation of surface characteristics and computational

cost. In our future works we intend to investigate the

convergence of this algorithm and devise criteria to define

how many iterations we need to perform.

Let us note that although we consider only triangle meshes 

TD and CBMI algorithms can be applied to quadrilateral

meshes in the same way. While for triangle meshes TD and

CBMI methods use the neighboring nodes connected with

the central node, to apply these algorithms to quadrilateral

meshes we simply need to consider all surrounding nodes. 
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